1932

Abstract

Interstellar interlopers are bodies formed outside of the Solar System but observed passing through it. The first two identified interlopers, 1I/‘Oumuamua and 2I/Borisov, exhibited unexpectedly different physical properties. 1I/‘Oumuamua appeared unresolved and asteroid-like, whereas 2I/Borisov was a more comet-like source of both gas and dust. Both objects moved under the action of nongravitational acceleration. These interlopers and their divergent properties provide our only window so far onto an enormous and previously unknown galactic population. The number density of such objects is ∼0.1 AU−3 which, if uniform across the galactic disk, would imply 1025 to 1026 similar objects in the Milky Way. The interlopers likely formed in, and were ejected from, the protoplanetary disks of young stars. However, we currently possess too little data to firmly reject other explanations.

  • ▪  1I/‘Oumuamua and 2I/Borisov are both gravitationally unbound, subkilometer bodies showing nongravitational acceleration.
  • ▪  The acceleration of 1I/‘Oumuamua in the absence of measurable mass loss requires either a strained explanation in terms of recoil from sublimating supervolatiles or the action of radiation pressure on a nucleus with an ultralow mass column density, ∼1 kg m−2.
  • ▪  2I/Borisov is a strong source of CO and HO, which together account for its activity and nongravitational acceleration.
  • ▪  The interlopers are most likely planetesimals from the protoplanetary disks of other stars, ejected by gravitational scattering from planets. 1I/‘Oumuamua and 2I/Borisov have dynamical ages ∼108 and ∼109 years, respectively.
  • ▪  Forthcoming observatories should detect interstellar interlopers every year, which will provide a rapid boost to our knowledge of the population.
Loading

Article metrics loading...

/content/journals/10.1146/annurev-astro-071221-054221
2023-08-18
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/astro/61/1/annurev-astro-071221-054221.html?itemId=/content/journals/10.1146/annurev-astro-071221-054221&mimeType=html&fmt=ahah

Literature Cited

  1. A'Hearn MF, Feaga LM, Keller HU et al. 2012. Ap. J. 758:29
    [Google Scholar]
  2. Andrews SM. 2020. Annu. Rev. Astron. Astrophys. 58:483–528
    [Google Scholar]
  3. Andrews SM, Huang J, Pérez LM et al. 2018. Ap. J. Lett. 869:2L41
    [Google Scholar]
  4. Ansdell M, Williams JP, Trapman L et al. 2018. Ap. J. 859:21
    [Google Scholar]
  5. Aravind K, Ganesh S, Venkataramani K et al. 2021. MNRAS 502:33491–99
    [Google Scholar]
  6. Baggaley WJ. 2000. J. Geophys. Res 105:A510353–62
    [Google Scholar]
  7. Baggaley WJ, Marsh SH, Close S 2007. Workshop on Dust in Planetary Systems, ESA SP-643 H Krueger, A Graps 27–32. Noordwijk, Neth.: ESA Publ. Div. ESTEC
    [Google Scholar]
  8. Baggaley WJ, Porubcan V, eds. 1999. Meteoroids 1998: Proc. Intl. Conf. Held Tatranska Lomnica, Slovakia, August 17–21, 1998. Bratislavia, Slovak.: Astron. Inst., Slovak Acad. Sci.
    [Google Scholar]
  9. Baggaley WJ, Taylor AD, Steel DI. 1993. Meteoroids and their Parent Bodies, Proc. Intl. Astron. Symp. Smolenice, Slovakia, July 6–12, 1992 Bratislava: Astron. Inst., Slovak Acad. Sci.
