1932

Abstract

The intestinal microbiota, a complex ecosystem of microorganisms, has emerged as an important player in modulating various aspects of human health and disease. The microbiota is in a state of constant cross talk with itself and its host, and these interactions regulate several aspects of host homeostasis, including immune responses. Studies have demonstrated a relationship between the microbiota and outcomes of several cancer immunotherapies. This review explores the different roles of intestinal microbiota in shaping the efficacy and safety of cancer immunotherapies, including allogeneic hematopoietic cell transplantation, immune checkpoint blockade, and CAR T cell therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-035210
2024-06-12
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062722-035210.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-035210&mimeType=html&fmt=ahah

Literature Cited

  1. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, et al. 2012.. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. . Immunity 37::15870
    [Crossref] [Google Scholar]
  2. Andrews MC, Duong CPM, Gopalakrishnan V, Iebba V, Chen WS, et al. 2021.. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. . Nat. Med. 27::143241
    [Crossref] [Google Scholar]
  3. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, et al. 2013.. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. . Nature 504::45155
    [Crossref] [Google Scholar]
  4. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, et al. 2015.. Early infancy microbial and metabolic alterations affect risk of childhood asthma. . Sci. Transl. Med. 7::307ra152
    [Crossref] [Google Scholar]
  5. Bagchi S, Yuan R, Engleman EG. 2021.. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. . Annu. Rev. Pathol. 16::22349
    [Crossref] [Google Scholar]
  6. Balmer ML, Schürch CM, Saito Y, Geuking MB, Li H, et al. 2014.. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. . J. Immunol. 193::527383
    [Crossref] [Google Scholar]
  7. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, et al. 2021.. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. . Science 371::6029
    [Crossref] [Google Scholar]
  8. Baxevanis CN. 2023.. Immune checkpoint inhibitors in cancer therapy—How can we improve clinical benefits?. Cancers 15::881
    [Crossref] [Google Scholar]
  9. Beckerson J, Szydlo RM, Hickson M, Mactier CE, Innes AJ, et al. 2019.. Impact of route and adequacy of nutritional intake on outcomes of allogeneic haematopoietic cell transplantation for haematologic malignancies. . Clin. Nutr. 38::73844
    [Crossref] [Google Scholar]
  10. Belkaid Y, Hand T. 2014.. Role of the microbiota in immunity and inflammation. . Cell 157::12141
    [Crossref] [Google Scholar]
  11. Breton J, Galmiche M, Déchelotte P. 2022.. Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. . Microorganisms 10::452
    [Crossref] [Google Scholar]
  12. Burgos da Silva M, Ponce DM, Dai A, Devlin SM, Gomes ALC, et al. 2022.. Preservation of the fecal microbiome is associated with reduced severity of graft-versus-host disease. . Blood 140::238597
    [Crossref] [Google Scholar]
  13. Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, et al. 2020.. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. . Nature 581::47579
    [Crossref] [Google Scholar]
  14. Cappell KM, Kochenderfer JN. 2023.. Long-term outcomes following CAR T cell therapy: what we know so far. . Nat. Rev. Clin. Oncol. 20::35971
    [Crossref] [Google Scholar]
  15. Cerf-Bensussan N, Gaboriau-Routhiau V. 2010.. The immune system and the gut microbiota: friends or foes?. Nat. Rev. Immunol. 10::73544
    [Crossref] [Google Scholar]
  16. Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, et al. 2017.. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. . Ann. Oncol. 28::136879
    [Crossref] [Google Scholar]
