1932

Abstract

Newly available high-resolution imaging of solar radio emission at many closely spaced frequencies and times provides new physical insight into the processes, structure, and dynamics of the solar atmosphere. The observational advances have spurred renewed interest in topics dating from the early days of solar radio astronomy and have led to considerable advances in our knowledge. Highlights of recent advances include the following:

  • ▪  Quantitatively measuring the dynamic magnetic field strength, particle acceleration, and hot thermal plasma at the heart of solar flares and hinting at the processes that relate them.
  • ▪  Resolving in space and time the energization and transport of electrons in a wide range of contexts.
  • ▪  Mapping the magnetized thermal plasma structure of the solar chromosphere and corona over a substantial range of heights in active and quiet regions of the Sun.

This review explains why solar radio imaging spectroscopy is so powerful, describes the body of recent results, and outlines the future work needed to fully realize its potential. The application of radio imaging spectroscopy to stars and planets is also briefly reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-071221-052744
2023-08-18
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-071221-052744.html?itemId=/content/journals/10.1146/annurev-astro-071221-052744&mimeType=html&fmt=ahah

Literature Cited

  1. Alissandrakis CE, Bastian TS, Brajša R. 2022. Front. Astron. Space. Sci. 9:981320
    [Google Scholar]
  2. Allred JC, Alaoui M, Kowalski AF et al. 2020. Ap. J. 902:16
    [Google Scholar]
  3. Altyntsev A, Lesovoi S, Globa M et al. 2020. Solar-Terr. Phys. 6:30–40
    [Google Scholar]
  4. Anfinogentov SA, Stupishin AG, Mysh'yakov II et al. 2019. Ap. J. Lett. 880:L29
    [Google Scholar]
  5. Arnold H, Drake JF, Swisdak M et al. 2019. Phys. Plasmas 26:102903
    [Google Scholar]
  6. Arnold H, Drake JF, Swisdak M et al. 2021. Phys. Rev. Lett. 126:135101
    [Google Scholar]
  7. Bastian TS. 1994. Ap. J. 426:774–81
    [Google Scholar]
  8. Bastian TS. 2018. See Murphy (2018) 87–97
  9. Bastian TS, Benz AO, Gary DE. 1998. Annu. Rev. Astron. Astrophys. 36:131–88
    [Google Scholar]
  10. Bastian TS, Cotton WD, Hallinan G. 2022a. Ap. J. 935:99
    [Google Scholar]
  11. Bastian TS, Pick M, Kerdraon A et al. 2001. Ap. J. Lett. 558:L65–69
    [Google Scholar]
  12. Bastian TS, Shimojo M, Barta M et al. 2022b. Front. Astron. Space. Sci. 9:977368
    [Google Scholar]
  13. Battaglia M, Sharma R, Luo Y et al. 2021. Ap. J. 922:134
    [Google Scholar]
  14. Benz AO. 1985. Sol. Phys. 96:357–70
    [Google Scholar]
  15. Benz AO. 1998. Paper presented at CESRA Workshop on Coronal Explosive Events Siikaranta (Espoo) Finland: June 9–13, abstr. id. 16
  16. Carley EP, Cecconi B, Reid HA et al. 2021. Ap. J. 921:3
    [Google Scholar]
  17. Chai Y, Gary DE, Reardon KP et al. 2022. Ap. J. 924:100
    [Google Scholar]