    [Google Scholar]
  10. Bannister MT, Opitom C, Fitzsimmons A et al. 2020. arXiv:2001.11605
  11. Bannister MT, Schwamb ME, Fraser WC et al. 2017. Ap. J. Lett. 851:2L38
    [Google Scholar]
  12. Bell CPM, Mamajek EE, Naylor T. 2015. MNRAS 454:593–614
    [Google Scholar]
  13. Belton MJS, Hainaut OR, Meech KJ et al. 2018. Ap. J. Lett. 856:L21
    [Google Scholar]
  14. Benisty M, Dominik C, Follette K et al. 2022. arXiv:2203.09991
  15. Bialy S, Loeb A. 2018. Ap. J. Lett. 868:L1
    [Google Scholar]
  16. Binney J, Merrifield M. 1998. Galactic Astronomy Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  17. Biver N, Bockelée-Morvan D, Colom P et al. 2002. Earth Moon Planets 90:5–14
    [Google Scholar]
  18. Biver N, Bockelée-Morvan D, Hofstadter M et al. 2019. Astron. Astrophys. 630:A19
    [Google Scholar]
  19. Biver N, Bockelée-Morvan D, Paubert G et al. 2018. Astron. Astrophys. 619:A127
    [Google Scholar]
  20. Bockelée-Morvan D, Biver N. 2017. Philos. Trans. R. Soc. A 375:209720160252
    [Google Scholar]
  21. Bockelée-Morvan D, Biver N, Schambeau CA et al. 2022. Astron. Astrophys. 664:A95
    [Google Scholar]
  22. Bodewits D, Noonan JW, Feldman PD et al. 2020. Nat. Astron. 4:867–71
    [Google Scholar]
  23. Bolin BT, Lisse CM, Kasliwal MM et al. 2020. Astron. J. 160:26
    [Google Scholar]
  24. Bolin BT, Weaver HA, Fernandez YR et al. 2018. Ap. J. Lett. 852:L2
    [Google Scholar]
  25. Brasser R, Higuchi A, Kaib N. 2010. Astron. Astrophys. 516:A72
    [Google Scholar]
  26. Brasser R, Morbidelli A. 2013. Icarus 225:40–49
    [Google Scholar]
  27. Cabot SHC, Laughlin G. 2022. Planet. Sci. J. 3:7172
    [Google Scholar]
  28. Childs AC, Martin RG. 2022. Ap. J. Lett. 935:2L31
    [Google Scholar]
  29. Combi MR, Mäkinen T, Bertaux JL et al. 2020. Planet. Sci. J. 1:372
    [Google Scholar]
  30. Cook NV, Ragozzine D, Granvik M, Stephens DC. 2016. Ap. J. 825:51
    [Google Scholar]
  31. Cooper JF, Christian ER, Richardson JD, Wang C. 2003. Earth Moon Planets 92:261–77
    [Google Scholar]
  32. Cordiner MA, Milam SN, Biver N et al. 2020. Nat. Astron. 4:861–66
    [Google Scholar]
  33. Cremonese G, Fulle M, Cambianica P et al. 2020. Ap. J. Lett. 893:L12
    [Google Scholar]
  34. Ćuk M. 2018. Ap. J. Lett. 852:L15
    [Google Scholar]
  35. Davidsson BJR. 2021. MNRAS 505:45654–85
    [Google Scholar]
  36. Dehnen W, Hands TO. 2022. MNRAS 512:34062–77
    [Google Scholar]
  37. Desch SJ, Jackson AP. 2021. J. Geophys. Res.: Planets 126:5e2020JE006807
    [Google Scholar]
  38. Do A, Tucker MA, Tonry J. 2018. Ap. J. Lett. 855:L10
    [Google Scholar]
  39. Doi K, Kataoka A. 2021. Ap. J. 912:2164
    [Google Scholar]
  40. Dones L, Brasser R, Kaib N, Rickman H. 2015. Space Sci. Rev. 197:1–4191–269
    [Google Scholar]
  41. Drahus M, Guzik P, Udalski A et al. 2020. Astron. Telegr. 13549:1
    [Google Scholar]