  17. Chaves BJ, Tadi P. 2023.. Gentamicin. . In StatPearls [Internet]. Treasure Island, FL:: StatPearls Publ.
    [Google Scholar]
  18. Chen Y, Zhou J, Wang L. 2021.. Role and mechanism of gut microbiota in human disease. . Front. Cell. Infect. Microbiol. 11::625913
    [Crossref] [Google Scholar]
  19. Cho I, Blaser MJ. 2012.. The human microbiome: at the interface of health and disease. . Nat. Rev. Genet. 13::26070
    [Crossref] [Google Scholar]
  20. Citron DM, Merriam CV, Tyrrell KL, Warren YA, Fernandez H, Goldstein EJ. 2003.. In vitro activities of ramoplanin, teicoplanin, vancomycin, linezolid, bacitracin, and four other antimicrobials against intestinal anaerobic bacteria. . Antimicrob. Agents Chemother. 47::233438
    [Crossref] [Google Scholar]
  21. Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, et al. 2019.. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. . Science 366::eaax6624
    [Crossref] [Google Scholar]
  22. Corbitt N, Kimura S, Isse K, Specht S, Chedwick L, et al. 2013.. Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. . Am. J. Pathol. 182::18091
    [Crossref] [Google Scholar]
  23. Dai C, Liu W-X. 2022.. Refractory immune checkpoint inhibitor-induced colitis improved by fecal microbiota transplantation: a case report. . Inflamm. Bowel Dis. 28::e4344
    [Crossref] [Google Scholar]
  24. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, et al. 2021.. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. . Science 371::595602
    [Crossref] [Google Scholar]
  25. Derosa L, Routy B, Fidelle M, Iebba V, Alla L, et al. 2020.. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. . Eur. Urol. 78::195206
    [Crossref] [Google Scholar]
  26. Derosa L, Routy B, Kroemer G, Zitvogel L. 2018.. The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. . Oncoimmunology 7::e1434468
    [Crossref] [Google Scholar]
  27. Dethlefsen L, Relman DA. 2011.. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. . PNAS 108:(Suppl. 1):455461
    [Crossref] [Google Scholar]
  28. DiKun KM, Gudas LJ. 2023.. Vitamin A and retinoid signaling in the kidneys. . Pharmacol. Ther. 248::108481
    [Crossref] [Google Scholar]
  29. Dowds CM, Blumberg RS, Zeissig S. 2015.. Control of intestinal homeostasis through crosstalk between natural killer T cells and the intestinal microbiota. . Clin. Immunol. 159::12833
    [Crossref] [Google Scholar]
  30. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, et al. 2016.. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. . Nat. Commun. 7::10391
    [Crossref] [Google Scholar]
  31. Fan Y, Pedersen O. 2021.. Gut microbiota in human metabolic health and disease. . Nat. Rev. Microbiol. 19::5571
    [Crossref] [Google Scholar]
  32. Fasanello MK, Robillard KT, Boland PM, Bain AJ, Kanehira K. 2020.. Use of fecal microbial transplantation for immune checkpoint inhibitor colitis. . ACG Case Rep. J. 7::e00360
    [Crossref] [Google Scholar]
  33. Fei G, Hengwei W, Limengmeng W, Yanmin Z, He H. 2023.. Altered intestinal microbiome and epithelial damage aggravate intestinal graft-versus-host disease. . Gut Microbes 15::2221821
    [Crossref] [Google Scholar]
  34. Feng W, Liu J, Cheng H, Zhang D, Tan Y, Peng C. 2022.. Dietary compounds in modulation of gut microbiota-derived metabolites. . Front. Nutr. 9::939571
    [Crossref] [Google Scholar]
  35. Francino MP. 2023.. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. . Front. Microbiol. 6::1543
    [Google Scholar]
  36. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, et al. 2017.. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. . Neoplasia 19::84855
    [Crossref] [Google Scholar]
  37. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, et al. 2012.. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. . Immunity 37::17186
    [Crossref] [Google Scholar]
  38. Gerassy-Vainberg S, Blatt A, Danin-Poleg Y, Gershovich K, Sabo E, et al. 2018.. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. . Gut 67::97107
    [Crossref] [Google Scholar]
  39. Gerbitz A, Schultz M, Wilke A, Linde HJ, Schölmerich J, et al. 2004.. Probiotic effects on experimental graft-versus-host disease: Let them eat yogurt. . Blood 103::436567