  18. Chen B. 2013. Radio and x-ray diagnostics of energy release in solar flares PhD Thesis University of Virginia
    [Google Scholar]
  19. Chen B, Bastian TS, Shen C et al. 2015. Science 350:1238–42
    [Google Scholar]
  20. Chen B, Bastian TS, White SM et al. 2013. Ap. J. Lett. 763:L21
    [Google Scholar]
  21. Chen B, Battaglia M, Krucker S et al. 2021. Ap. J. Lett. 908:L55
    [Google Scholar]
  22. Chen B, Shen C, Gary DE et al. 2020a. Nat. Astron. 4:1140–47
    [Google Scholar]
  23. Chen B, Shen C, Reeves KK et al. 2019. Ap. J. 884:63
    [Google Scholar]
  24. Chen B, Yu S, Battaglia M et al. 2018. Ap. J. 866:62
    [Google Scholar]
  25. Chen B, Yu S, Reeves KK et al. 2020b. Ap. J. Lett. 895:L50
    [Google Scholar]
  26. Chhabra S, Gary DE, Hallinan G et al. 2021. Ap. J. 906:132
    [Google Scholar]
  27. Clarkson DL, Kontar EP, Gordovskyy M et al. 2021. Ap. J. Lett. 917:L32
    [Google Scholar]
  28. Comm. Exoplanet Sci. Strateg 2018. Exoplanet Science Strategy, Consensus Study Report Washington, DC: Natl. Acad. Press
    [Google Scholar]
  29. Connor L, Bouman KL, Ravi V et al. 2022. MNRAS 514:2614–26
    [Google Scholar]
  30. Dahlin JT, Antiochos SK, Qiu J et al. 2022. Ap. J. 932:94
    [Google Scholar]
  31. Dere KP, Del Zanna G, Young PR et al. 2019. Ap. J. Suppl. 241:22
    [Google Scholar]
  32. Dere KP, Landi E, Mason HE et al. 1997. Astron. Astrophys. Suppl. Ser. 125:149–73
    [Google Scholar]
  33. Downs C, Warmuth A, Long DM et al. 2021. Ap. J. 911:118
    [Google Scholar]
  34. Drake JF, Arnold H, Swisdak M et al. 2019. Phys. Plasmas 26:012901
    [Google Scholar]
  35. Dulk GA. 1985. Annu. Rev. Astron. Astrophys. 23:169–224
    [Google Scholar]
  36. Dulk GA, Marsh KA. 1982. Ap. J. 259:350–58
    [Google Scholar]
  37. Dulk GA, Suzuki S. 1980. Astron. Astrophys. 88:203–17
    [Google Scholar]
  38. Duncan RA. 1979. Solar Phys. 63:389–98
    [Google Scholar]
  39. Eidman VY. 1958. Sov. Phys. JETP 7:91
    [Google Scholar]
  40. Eidman VY. 1959. Sov. Phys. JETP 9:947
    [Google Scholar]
  41. Fedenev VV, Anfinogentov SA, Fleishman GD. 2023. Ap. J. 943:160
    [Google Scholar]
  42. Fleishman GD, Gary DE, Chen B et al. 2020. Science 367:278–80
    [Google Scholar]
  43. Fleishman GD, Kleint L, Motorina GG et al. 2021a. Ap. J. 913:97
    [Google Scholar]
  44. Fleishman GD, Kuznetsov AA. 2010. Ap. J. 721:1127–41
    [Google Scholar]
  45. Fleishman GD, Kuznetsov AA. 2014. Ap. J. 781:77
    [Google Scholar]
  46. Fleishman GD, Kuznetsov AA, Landi E. 2021b. Ap. J. 914:52
    [Google Scholar]
  47. Fleishman GD, Loukitcheva MA, Kopnina VY et al. 2018a. Ap. J. 867:81
    [Google Scholar]
  48. Fleishman GD, Nita GM, Chen B et al. 2022. Nature 606:674
    [Google Scholar]
  49. Fleishman GD, Nita GM, Gary DE. 2009. Ap. J. Lett. 698:L183–87
    [Google Scholar]
  50. Fleishman GD, Nita GM, White SM et al. 2018b. See Murphy (2018) 125–33
  51. Fujii Y, Spiegel DS, Mroczkowski T et al. 2016. Ap. J. 820:122
    [Google Scholar]
  52. Gary DE, Bastian TS, Chen B et al. 2018a. See Murphy (2018) 99–111
