1932

Abstract

The “flow” of electric currents and heat in standard metals is diffusive with electronic motion randomized by impurities. However, for ultraclean metals, electrons can flow like water with their flow being described by the equations of hydrodynamics. While theoretically postulated, this situation was highly elusive for decades. In the past decade, several experimental groups have found strong indications for this type of flow, especially in graphene-based devices. In this review, we give an overview of some of the recent key developments, on both the theoretical and experimental sides.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040521-042014
2024-03-11
2024-06-10
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-040521-042014.html?itemId=/content/journals/10.1146/annurev-conmatphys-040521-042014&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Landau LD, Lifshitz EM. 1987. Fluid Mechanics, Vol. 6 Course of Theoretical Physics Amsterdam: Butterworth-Heinemann. , 2nd ed..
    [Google Scholar]
  2. 2.
    Clay Math. Inst. 2000. The Millennium Prize Problems. Clay Mathematics Institute. https://www.claymath.org/millennium-problems
    [Google Scholar]
  3. 3.
    Sachdev S. 2011. Quantum Phase Transitions Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  4. 4.
    Narozhny BN, Gornyi IV, Mirlin AD, Schmalian J. 2017. Ann. Phys. 529:111700043
    [Google Scholar]
  5. 5.
    Narozhny BN. 2019. Ann. Phys. 411:167979
    [Google Scholar]
  6. 6.
    Lucas A, Fong KC. 2018. J. Phys.: Condens. Matter 30:053001
    [Google Scholar]
  7. 7.
    Levchenko A, Schmalian J. 2020. Ann. Phys. 419:168218
    [Google Scholar]
  8. 8.
    Huang X, Lucas A. 2021. Phys. Rev. B 103:155128
    [Google Scholar]
  9. 9.
    Zaanen J. 2016. Science 365:1026–27
    [Google Scholar]
  10. 10.
    Polini M, Geim AK. 2020. Phys. Today 73:628–34
    [Google Scholar]
  11. 11.
    Volovik GE. 2009. The Universe in a Helium Droplet Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  12. 12.
    Abrikosov AA, Khalatnikov IM. 1959. Rep. Prog. Phys. 22:329–67
    [Google Scholar]
  13. 13.
    Mahan GD. 2000. Many-Particle Physics New York: Springer. , 3rd ed..
    [Google Scholar]
  14. 14.
    Gurzhi RN. 1968. Sov. Phys. Uspekhi 11:2255–70
    [Google Scholar]
  15. 15.
    Lifshitz EM, Pitaevskii LP. 1981. Physical Kinetics, Vol. 10: Course of Theoretical Physics London: Pergamon
    [Google Scholar]
  16. 16.
    Katsnelson MI. 2012. Graphene: Carbon in Two Dimensions Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. 17.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK 2009. Rev. Mod. Phys. 81:109–62
    [Google Scholar]
  18. 18.
    Sheehy DE, Schmalian J. 2007. Phys. Rev. Lett. 99:226803
    [Google Scholar]
  19. 19.
    Ziman JM. 2001. Electrons and Phonons: The Theory of Transport Phenomena in Solids Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  20. 20.
    Franz R, Wiedemann G. 1853. Ann. Phys. 165:8497–531
    [Google Scholar]
  21. 21.
    Gurzhi R. 1963. Sov. Phys. JETP 44:771–72
    [Google Scholar]
  22. 22.
    Black JE. 1980. Phys. Rev. B 21:83279–86
    [Google Scholar]
  23. 23.
    Gurzhi RN, Kalinenko AN, Kopeliovich AI. 1995. Phys. Rev. Lett. 74:193872–75
    [Google Scholar]
  24. 24.
    de Jong MJM, Molenkamp LW. 1995. Phys. Rev. B 51:1913389–402
    [Google Scholar]
  25. 25.
    Yu ZZ, Haerle M, Zwart JW, Bass J, Pratt WP, Schroeder PA. 1984. Phys. Rev. Lett. 52:5368–71
    [Google Scholar]
  26. 26.
    Dyakonov M, Shur M. 1993. Phys. Rev. Lett. 71:152465–68
    [Google Scholar]
  27. 27.
    Chow E, Wei HP, Girvin SM, Shayegan M. 1996. Phys. Rev. Lett. 77:61143–46
    [Google Scholar]
  28. 28.
    Spivak B, Kivelson SA. 2006. Ann. Phys. 321:92071–115
    [Google Scholar]
  29. 29.
    Andreev AV, Kivelson SA, Spivak B. 2011. Phys. Rev. Lett. 106:25256804
    [Google Scholar]
  30. 30.