    [Crossref] [Google Scholar]
  40. Good Z, Spiegel JY, Sahaf B, Malipatlolla MB, Ehlinger ZJ, et al. 2022.. Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. . Nat. Med. 28::186071
    [Crossref] [Google Scholar]
  41. Goodsir J, Wilson G. 1842.. History of a case in which a fluid periodically ejected from the stomach contained vegetable organisms of an undescribed form. . Edinb. Med. Surg. J. 57::43043
    [Google Scholar]
  42. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, et al. 2018.. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. . Science 359::97103
    [Crossref] [Google Scholar]
  43. Goudarzi M, Mak TD, Jacobs JP, Moon BH, Strawn SJ, et al. 2016.. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis. . Radiat. Res. 186::21934
    [Crossref] [Google Scholar]
  44. Groenewegen B, Terveer EM, Joosse A, Barnhoorn MC, Zwittink RD. 2023.. Fecal microbiota transplantation for immune checkpoint inhibitor-induced colitis is safe and contributes to recovery: two case reports. . J. Immunother. 46::21620
    [Crossref] [Google Scholar]
  45. Hanief SM, Wu Y, Ticer T, Schutt S, Bastian D, et al. 2021.. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. . JCI Insight 6::e136841
    [Crossref] [Google Scholar]
  46. Haradhvala NJ, Leick MB, Maurer K, Gohil SH, Larson RC, et al. 2022.. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. . Nat. Med. 28::184859
    [Crossref] [Google Scholar]
  47. Hayase E, Hayase T, Jamal MA, Miyama T, Chang CC, et al. 2022.. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. . Cell 185::370519.e14
    [Crossref] [Google Scholar]
  48. Hoffman K, Doyle WJ, Schumacher SM, Ochoa-Repáraz J. 2023.. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis. . Frontiers 10::1146748
    [Google Scholar]
  49. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, et al. 2014.. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. . Biol. Blood Marrow Transplant. 20::64045
    [Crossref] [Google Scholar]
  50. Holmes ZC, Tang H, Liu C, Bush A, Neubert BC, et al. 2022.. Prebiotic galactooligosaccharides interact with mouse gut microbiota to attenuate acute graft-versus-host disease. . Blood 140::23004
    [Crossref] [Google Scholar]
  51. Hooper LV, Littman DR, Macpherson AJ. 2012.. Interactions between the microbiota and the immune system. . Science 336:(6086):126873
    [Crossref] [Google Scholar]
  52. Hu Y, Li J, Ni F, Yang Z, Gui X, et al. 2022.. CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. . Nat. Commun. 13::5313
    [Crossref] [Google Scholar]
  53. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, et al. 2013.. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. . Science 342:(6161):96770
    [Crossref] [Google Scholar]
  54. Ivanov II, de Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB, et al. 2008.. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. . Cell Host Microbe 4::33749
    [Crossref] [Google Scholar]
  55. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, et al. 2015.. Intestinal Blautia is associated with reduced death from graft-versus-host disease. . Biol. Blood Marrow Transplant. 21::137383
    [Crossref] [Google Scholar]
  56. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, et al. 2012.. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. . J. Exp. Med. 209::90311
    [Crossref] [Google Scholar]
  57. Keefe DM, Brealey J, Goland GJ, Cummins AG. 2000.. Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. . Gut 47::63237
    [Crossref] [Google Scholar]
  58. Kennedy EA, King KY, Baldridge MT. 2018.. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. . Frontiers 9::1534
    [Google Scholar]
  59. Khosravi A, Yáñez A, Price JG, Chow A, Merad M, et al. 2014.. Gut microbiota promote hematopoiesis to control bacterial infection. . Cell Host Microbe 15::37481
    [Crossref] [Google Scholar]
  60. Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, et al. 2019.. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. . Nature 572::66569
    [Crossref] [Google Scholar]