  42. Drahus M, Guzik P, Waniak W et al. 2018. Nat. Astron. 2:407–12
    [Google Scholar]
  43. Drahus M, Jewitt D, Guilbert-Lepoutre A et al. 2011. Ap. J. Lett. 734:L4
    [Google Scholar]
  44. Eisner N, Knight MM, Schleicher DG. 2017. Astron. J. 154:5196
    [Google Scholar]
  45. Engelhardt T, Jedicke R, Vereš P et al. 2017. Astron. J. 153:3133
    [Google Scholar]
  46. Enriquez JE, Siemion A, Lazio TJW et al. 2018. Res. Notes Am. Astron. Soc. 2:9
    [Google Scholar]
  47. Estrada PR, Cuzzi JN. 2022. Ap. J. 936:40
    [Google Scholar]
  48. Farnham TL, Knight MM, Schleicher DG et al. 2021. Planet. Sci. J. 2:7
    [Google Scholar]
  49. Faure M, Quirico E, Faure A et al. 2021. Icarus 364:114462
    [Google Scholar]
  50. Fernández YR, Kelley MS, Lamy PL et al. 2013. Icarus 226:1138–70
    [Google Scholar]
  51. Fitzsimmons A, Hainaut O, Meech KJ et al. 2019. Ap. J. Lett. 885:L9
    [Google Scholar]
  52. Fitzsimmons A, Snodgrass C, Rozitis B et al. 2018. Nat. Astron. 2:133–37
    [Google Scholar]
  53. Flekkøy EG, Luu J, Toussaint R. 2019. Ap. J. Lett. 885:2L41
    [Google Scholar]
  54. Francis L, van der Marel N. 2020. Ap. J. 892:2111
    [Google Scholar]
  55. Francis PJ. 2005. Ap. J. 635:21348–61
    [Google Scholar]
  56. Fraser WC, Pravec P, Fitzsimmons A et al. 2018. Nat. Astron. 2:383–86
    [Google Scholar]
  57. Fulle M, Della Corte V, Rotundi A et al. 2015. Ap. J. Lett. 802:L12
    [Google Scholar]
  58. Gaidos E, Williams J, Kraus A. 2017. Res. Notes Am. Astron. Soc. 1:13
    [Google Scholar]
  59. Garcia AJL, Gonzalez JF. 2020. MNRAS 493:21788–800
    [Google Scholar]
  60. Gicquel A, Bockelée-Morvan D, Zakharov VV et al. 2012. Astron. Astrophys. 542:A119
    [Google Scholar]
  61. Gould A, Jung YK, Hwang KH et al. 2022. J. Korean Astron. Soc. 55:173–94
    [Google Scholar]
  62. Gronoff G, Maggiolo R, Cessateur G et al. 2020. Ap. J. 890:89
    [Google Scholar]
  63. Groussin O, Attree N, Brouet Y et al. 2019. Space Sci. Rev. 215:429
    [Google Scholar]
  64. Gruen E, Gustafson B, Mann I et al. 1994. Astron. Astrophys. 286:915–24
    [Google Scholar]
  65. Grün E, Landgraf M, Horányi M et al. 2000. J. Geophys. Res 105:A510403–10
    [Google Scholar]
  66. Grün E, Staubach P, Baguhl M et al. 1997. Icarus 129:2270–88
    [Google Scholar]
  67. Grün E, Zook HA, Baguhl M et al. 1993. Nature 362:6419428–30
    [Google Scholar]
  68. Guzik P, Drahus M, Rusek K et al. 2020. Nat. Astron. 4:53–57
    [Google Scholar]
  69. Hahn JM, Malhotra R. 1999. Astron. J. 117:63041–53
    [Google Scholar]
  70. Hainaut OR, Boehnhardt H, Protopapa S. 2012. Astron. Astrophys. 546:A115
    [Google Scholar]
  71. Hajduková M Jr. 1994. Astron. Astrophys. 288:330–34
    [Google Scholar]
  72. Hajduková M Jr., Paulech T. 2002. Proc. of Asteroids, Comets, and Meteors: ACM 2002, ESA SP-500 B Warmbein 173–76. Noordwijk, Neth.: ESA Publ. Div.