    Alekseev PS. 2016. Phys. Rev. Lett. 117:16166601
    [Google Scholar]
  31. 31.
    Tomadin A, Vignale G, Polini M. 2014. Phys. Rev. Lett. 113:23235901
    [Google Scholar]
  32. 32.
    Levitov L, Falkovich G. 2016. Nat. Phys. 12:7672–76
    [Google Scholar]
  33. 33.
    Torre I, Tomadin A, Geim AK, Polini M. 2015. Phys. Rev. B 92:16165433
    [Google Scholar]
  34. 34.
    Principi A, Vignale G, Carrega M, Polini M. 2016. Phys. Rev. B 93:12125410
    [Google Scholar]
  35. 35.
    Sherafati M, Principi A, Vignale G. 2016. Phys. Rev. B 94:12125427
    [Google Scholar]
  36. 36.
    Guo H, Ilseven E, Falkovich G, Levitov L. 2016. arXiv:1612.09239
  37. 37.
    Lucas A. 2017. Phys. Rev. B 95:11115425
    [Google Scholar]
  38. 38.
    Levchenko A, Xie HY, Andreev AV. 2017. Phys. Rev. B 95:12121301
    [Google Scholar]
  39. 39.
    Bandurin DA, Torre I, Krishna Kumar R, Ben Shalom M, Tomadin A et al. 2016. Science 351:62771055–58
    [Google Scholar]
  40. 40.
    Crossno J, Shi JK, Wang K, Liu X, Harzheim A et al. 2016. Science 351:1058–61
    [Google Scholar]
  41. 41.
    Moll PJW, Kushwaha P, Nandi N, Schmidt B, Mackenzie AP. 2016. Science 351:62771061–64
    [Google Scholar]
  42. 42.
    Guo H, Ilseven E, Falkovich G, Levitov LS. 2017. PNAS 114:123068–73
    [Google Scholar]
  43. 43.
    Krishna Kumar R, Bandurin DA, Pelligrino FMD, Cao Y, Principi A et al. 2017. Nat. Phys. 13:1182–85
    [Google Scholar]
  44. 44.
    Scaffidi T, Nandi N, Schmidt B, Mackenzie AP, Moore JE. 2017. Phys. Rev. Lett. 118:22226601
    [Google Scholar]
  45. 45.
    Lucas A, Hartnoll SA. 2018. Phys. Rev. B 97:4045105
    [Google Scholar]
  46. 46.
    Ho DYH, Yudhistira I, Chakraborty N, Adam S. 2018. Phys. Rev. B 97:12121404
    [Google Scholar]
  47. 47.
    Shytov A, Kong JF, Falkovich G, Levitov L. 2018. Phys. Rev. Lett. 121:17176805
    [Google Scholar]
  48. 48.
    Alekseev PS, Semina MA. 2018. Phys. Rev. B 98:16165412
    [Google Scholar]
  49. 49.
    Svintsov D. 2018. Phys. Rev. B 97:12121405
    [Google Scholar]
  50. 50.
    Gooth J, Menges F, Kumar N, Süss V, Shekhar C et al. 2018. Nat. Commun. 9:4093
    [Google Scholar]
  51. 51.
    Braem BA, Pelligrino FMD, Principi A, Röösli M, Gold C et al. 2018. Phys. Rev. B 98:241304 R )
    [Google Scholar]
  52. 52.
    Berdyugin AI, Xu SG, Pelligrino FMD, Krishna Kumar R, Principi A et al. 2019. Science 364:6436162–65
    [Google Scholar]
  53. 53.
    Sulpizio JA, Ella L, Rozen A, Birkbeck J, Perello DJ et al. 2019. Nature 576:778575–79
    [Google Scholar]
  54. 54.
    Shavit M, Shytov A, Falkovich G. 2019. Phys. Rev. Lett. 123:2026801
    [Google Scholar]
  55. 55.
    Ku MJH, Zhou TX, Li Q, Shin YJ, Shi JK et al. 2020. Nature 583:7817537–41
    [Google Scholar]
  56. 56.
    Holder T, Queiroz R, Scaffidi T, Silberstein N, Rozen A et al. 2019. Phys. Rev. B 100:24245305
    [Google Scholar]
  57. 57.
    Jenkins A, Baumann S, Zhou H, Meynell SA, Daipeng Y et al. 2022. Phys. Rev. Lett. 129:8087701
    [Google Scholar]
  58. 58.
    Keser AC, Wang DQ, Klochan O, Ho DYH, Tkachenko OA et al. 2021. Phys. Rev. X 11:3031030
    [Google Scholar]
  59. 59.