  61. Klysz DD, Fowler C, Malipatlolla M, Stuani L, Freitas KA, . 2023.. Inosine induces stemness features in CAR T cells and enhances potency. . bioRxiv 2023.04.21.537859. https://doi.org/10.1101/2023.04.21.537859
    [Google Scholar]
  62. Knisely A, Seo YD, Wargo JA, Chelvanambi M. 2023.. Monitoring and modulating diet and gut microbes to enhance response and reduce toxicity to cancer treatment. . Cancers 15::777
    [Crossref] [Google Scholar]
  63. Kong Y, Tang L, You Y, Lo Q, Zhu X. 2023.. Analysis of causes for poor persistence of CAR-T cell therapy in vivo. . Frontiers 14::1063454
    [Google Scholar]
  64. Kouidhi S. 2023.. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. . Explor. Target. Antitumor Ther. 4::24065
    [Crossref] [Google Scholar]
  65. Kuczma MP, Ding ZC, Li T, Habtetsion T, Chen T, et al. 2017.. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. . Oncotarget 8::11193142
    [Crossref] [Google Scholar]
  66. Kumar V, Cheng S-C, Johnson MD, Smeekens SP, Wojtowicz A, et al. 2014.. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. . Nat. Commun. 5::4675
    [Crossref] [Google Scholar]
  67. Leatham-Jensen MP, Frimodt-Møller J, Adediran J, Mokszycki ME, Banner ME, et al. 2012.. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. . Infect. Immun. 80::171627
    [Crossref] [Google Scholar]
  68. Lee KA, Shaw HM, Bataille V, Nathan P, Spector TD. 2020.. Role of the gut microbiome for cancer patients receiving immunotherapy: dietary and treatment implications. . Eur. J. Cancer 138::14955
    [Crossref] [Google Scholar]
  69. Lee KA, Thomas AM, Bolte LA, Björk JR, de Ruijter LK, et al. 2022.. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. . Nat. Med. 28::53544
    [Crossref] [Google Scholar]
  70. Li X, Lin Y, Li X, Xu X, Zhao Y, et al. 2020.. Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome. . EBioMedicine 61::103048
    [Crossref] [Google Scholar]
  71. Lynch SV, Pedersen O. 2016.. The human intestinal microbiome in health and disease. . New Engl. J. Med. 375::236979
    [Crossref] [Google Scholar]
  72. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, et al. 2020.. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. . Science 369::148189
    [Crossref] [Google Scholar]
  73. Markey KA, Schluter J, Gomes ALC, Littmann ER, Pickard AJ, et al. 2020.. The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. . Blood 136::13036
    [Crossref] [Google Scholar]
  74. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, et al. 2018.. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. . Science 359::1048
    [Crossref] [Google Scholar]
  75. McCulloch JA, Davar D, Rodrigues RR, Badger JH, Fang JR, et al. 2022.. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. . Nat. Med. 28::54556
    [Crossref] [Google Scholar]
  76. Meedt E, Hiergeist A, Gessner A, Dettmer K, Liebisch G, et al. 2022.. Prolonged suppression of butyrate-producing bacteria is associated with acute gastrointestinal graft-versus-host disease and transplantation-related mortality after allogeneic stem cell transplantation. . Clin. Infect. Dis. 74::61421
    [Crossref] [Google Scholar]
  77. Miltiadous O, Waters NR, Andrlová H, Dai A, Nguyen CL, et al. 2022.. Early intestinal microbial features are associated with CD4 T-cell recovery after allogeneic hematopoietic transplant. . Blood 139::275869
    [Crossref] [Google Scholar]
  78. Mirji G, Worth A, Bhat SA, El Sayed M, Kannan T, et al. 2022.. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. . Sci. Immunol. 7::eabn0704
    [Crossref] [Google Scholar]
  79. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, et al. 2009.. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. . J. Immunol. 183::604150
    [Crossref] [Google Scholar]
  80. Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, et al. 2018.. Recovery of gut microbiota of healthy adults following antibiotic exposure. . Nat. Microbiol. 3::125565
    [Crossref] [Google Scholar]
  81. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, et al. 2015.. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. . Mucosal Immunol. 8::8093
    [Crossref] [Google Scholar]