    [Google Scholar]
  73. Hajduková M, Sterken V, Wiegert P, Kornoš L. 2020. Planet. Space Sci. 192:105060
    [Google Scholar]
  74. Hallatt T, Wiegert P. 2020. Astron. J. 159:4147
    [Google Scholar]
  75. Hansen B, Zuckerman B. 2017. Res. Notes Am. Astron. Soc. 1:55
    [Google Scholar]
  76. Harp GR, Richards J, Jenniskens P, Shostak S, Tarter JC. 2019. Acta Astronaut. 155:51–54
    [Google Scholar]
  77. Harrington Pinto O, Womack M, Fernandez YR, Bauer J 2022. Planet. Sci. J. 3:11247
    [Google Scholar]
  78. Hawkes RL, Close T, Woodworth S. 1999. Baggaley & Porubcan 1999 257–64
  79. Heinze A. 2021. Bull. Am. Astron. Soc. 53:72021n7i505p01
    [Google Scholar]
  80. Henderson BL, Gudipati MS. 2015. Ap. J. 800:66
    [Google Scholar]
  81. Higuchi A, Kokubo E. 2015. Astron. J. 150:26
    [Google Scholar]
  82. Higuchi A, Kokubo E. 2020. MNRAS 492:268–75
    [Google Scholar]
  83. Hoang T, Loeb A. 2020. Ap. J. Lett. 899:2L23
    [Google Scholar]
  84. Holmberg J, Nordström B, Andersen J. 2009. Astron. Astrophys. 501:3941–47
    [Google Scholar]
  85. Hoover DJ, Seligman DZ, Payne MJ. 2022. Planet. Sci. J. 3:371
    [Google Scholar]
  86. Hsieh CH, Laughlin G, Arce HG. 2021. Ap. J. 917:20
    [Google Scholar]
  87. Hui MT, Ye QZ, Föhring D, Hung D, Tholen DJ. 2020. Astron. J. 160:292
    [Google Scholar]
  88. Ishiguro M, Sarugaku Y, Ueno M et al. 2007. Icarus 189:169–83
    [Google Scholar]
  89. Jackson AP, Desch SJ. 2021. J. Geophys. Res.: Planets 126:5e2020JE006706
    [Google Scholar]
  90. Jackson AP, Tamayo D, Hammond N, Ali-Dib M, Rein H. 2018. MNRAS 478:L49–53
    [Google Scholar]
  91. Jewitt D. 2021. Astron. J. 161:6261
    [Google Scholar]
  92. Jewitt D. 2022. Astron. J. 164:4158
    [Google Scholar]
  93. Jewitt D, Hsieh HH. 2022. arXiv:2203.01397
  94. Jewitt D, Hui MT, Kim Y et al. 2020a. Ap. J. Lett. 888:2L23
    [Google Scholar]
  95. Jewitt D, Kim Y, Mutchler M et al. 2020b. Ap. J. Lett. 896:2L39
    [Google Scholar]
  96. Jewitt D, Luu J. 2019. Ap. J. Lett. 886:2L29
    [Google Scholar]
  97. Jewitt D, Luu J, Rajagopal J et al. 2017. Ap. J. Lett. 850:L36
    [Google Scholar]
  98. Jewitt D, Sheppard S, Fernández Y. 2003. Astron. J. 125:63366–77
    [Google Scholar]
  99. Jewitt DC. 2002. Astron. J. 123:21039–49
    [Google Scholar]
  100. Jones G. 2019. Comet Interceptor: A Mission to a Dynamically New Solar System Object. Comet Interceptor Consortium Phase-2 Proposal http://www.cometinterceptor.space/uploads/1/2/3/7/123778284/cometnterceptorxecutiveummary.pdf
    [Google Scholar]
  101. Kaasalainen M, Torppa J, Muinonen K. 2001. Icarus 153:37–51
    [Google Scholar]
  102. Kaib NA, Quinn T. 2009. Science 325:59451234–36
    [Google Scholar]
  103. Kareta T, Andrews J, Noonan JW et al. 2020. Ap. J. Lett. 889:2L38
    [Google Scholar]
  104. Kataoka A, Tanaka H, Okuzumi S, Wada K. 2013. Astron. Astrophys. 554:A4
    [Google Scholar]
  105. Katz JI. 2018. MNRAS 478:L95–98
    [Google Scholar]
  106. Kim Y, Jewitt D, Mutchler M et al. 2020. Ap. J. Lett. 895:2L34
    [Google Scholar]
  107. Knight MM, Protopapa S, Kelley MSP et al. 2017. Ap. J. Lett. 851:2L31
    [Google Scholar]