    Gupta A, Heremans JJ, Fallahi S, Gardner GC, Manfra MJ. 2021. Phys. Rev. Lett. 126:076803
    [Google Scholar]
  60. 60.
    Krebs ZJ, Behn WA, Li S, Smith KJ, Watanabe K et al. 2023. Science 379:6633671–76
    [Google Scholar]
  61. 61.
    Hong Q, Davydova M, Ledwith PJ, Levitov L. 2020. arXiv:2012.03840
  62. 62.
    Molenkamp LW, de Jong MJM. 1994. Phys. Rev. B 49:75038–41
    [Google Scholar]
  63. 63.
    Nazaryan KG, Levitov L. 2021. arXiv:2111.09878
  64. 64.
    Callaway J. 1959. Phys. Rev. 113:41046–51
    [Google Scholar]
  65. 65.
    Aharon-Steinberg A, Völkl T, Kaplan A, Pariari AK, Roy I et al. 2022. Nature 607:791774–80
    [Google Scholar]
  66. 66.
    Wolf Y, Aharon-Steinberg A, Yan B, Holder T 2023. Nat. Commun. 14:2334
    [Google Scholar]
  67. 67.
    Ledwith P, Guo H, Shytov A, Levitov L. 2019. Phys. Rev. Lett. 123:11116601
    [Google Scholar]
  68. 68.
    Ledwith PJ, Guo H, Levitov L. 2019. Ann. Phys. 411:167913
    [Google Scholar]
  69. 69.
    Kiselev EI, Schmalian J. 2019. Phys. Rev. Lett. 123:19195302
    [Google Scholar]
  70. 70.
    Kiselev EI, Schmalian J. 2019. Phys. Rev. B 99:3035430
    [Google Scholar]
  71. 71.
    Moessner R, Morales-Durán N, Surówka P, Witkowski P. 2019. Phys. Rev. B 100:15155115
    [Google Scholar]
  72. 72.
    Mahajan R, Barkeshli M, Hartnoll SA. 2013. Phys. Rev. B 88:12125107
    [Google Scholar]
  73. 73.
    Principi A, Vignale G. 2015. Phys. Rev. Lett. 115:5056603
    [Google Scholar]
  74. 74.
    Pongsangangan K, Grubinskas S, Fritz L. 2022. Phys. Rev. Res. 4:4043107
    [Google Scholar]
  75. 75.
    Pongsangangan K, Ludwig T, Stoof HTC, Fritz L. 2022. Phys. Rev. B 106:20205126
    [Google Scholar]
  76. 76.
    Pongsangangan K, Ludwig T, Stoof HTC, Fritz L. 2022. Phys. Rev. B 106:20205127
    [Google Scholar]
  77. 77.
    Hartnoll SA, Mackenzie AP. 2022. Rev. Mod. Phys. 94:4041002
    [Google Scholar]
  78. 78.
    Ho DYH, Yudhistira I, Chakraborty N, Adam S. 2018. Phys. Rev. B 97:121404 R )
    [Google Scholar]
  79. 79.
    Tan C, Ho DYH, Wang L, Li JIA, Yudhistira I et al. 2022. Sci. Adv. 8:15eabi8481
    [Google Scholar]
  80. 80.
    Kashuba AB. 2008. Phys. Rev. B 78:085415
    [Google Scholar]
  81. 81.
    Fritz L, Schmalian J, Müller M, Sachdev S. 2008. Phys. Rev. B 78:085416
    [Google Scholar]
  82. 82.
    Foster MS, Aleiner IL. 2009. Phys. Rev. B 79:085415
    [Google Scholar]
  83. 83.
    Müller M, Schmalian J, Fritz L. 2009. Phys. Rev. Lett. 103:025301
    [Google Scholar]
  84. 84.
    Schütt M, Ostrovsky PM, Gornyi IV, Mirlin AD. 2011. Phys. Rev. B 83:155441
    [Google Scholar]
  85. 85.
    Narozhny BN, Gornyi IV, Titov M, Schütt M, Mirlin AD. 2015. Phys. Rev. B 91:035414
    [Google Scholar]
  86. 86.
    Briskot U, Schütt M, Gornyi IV, Titov M, Narozhny BN, Mirlin AD. 2015. Phys. Rev. B 92:115426
    [Google Scholar]
  87. 87.
    Gallagher P, Yang C-S, Lyu T, Tian F, Kou R et al. 2019. Science 364:158–62
    [Google Scholar]
  88. 88.
    Lux J, Fritz L. 2013. Phys. Rev. B 87:075423
    [Google Scholar]
  89. 89.