  53. Gary DE, Chen B, Dennis BR et al. 2018b. Ap. J. 863:83
    [Google Scholar]
  54. Gary DE, Chen B, Drake JF et al. 2022. arXiv:2210.10827
  55. Gary DE, Fleishman GD, Nita GM. 2013. Solar Phys. 288:549
    [Google Scholar]
  56. Gary DE, Hurford GJ. 1994. Ap. J. 420:903–12
    [Google Scholar]
  57. Gary DE, Hurford GJ. 2004. Ap. Space Sci. Libr. 314:71–87
    [Google Scholar]
  58. Gibson S, Kucera T, White S et al. 2016. Front. Astron. Space. Sci. 3:8
    [Google Scholar]
  59. Grießmeier JM, Zarka P, Spreeuw H. 2007. Astron. Astrophys. 475:359–68
    [Google Scholar]
  60. Hallinan G, Littlefair SP, Cotter G et al. 2015. Nature 523:568–71
    [Google Scholar]
  61. Hey JS. 1946. Nature 157:47–48
    [Google Scholar]
  62. Högbom JA. 1974. Astron. Astrophys. Suppl. 15:417–26
    [Google Scholar]
  63. Karlický M, Chen B, Gary DE et al. 2020. Ap. J. 889:72
    [Google Scholar]
  64. Kashapova LK, Kolotkov DY, Kupriyanova EG et al. 2021. Sol. Phys. 296:185
    [Google Scholar]
  65. Kasper J, Lazio TJW, Romero-Wolf A, Lux JP, Neilsen T. 2022. 2022 IEEE Aerospace Conference (AERO) https://doi.org/10.1109/AERO53065.2022.9843607 New York: IEEE
    [Crossref] [Google Scholar]
  66. Kerdraon A, Delouis J-M. 1997. Coronal Physics from Radio and Space Observations G Trottet pp. 192–201 Lect. Notes Phys. Vol. 483 Berlin: Springer
    [Google Scholar]
  67. Kisley M, Qin YJ, Zabludoff A et al. 2023. Ap. J. 942:29
    [Google Scholar]
  68. Klein K-L. 1987. Astron. Astrophys. 183:341–50
    [Google Scholar]
  69. Kocharov L, Omodei N, Mishev A et al. 2021. Ap. J. 915:12
    [Google Scholar]
  70. Kontar EP, Chen X, Chrysaphi N et al. 2019. Ap. J. 884:122
    [Google Scholar]
  71. Kontar EP, Yu S, Kuznetsov AA et al. 2017. Nat. Commun. 8:1515
    [Google Scholar]
  72. Kuridze D, Mathioudakis M, Morgan H et al. 2019. Ap. J. 874:126
    [Google Scholar]
  73. Kuroda N, Fleishman GD, Gary DE et al. 2020. Front. Astron. Space. Sci. 7:22
    [Google Scholar]
  74. Kuznetsov AA, Chrysaphi N, Kontar EP et al. 2020. Ap. J. 898:94
    [Google Scholar]
  75. Kuznetsov AA, Fleishman GD. 2021. Ap. J. 922:103
    [Google Scholar]
  76. Kuznetsov AA, Kontar EP. 2019. Astron. Astrophys. 631:L7
    [Google Scholar]
  77. Li X, Guo F, Chen B et al. 2022. Ap. J. 932:92
    [Google Scholar]
  78. Lin J, Forbes TG. 2000. J. Geophys. Res. 105:2375–92
    [Google Scholar]
  79. Linker JA, Heinemann SG, Temmer M et al. 2021. Ap. J. 918:21
    [Google Scholar]
  80. Liu H, Zucca P, Cho KS et al. 2022. Sol. Phys. 297:115
    [Google Scholar]
  81. Liu R, Xu Y, Wang H. 2011. Sol. Phys. 269:67
    [Google Scholar]
  82. Luo Y, Chen B, Yu S et al. 2021. Ap. J. 911:4
    [Google Scholar]
  83. Lynch CR, Murphy T, Lenc E et al. 2018. MNRAS 478:1763–75
    [Google Scholar]
  84. MacGregor AM, Osten RA, Hughes AM. 2020. Ap. J. 891:80
    [Google Scholar]
  85. Magdalenić J, Marqué C, Fallows RA et al. 2020. Ap. J. Lett. 897:L15
    [Google Scholar]
  86. Masuda S, Sato J, Kosugi T et al. 2000. Adv. Space Res. 26:493–96