  108. Kokotanekova R, Snodgrass C, Lacerda P et al. 2018. MNRAS 479:44665–80
    [Google Scholar]
  109. Krijt S, Bosman AD, Zhang K et al. 2020. Ap. J. 899:2134
    [Google Scholar]
  110. Lacerda P, Jewitt DC. 2007. Astron. J. 133:41393
    [Google Scholar]
  111. Landgraf M, Baggaley WJ, Grün E, Krüger H, Linkert G. 2000. J. Geophys. Res 105:A510343–52
    [Google Scholar]
  112. Landgraf M, Grün E 1998. IAU Colloq. 166: The Local Bubble and Beyond Lyman-Spitzer-Colloquium, Lect. Notes Phys. Vol. 506 D Breitschwerdt, MJ Freyberg, J Truemper 381–84. Berlin/Heidelberg: Springer
    [Google Scholar]
  113. Laughlin G, Batygin K. 2017. Res. Notes Am. Astron. Soc. 1:43
    [Google Scholar]
  114. Levine WG, Cabot SHC, Seligman D, Laughlin G. 2021. Ap. J. 922:39
    [Google Scholar]
  115. Levine WG, Laughlin G. 2021. Ap. J. 912:3
    [Google Scholar]
  116. Levison HF, Duncan MJ, Brasser R, Kaufmann DE. 2010. Science 329:5988187–90
    [Google Scholar]
  117. Lin HW, Lee CH, Gerdes DW et al. 2020. Ap. J. Lett. 889:2L30
    [Google Scholar]
  118. Lisse CM, Gladstone GR, Young LA et al. 2022. Planet. Sci. J. 3:5112
    [Google Scholar]
  119. Long F, Pinilla P, Herczeg GJ et al. 2018. Ap. J. 869:17
    [Google Scholar]
  120. Lu XP, Jewitt D. 2019. Astron. J. 158:6220
    [Google Scholar]
  121. Luu JX, Flekkøy EG, Toussaint R. 2020. Ap. J. Lett. 900:2L22
    [Google Scholar]
  122. Mainzer A, Grav T, Bauer J et al. 2015. Astron. J. 149:5172
    [Google Scholar]
  123. Mamajek E. 2017. Res. Notes Am. Astron. Soc. 1:21
    [Google Scholar]
  124. Manara CF, Ansdell M, Rosotti GP et al. 2023. Protostars and Planets VII S-I Inutsuka, Y Aikawa, T Muto, K Tomida, M Tamura. In press Tucson: Univ. Ariz. Press arXiv:2203.09930
    [Google Scholar]
  125. Mannel T, Bentley MS, Schmied R et al. 2016. MNRAS 462:S304–11
    [Google Scholar]
  126. Maquet L, Colas F, Jorda L, Crovisier J. 2012. Astron. Astrophys. 548:A81
    [Google Scholar]
  127. Marsden BG, Sekanina Z, Yeomans DK. 1973. Astron. J. 78:211
    [Google Scholar]
  128. Mashchenko S. 2019. MNRAS 489:33003-21-25
    [Google Scholar]
  129. Mathews JD, Meisel DD, Janches D, Getman VS, Zhou QH. 1999. Baggaley & Porubcan 1999 79–82
  130. Mazzotta Epifani E, Dotto E, Perna D et al. 2021. Planet. Space Sci. 208:105341
    [Google Scholar]
  131. McKay AJ, Cochran AL, Dello Russo N, DiSanti MA 2020. Ap. J. Lett. 889:L10
    [Google Scholar]
  132. McKay AJ, DiSanti MA, Kelley MSP et al. 2019. Astron. J. 158:3128
    [Google Scholar]
  133. McNeill A, Trilling DE, Mommert M. 2018. Ap. J. Lett. 857:L1
    [Google Scholar]
  134. Meakin P, Donn B. 1988. Ap. J. Lett. 329:L39–41
    [Google Scholar]
  135. Mecklenburg M, Schuchardt A, Mishra YK et al. 2012. Adv. Mater. 24:263486–90
    [Google Scholar]
  136. Meech KJ, Weryk R, Micheli M et al. 2017. Nature 552:378–81
    [Google Scholar]
  137. Meisel DD, Janches D, Mathews JD. 2002a. Ap. J. 567:323–41
    [Google Scholar]
  138. Meisel DD, Janches D, Mathews JD. 2002b. Ap. J. 579:2895–904
    [Google Scholar]
  139. Micheli M, Farnocchia D, Meech KJ et al. 2018. Nature 559:223–26
    [Google Scholar]