  82. Patel S, Preuss CV, Bernice F. 2023.. Vancomycin. . In StatPearls [Internet]. Treasure Island, FL:: StatPearls Publ.
    [Google Scholar]
  83. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, et al. 2017.. Intestinal microbiota and relapse after hematopoietic-cell transplantation. . J. Clin. Oncol. 35::165059
    [Crossref] [Google Scholar]
  84. Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, et al. 2020.. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. . New Engl. J. Med. 382::82234
    [Crossref] [Google Scholar]
  85. Peters BA, Wilson M, Moran U, Pavlick A, Izsak A, et al. 2019.. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. . Genome Med. 11::61
    [Crossref] [Google Scholar]
  86. Qi X, Li X, Zhao Y, Wu X, Chen F, et al. 2018.. Treating steroid refractory intestinal acute graft-versus-host disease with fecal microbiota transplantation: a pilot study. . Front. Immunol. 9::2195
    [Crossref] [Google Scholar]
  87. Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, Galindo-Delgado P, Contreras-Ochoa C, et al. 2019.. Probiotic supplementation decreases chemotherapy-induced gastrointestinal side effects in patients with acute leukemia. . J. Pediatr. Hematol. Oncol. 41::46872
    [Crossref] [Google Scholar]
  88. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, et al. 2018.. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. . Science 359::9197
    [Crossref] [Google Scholar]
  89. Routy B, Lenehan JG, Miller WH, Jamal R, Messaoudene M, et al. 2023.. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. . Nat. Med. 29::212132
    [Crossref] [Google Scholar]
  90. Roy S, Trinchieri G. 2017.. Microbiota: a key orchestrator of cancer therapy. . Nat. Rev. Cancer 17::27185
    [Crossref] [Google Scholar]
  91. Sadelain M, Brentjens R, Riviere I. 2013.. The basic principles of chimeric antigen receptor (CAR) design. . Cancer Discov. 3::38898
    [Crossref] [Google Scholar]
  92. Saresella M, Mendozzi L, Rossi V, Mazzali F, Piancone F, et al. 2017.. Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: a pilot study. . Front. Immunol. 8::1391
    [Crossref] [Google Scholar]
  93. Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, et al. 2020.. The gut microbiota is associated with immune cell dynamics in humans. . Nature 588::3037
    [Crossref] [Google Scholar]
  94. Schubert M-L, Rohrbach R, Schmitt M, Stein-Thoeringer CK. 2021.. The potential role of the intestinal micromilieu and individual microbes in the immunobiology of chimeric antigen receptor T-cell therapy. . Front. Immunol. 12::670286
    [Crossref] [Google Scholar]
  95. Seguy D, Duhamel A, Rejeb MB, Gomez E, Buhl ND, et al. 2012.. Better outcome of patients undergoing enteral tube feeding after myeloablative conditioning for allogeneic stem cell transplantation. . Transplantation 94::28794
    [Crossref] [Google Scholar]
  96. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, et al. 2022.. Immune checkpoint inhibitors in cancer therapy. . Curr. Oncol. 29::304460
    [Crossref] [Google Scholar]
  97. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, et al. 2016.. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. . Sci. Transl. Med. 8::339ra71
    [Crossref] [Google Scholar]
  98. Simpson RC, Shanahan ER, Batten M, Reijers ILM, Read M, et al. 2022.. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. . Nat. Med. 28::234452
    [Crossref] [Google Scholar]
  99. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, et al. 2015.. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. . Science 350::108489
    [Crossref] [Google Scholar]
  100. Sjöstrand M, Sadelain M. 2023.. Driving CARs to new places: locally produced BCMA CAR T cells to treat multiple myeloma. . Haematologica 108::172123