    [Google Scholar]
  87. McCauley PI, Cairns IH, Morgan J et al. 2017. Ap. J. 851:151
    [Google Scholar]
  88. McCauley PI, Cairns IH, White SM et al. 2019. Sol. Phys. 294:106
    [Google Scholar]
  89. McLean DJ, Melrose DB. 1985. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths DJ McLean, NR Labrum 237 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  90. Melrose DB. 1968. Ap. J. Suppl. Ser. 2:171–235
    [Google Scholar]
  91. Melrose DB. 2017. Rev. Mod. Plasma Phys. 1:5
    [Google Scholar]
  92. Mohan A, Oberoi D. 2017. Sol. Phys. 292:168
    [Google Scholar]
  93. Molnar ME, Reardon KP, Chai Y et al. 2019. Ap. J. 881:99
    [Google Scholar]
  94. Mondal S, Oberoi D. 2021. Ap. J. 920:11
    [Google Scholar]
  95. Mondal S, Oberoi D, Mohan A. 2020a. Ap. J. Lett. 895:L39
    [Google Scholar]
  96. Mondal S, Oberoi D, Vourlidas A. 2020b. Ap. J. 893:28
    [Google Scholar]
  97. Morgachev AS, Tsap YT, Smirnova VV et al. 2020. Geomagn. Aeron. 60:1038
    [Google Scholar]
  98. Morosan DE, Carley EP, Hayes LA et al. 2019. Nat. Astron. 3:452–61
    [Google Scholar]
  99. Morosan DE, Gallagher PT, Zucca P et al. 2014. Astron. Astrophys. 568:A67
    [Google Scholar]
  100. Morosan DE, Gallagher PT, Zucca P et al. 2015. Astron. Astrophys. 580:A65
    [Google Scholar]
  101. Moschou S-P, Sokolov I, Cohen O et al. 2018. Ap. J. 867:51
    [Google Scholar]
  102. Murphy E ed. 2018. Science with a Next Generation Very Large Array ASP Monogr., Vol. 517 San Francisco: ASP
    [Google Scholar]
  103. Murphy PC, Carley EP, Ryan AM et al. 2021. Astron. Astrophys. 645:A11
    [Google Scholar]
  104. Nakajima H, Nishio M, Enome S et al. 1994. IEEE Proc. 82:705–13
    [Google Scholar]
  105. Nakariakov V, Bisi MM, Browning PK et al. 2015. Advancing Astrophysics with the Square Kilometre Array (AASKA14) ed. TL Bourke, R Braun, R Fender, F Govoni, J Green, et al. PoS(AASKA14)169. Trieste, Italy: SISSA
    [Google Scholar]
  106. Nayana AJ, Chandra P, Krishna A et al. 2022. Ap. J. 934:186
    [Google Scholar]
  107. Nelson GJ, Melrose DB. 1985. Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengthsed. DJ McLean, NR Labrum 333–59. Cambridge/NY: Cambridge Univ. Press
    [Google Scholar]
  108. Nindos A, Alissandrakis CE, Gelfreikh GB et al. 2002. Astron. Astrophys. 386:658–73
    [Google Scholar]
  109. Nindos A, Kontar EP, Oberoi D. 2019. Adv. Space Res. 63:1404–24
    [Google Scholar]
  110. Nindos A, Patsourakos S, Jafarzadeh S, Shimojo S. 2022. Front. Astron. Space. Sci. 9:981205
    [Google Scholar]
  111. Nita GM, Fleishman GD, Kuznetsov AA et al. 2015. Ap. J. 799:236
    [Google Scholar]
  112. Nita GM, Fleishman GD, Kuznetsov AA et al. 2023. arXiv:2301.00795
  113. Nita GM, Gary DE, Lee J. 2004. Ap. J. 605:528–45
    [Google Scholar]
  114. Nita GM, Viall NM, Klimchuk JA et al. 2018. Ap. J. 853:66
    [Google Scholar]
  115. Omodei N, Pesce-Rollins M, Longo F et al. 2018. Ap. J. Lett. 865:L7
    [Google Scholar]
  116. Osten RA, Crosley MK, Hallinan G. 2018. See Murphy (2018) 229–43