  140. Miotello A, Kamp I, Birnstiel T, Cleeves LI, Kataoka A 2023. Protostars and Planets VII S-I Inutsuka, Y Aikawa, T Muto, K Tomida, M Tamura. In press Tucson: Univ. Ariz. Press arXiv:2203.09818
    [Google Scholar]
  141. Miville-Deschênes MA, Murray N, Lee EJ. 2017. Ap. J. 834:57
    [Google Scholar]
  142. Morbidelli A, Batygin K, Brasser R, Raymond SN. 2020. MNRAS 497:L46–49
    [Google Scholar]
  143. Moro-Martín A. 2018. Ap. J. 866:2131
    [Google Scholar]
  144. Moro-Martín A. 2019. Ap. J. Lett. 872:2L32
    [Google Scholar]
  145. Moro-Martín A. 2019. Astron. J. 157:286
    [Google Scholar]
  146. Moro-Martín A, Turner EL, Loeb A. 2009. Ap. J. 704:733–42
    [Google Scholar]
  147. Musci R, Weryk RJ, Brown P, Campbell-Brown MD, Wiegert PA. 2012. Ap. J. 745:2161
    [Google Scholar]
  148. Namouni F, Morais MHM. 2020. MNRAS 494:22191–99
    [Google Scholar]
  149. Napier KJ, Adams FC, Batygin K. 2021a. Planet. Sci. J. 2:253
    [Google Scholar]
  150. Napier KJ, Adams FC, Batygin K. 2021b. Planet. Sci. J. 2:6217
    [Google Scholar]
  151. Nesvorný D. 2018. Annu. Rev. Astron. Astrophys. 56:137–74
    [Google Scholar]
  152. Öberg KI, Guzmán VV, Walsh C et al. 2021. Ap. J. Suppl. 257:1
    [Google Scholar]
  153. Oort JH. 1950. Bull. Astron. Inst. Neth. 11:91–110
    [Google Scholar]
  154. Ootsubo T, Kawakita H, Hamada S et al. 2012. Ap. J. 752:15
    [Google Scholar]
  155. Öpik E. 1934. Harvard Coll. Obs. Circ. 389:1–9
    [Google Scholar]
  156. Opitom C, Fitzsimmons A, Jehin E et al. 2019. Astron. Astrophys. 631:L8
    [Google Scholar]
  157. Park RS, Pisano DJ, Lazio TJW, Chodas PW, Naidu SP. 2018. Astron. J. 155:185
    [Google Scholar]
  158. Parker AH, Kavelaars JJ. 2010. Ap. J. Lett. 722:2L204–8
    [Google Scholar]
  159. Peña-Asensio E, Trigo-Rodríguez JM, Rimola A. 2022. Astron. J. 164:376
    [Google Scholar]
  160. Peñarrubia J. 2022. MNRAS 519:21955–80
    [Google Scholar]
  161. Pfalzner S, Aizpuru Vargas LL, Bhandare A, Veras D 2021. Astron. Astrophys. 651:A38
    [Google Scholar]
  162. Pinte C, Dent WRF, Ménard F et al. 2016. Ap. J. 816:25
    [Google Scholar]
  163. Price EM, Cleeves LI, Bodewits D, Öberg KI. 2021. Ap. J. 913:9
    [Google Scholar]
  164. Rafikov RR. 2018a. Ap. J. 861:35
    [Google Scholar]
  165. Rafikov RR. 2018b. Ap. J. Lett. 867:L17
    [Google Scholar]
  166. Raymond SN, Armitage PJ, Veras D. 2018. Ap. J. Lett. 856:L7
    [Google Scholar]
  167. Raymond SN, Kaib NA, Armitage PJ, Fortney JJ. 2020. Ap. J. Lett. 904:L4
    [Google Scholar]
  168. Robin AC, Bienaymé O, Fernández-Trincado JG, Reylé C. 2017. Astron. Astrophys. 605:A1
    [Google Scholar]
  169. Roth NX, Gibb EL, Bonev BP et al. 2018. Astron. J. 156:6251
    [Google Scholar]
  170. Russell HN. 1916. Ap. J. 43:173–96
    [Google Scholar]
  171. Sánchez JP, Morante D, Hermosin P et al. 2021. Acta Astronaut. 188:265–77
    [Google Scholar]
  172. Schönrich R, Binney J, Asplund M. 2012. MNRAS 420:21281–93
    [Google Scholar]
  173. Sekanina Z. 2019a. arXiv:1903.06300
  174. Sekanina Z. 2019b. arXiv:1905.00935
  175. Seligman D, Laughlin G. 2018. Astron. J. 155:5217