    Zarenia M, Smith TB, Principi A, Vignale G. 2019. Phys. Rev. B 99:16161407
    [Google Scholar]
  90. 90.
    Wagner G, Nguyen DX, Simon SH. 2020. Phys. Rev. Lett. 124:2026601
    [Google Scholar]
  91. 91.
    Wagner G, Nguyen DX, Simon SH. 2020. Phys. Rev. B 101:24245438
    [Google Scholar]
  92. 92.
    Nam Y, Ki D-K, Soler-Delgado D, Morpurgo AF. 2017. Nat. Phys. 13:1207–14
    [Google Scholar]
  93. 93.
    Li S, Levchenko A, Andreev AV. 2020. Phys. Rev. B 102:7075305
    [Google Scholar]
  94. 94.
    Nandi N, Scaffidi T, Kushwaha P, Khim S, Barber ME et al. 2018. npj Quantum Mater. 3:66
    [Google Scholar]
  95. 95.
    Bandurin DA, Shytov AV, Levitov L, Krishna Kumar R, Berdyugin AI et al. 2018. Nat. Commun. 9:4533
    [Google Scholar]
  96. 96.
    Geurs J, Kim Y, Watanabe K, Taniguchi T, Moon P, Smet JH. 2020. arXiv:2008.04862
  97. 97.
    Stern A, Scaffidi T, Reuven O, Kumar C, Birkbeck J, Ilani S 2022. Phys. Rev. Lett. 129:15157701
    [Google Scholar]
  98. 98.
    Nagaev KE, Ayvazyan OS. 2008. Phys. Rev. Lett. 101:21216807
    [Google Scholar]
  99. 99.
    Nagaev KE, Kostyuchenko TV. 2010. Phys. Rev. B 81:12125316
    [Google Scholar]
  100. 100.
    Melnikov MY, Kotthaus JP, Pellegrini V, Sorba L, Biasiol G, Khrapai VS. 2012. Phys. Rev. B 86:7075425
    [Google Scholar]
  101. 101.
    Kumar C, Birkbeck J, Sulpizio JA, Perello D, Taniguchi T et al. 2022. Nature 609:7926276–81
    [Google Scholar]
  102. 102.
    Li S, Levchenko A, Andreev AV. 2022. Phys. Rev. B 105:12125302
    [Google Scholar]
  103. 103.
    Farrell JH, Grisouard N, Scaffidi T. 2022. Phys. Rev. B 106:19195432
    [Google Scholar]
  104. 104.
    Baker G, Branch TW, Day J, Valentinis D, Oudah M et al. 2022. arXiv:2204.14239
  105. 105.
    Dyakonov M, Shur M. 1993. Phys. Rev. Lett. 71:152465–68
    [Google Scholar]
  106. 106.
    Gabbana A, Polini M, Succi S, Tripiccione R, Pellegrino FMD. 2018. Phys. Rev. Lett. 121:23236602
    [Google Scholar]
  107. 107.
    Mendl CB, Polini M, Lucas A. 2021. Appl. Phys. Lett. 118:013105
    [Google Scholar]
  108. 108.
    Crabb J, Cantos-Roman X, Jornet JM, Aizin GR. 2021. Phys. Rev. B 104:15155440
    [Google Scholar]
  109. 109.
    Petrov AS, Svintsov D. 2022. Phys. Rev. Appl. 17:5054026
    [Google Scholar]
  110. 110.
    Di Sante D, Erdmenger J, Greiter M, Matthaiakakis I, Meyer R et al. 2020. Nat. Commun. 11:3997
    [Google Scholar]
  111. 111.
    Andersen TI, Dwyer BL, Sanchez-Yamagishi JD, Rodriguez-Nieva JF, Agarwal K et al. 2019. Science 364:6436154–57
    [Google Scholar]
  112. 112.
    Jaoui A, Fauqué B, Behnia K. 2021. Nat. Commun. 12:195
    [Google Scholar]
  113. 113.
    Jaoui A, Gourgout A, Seyfarth G, Subedi A, Lorenz T et al. 2022. Phys. Rev. X 12:3031023
    [Google Scholar]
  114. 114.
    Moll PJW, Kushwaha P, Nandi N, Schmidt B, Mackenzie AP. 2016. Science 351:62771061–64
    [Google Scholar]
  115. 115.
    Jaoui A, Fauqué B, Rischau CW, Subedi A, Fu C et al. 2018. npj Quantum Mater. 3:64
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-040521-042014
Loading
/content/journals/10.1146/annurev-conmatphys-040521-042014
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error