  117. Perley RA, Chandler CJ, Butler BJ et al. 2011. Ap. J. Lett. 739:L1
    [Google Scholar]
  118. Petrosian V. 1981. Ap. J. 251:727–38
    [Google Scholar]
  119. Pick M, Vilmer N. 2008. Astron. Astrophys. Rev. 16:1–153
    [Google Scholar]
  120. Pierrard V, Lazar M, Stverak S. 2022. Front. Astron. Space. Sci. 9:892236
    [Google Scholar]
  121. Press WH, Flannery BP, Vetterling WT, Teukolsky SA. 2007. Numerical Recipes. , 3rd Edition.: The Art of Scientific Computing Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  122. Rahman MM, McCauley PI, Cairns IH. 2019. Sol. Phys. 294:7
    [Google Scholar]
  123. Ramaty R. 1969. Ap. J. 158:753–70
    [Google Scholar]
  124. Ramesh R, Subramanian KR, SundaraRajan MS, Sastry ChV 1998. Sol. Phys. 181:439–53
    [Google Scholar]
  125. Reeves KK, Polito V, Chen B et al. 2020. Ap. J. 905:165
    [Google Scholar]
  126. Reid HAS. 2020. Front. Astron. Space Sci. 7:56
    [Google Scholar]
  127. Reid HAS, Kontar EP. 2017. Astron. Astrophys. 606:A141
    [Google Scholar]
  128. Reid HAS, Kontar EP. 2021. Nat. Astron. 5:796–804
    [Google Scholar]
  129. Rybicki GB, Lightman AP. 1986. Radiative Processes in Astrophysics Weinheim, Ger: Wiley-VCH400
    [Google Scholar]
  130. Saint-Hilaire P, Vilmer N, Kerdraon A. 2013. Ap. J. 762:60
    [Google Scholar]
  131. Saito K, Poland AI, Munro RH. 1977. Sol. Phys. 55:121–34
    [Google Scholar]
  132. Schonfeld SJ, White SM, Henney CJ et al. 2015. Ap. J. 808:29
    [Google Scholar]
  133. Seely JF, Feldman U, Doschek GA. 1987. Ap. J. 319:541–54
    [Google Scholar]
  134. Shaik SB, Gary DE. 2021. Ap. J. 919:44
    [Google Scholar]
  135. Sharma R, Oberoi D. 2020. Ap. J. 903:126
    [Google Scholar]
  136. Sharma R, Oberoi D, Arjunwadkar M. 2018. Ap. J. 852:69
    [Google Scholar]
  137. Sharma R, Oberoi D, Battaglia M et al. 2022. Ap. J. 937:99
    [Google Scholar]
  138. Shen C, Chen B, Reeves KK et al. 2022. Nat. Astron. 6:317–24
    [Google Scholar]
  139. Shen C, Kong X, Guo F et al. 2018. Ap. J. 869:116
    [Google Scholar]
  140. Shimojo M, Bastian TS, Hales AS et al. 2017a. Sol. Phys. 292:87
    [Google Scholar]
  141. Shimojo M, Hudson HS, White SM et al. 2017b. Ap. J. Lett. 841:L5
    [Google Scholar]
  142. Steinberg JL, Aubier-Giraud M, Leblanc Y et al. 1971. Astron. Astrophys. 10:362–76
    [Google Scholar]
  143. Stewart R, Duncan R, Suzuki S, Nelson G. 1978. Proc. Astron. Soc. Aust. 3:247–49
    [Google Scholar]
  144. Suzuki S, Dulk GA. 1985. In Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths DJ McLean, NR Labrum 289–331. Cambridge/New York: Cambridge Univ. Press
    [Google Scholar]
  145. Sych R, Altyntsev A. 2023. MNRAS 519:4397–407
    [Google Scholar]
  146. Takasao S, Matsumoto T, Nakamura N et al. 2015. Ap. J. 805:135
    [Google Scholar]
  147. Tapping KF. 2013. Space Weather 11:394–406
    [Google Scholar]
  148. Tingay SJ, Goeke R, Bowman JD et al. 2013a. Publ. Astron. Soc. Aust. 30:E007
    [Google Scholar]