    [Google Scholar]
  176. Seligman D, Laughlin G. 2020. Ap. J. Lett. 896:L8
    [Google Scholar]
  177. Seligman D, Laughlin G, Batygin K. 2019. Ap. J. Lett. 876:L26
    [Google Scholar]
  178. Seligman DZ, Levine WG, Cabot SHC, Laughlin G, Meech K. 2021. Ap. J. 920:28
    [Google Scholar]
  179. Seligman DZ, Rogers LA, Cabot SHC et al. 2022. Planet. Sci. J. 3:7150
    [Google Scholar]
  180. Siraj A, Loeb A. 2022. Ap. J. 939:53
    [Google Scholar]
  181. Skorov Y, Blum J. 2012. Icarus 221:1–11
    [Google Scholar]
  182. Steckloff JK, Lisse CM, Safrit TK et al. 2021. Icarus 356:113998
    [Google Scholar]
  183. Stern SA. 1990. Icarus 84:2447–66
    [Google Scholar]
  184. Suyama T, Wada K, Tanaka H. 2008. Ap. J. 684:21310–22
    [Google Scholar]
  185. Tamayo D, Burns JA, Hamilton DP, Hedman MM. 2011. Icarus 215:260–78
    [Google Scholar]
  186. Taylor AD, Baggaley WJ, Steel DI. 1996. Nature 380:6572323–25
    [Google Scholar]
  187. Taylor AG, Seligman DZ, MacAyeal DR, Hainaut OR, Meech KJ. 2023. Planet. Sci. J. 4:579
    [Google Scholar]
  188. Tingay SJ, Kaplan DL, Lenc E et al. 2018. Ap. J. 857:11
    [Google Scholar]
  189. Trilling DE, Mommert M, Hora JL et al. 2018. Astron. J. 156:261
    [Google Scholar]
  190. Trilling DE, Robinson T, Roegge A et al. 2017. Ap. J. Lett. 850:2L38
    [Google Scholar]
  191. Vaubaillon J. 2022. WGN J. Int. Meteor Organ. 50:5140–43
    [Google Scholar]
  192. Villenave M, Ménard F, Dent WRF et al. 2020. Astron. Astrophys. 642:A164
    [Google Scholar]
  193. Villenave M, Stapelfeldt KR, Duchêne G et al. 2022. Ap. J. 930:11
    [Google Scholar]
  194. Vokrouhlický D, Bottke WF, Chesley SR, Scheeres DJ, Statler TS 2015. Asteroids IV P Michel, FE DeMeo, WF Bottke 509–31. Tucson, AZ: Univ. Ariz. Press
    [Google Scholar]
  195. Volk K, Malhotra R. 2008. Ap. J. 687:714–25
    [Google Scholar]
  196. Warner BD, Harris AW, Pravec P. 2009. Icarus 202:134–46
    [Google Scholar]
  197. Weaver HA, A'Hearn MF, Arpigny C et al. 1995. Science 267:52021282–88
    [Google Scholar]
  198. Weryk RJ, Brown P. 2004. Earth Moon Planets 95:1–4221–27
    [Google Scholar]
  199. Wiegert PA. 2014. Icarus 242:112–21
    [Google Scholar]
  200. Williams GV, Sato H, Sarneczky K et al. 2017. Cent. Bur. Electron. Telegr. 4450:1
    [Google Scholar]
  201. Wilson TG, Rawlings JMC, Swinyard BM. 2017. MNRAS 466:21954–62
    [Google Scholar]
  202. Xing Z, Bodewits D, Noonan J, Bannister MT. 2020. Ap. J. Lett. 893:2L48
    [Google Scholar]
  203. Yang B, Li A, Cordiner MA et al. 2021. Nat. Astron. 5:847
    [Google Scholar]
  204. Ye QZ, Zhang Q, Kelley MSP, Brown PG. 2017. Ap. J. Lett. 851:L5
    [Google Scholar]
  205. Youdin AN, Goodman J. 2005. Ap. J. 620:459–69
    [Google Scholar]
  206. Zhang Q. 2018. Ap. J. Lett. 852:L13
    [Google Scholar]
  207. Zhang Y, Lin DNC. 2020. Nat. Astron. 4:852–60
    [Google Scholar]
  208. Zhou WH, Liu SF, Zhang Y, Lin DNC. 2022. Astron. Astrophys. 667:A108
    [Google Scholar]
/content/journals/10.1146/annurev-astro-071221-054221
Loading
/content/journals/10.1146/annurev-astro-071221-054221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error