  149. Tingay SJ, Oberoi D, Cairns I et al. 2013b. J. Phys. Conf. Ser. 440:012033
    [Google Scholar]
  150. Tun SD, Gary DE, Georgoulis MK. 2011. Ap. J. 728:1
    [Google Scholar]
  151. Tun SD, Vourlidas A. 2013. Ap. J. 766:130
    [Google Scholar]
  152. Turbet M, Leconte J, Selsis F et al. 2016. Astron. Astrophys. 596:A112
    [Google Scholar]
  153. Turner JD, Zarka P, Grießmeier JM et al. 2021. Astron. Astrophys. 645:A59
    [Google Scholar]
  154. van Haarlem MP, Wise MW, Gunst AW et al. 2013. Astron. Astrophys. 556:A2
    [Google Scholar]
  155. Vasyliunas VM. 1968. J. Geophys. Res. 73:2839–84
    [Google Scholar]
  156. Villadsen J, Hallinan G. 2019. Ap. J. 871:214
    [Google Scholar]
  157. Vocks C, Mann G, Breitling F et al. 2018. Astron. Astrophys. 614:A54
    [Google Scholar]
  158. Wang H, Yurchyshyn V, Liu C et al. 2018. Res. Notes AAS 2:8
    [Google Scholar]
  159. Wang M, Chen B, Yu S et al. 2023. arXiv: 2306.01910
  160. Wang Z, Chen B, Gary DE. 2017. Ap. J. 848:77
    [Google Scholar]
  161. Wang Z, Gary DE, Fleishman GD et al. 2015. Ap. J. 805:93
    [Google Scholar]
  162. Warren HP, Brooks DH, Ugarte-Urra I et al. 2018. Ap. J. 854:122
    [Google Scholar]
  163. Wayth RB, Tingay SJ, Trott CM et al. 2018. Publ. Astron. Soc. Aust. 35:E033
    [Google Scholar]
  164. Wedemeyer S, Bastian TS, Brajša R et al. 2016. Space Sci. Rev. 200:1–73
    [Google Scholar]
  165. Wei Y, Chen B, Yu S et al. 2021. Ap. J. 923:213
    [Google Scholar]
  166. White SM, Iwai K, Phillips NM et al. 2017. Sol. Phys. 292:88
    [Google Scholar]
  167. Wild JP. 1950a. Aust. J. Sci. Res. A Phys. Sci. 3:399–408
    [Google Scholar]
  168. Wild JP. 1950b. Aust. J. Sci. Res. A Phys. Sci. 3:541–57
    [Google Scholar]
  169. Wild JP, McCready LL. 1950. Aust. J. Sci. Res. A Phys. Sci. 3:387–98
    [Google Scholar]
  170. Wild JP, Smerd SF, Weiss AA. 1963. Annu. Rev. Astron. Astrophys. 1:291–366
    [Google Scholar]
  171. Xu FY, Xu ZC, Huang GI et al. 2003. Sol. Phys. 216:273
    [Google Scholar]
  172. Yan Y, Chen Z, Wang W et al. 2021. Front. Astron. Space. Sci. 8:584043
    [Google Scholar]
  173. Yu S, Chen B. 2019. Ap. J. 872:71
    [Google Scholar]
  174. Yu S, Chen B, Reeves KK et al. 2020. Ap. J. 900:17
    [Google Scholar]
  175. Zhang MH, Zhang Y, Yan Y-H et al. 2021. Res. Astron. Astrophys. 21:284
    [Google Scholar]
  176. Zhang P, Zucca P, Kozarev K et al. 2022. Ap. J. 932:17
    [Google Scholar]
  177. Zhang P, Zucca P, Wang C et al. 2020. Ap. J. 891:89
    [Google Scholar]
  178. Zhao J, Gibson SE, Fineschi S et al. 2019. Ap. J. 883:55
    [Google Scholar]
  179. Zhao J, Zhang P, Gibson SE et al. 2022. Astron. Astrophys. 665:A39
    [Google Scholar]
  180. Zic A, Murphy T, Lynch C et al. 2020. Ap. J. 905:23
    [Google Scholar]
  181. Zucca P, Morosan DE, Rouillard AP et al. 2018. Astron. Astrophys. 615:A89
    [Google Scholar]
/content/journals/10.1146/annurev-astro-071221-052744
Loading
/content/journals/10.1146/annurev-astro-071221-052744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error