    [Crossref] [Google Scholar]
  101. Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, et al. 2022.. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. . Nat. Med. 28::71323
    [Crossref] [Google Scholar]
  102. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, et al. 2013.. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. . Science 341::56973
    [Crossref] [Google Scholar]
  103. Staffas A, Burgos da Silva M, Slingerland AE, Lazrak A, Bare CJ, et al. 2018.. Nutritional support from the intestinal microbiota improves hematopoietic reconstitution after bone marrow transplantation in mice. . Cell Host Microbe 23::44757.e4
    [Crossref] [Google Scholar]
  104. Staffas A, Burgos da Silva M, van den Brink MR. 2017.. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. . Blood 129::92733
    [Crossref] [Google Scholar]
  105. Staffas A, van den Brink M. 2019.. The intestinal flora is required for post-transplant hematopoiesis in recipients of a hematopoietic stem cell transplantation. . Bone Marrow Transplant. 54::75658
    [Crossref] [Google Scholar]
  106. Stein-Thoeringer CK, Nichols KB, Lazrak A, Docampo MD, Slingerland AE, et al. 2019.. Lactose drives Enterococcus expansion to promote graft-versus-host disease. . Science 366::114349
    [Crossref] [Google Scholar]
  107. Stein-Thoeringer CK, Saini NY, Zamir E, Blumenberg V, Schubert ML, et al. 2023.. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. . Nat. Med. 29::90616
    [Crossref] [Google Scholar]
  108. Sterner RC, Sterner RM. 2021.. CAR-T cell therapy: current limitations and potential strategies. . Blood Cancer J. 11::69
    [Crossref] [Google Scholar]
  109. Sutter VL, Kwok YY, Bulkacz J. 1985.. Comparative activity of ciprofloxacin against anaerobic bacteria. . Antimicrob. Agents Chemother. 27::42728
    [Crossref] [Google Scholar]
  110. Swimm A, Giver CR, DeFilipp Z, Rangaraju S, Sharma A, et al. 2018.. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease. . Blood 132::250619
    [Crossref] [Google Scholar]
  111. Tang WW, Kitai T, Hazen SL. 2017.. Gut microbiota in cardiovascular health and disease. . Circ. Res. 120::118396
    [Crossref] [Google Scholar]
  112. Taper HS, Roberfroid MB. 2005.. Possible adjuvant cancer therapy by two prebiotics–inulin or oligofructose. . In Vivo 19::2014
    [Google Scholar]
  113. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, et al. 2014.. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. . Blood 124::117482
    [Crossref] [Google Scholar]
  114. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, et al. 2012.. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. . Clin. Infect. Dis. 55::90514
    [Crossref] [Google Scholar]
  115. Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, et al. 2023.. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. . Nat. Rev. Clin. Oncol. 20::583603
    [Crossref] [Google Scholar]
  116. Ting NL-N, Lau HC, Yu J. 2022.. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. . Gut 71::141225
    [Crossref] [Google Scholar]
  117. Tintelnot J, Xu Y, Lesker TR, Schönlein M, Konczalla L, et al. 2023.. Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. . Nature 615::16874
    [Crossref] [Google Scholar]
  118. Tremaroli V, Bäckhed F. 2012.. Functional interactions between the gut microbiota and host metabolism. . Nature 489::24249
    [Crossref] [Google Scholar]
  119. Uribe-Herranz M, Beghi S, Ruella M, Parvathaneni K, Salaris S, et al. 2023.. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. . Mol. Ther. 31::686700
    [Crossref] [Google Scholar]
  120. van der Hee B, Wells JM. 2021.. Microbial regulation of host physiology by short-chain fatty acids: trends in microbiology. . Trends Microbiol. 29::70012
    [Crossref] [Google Scholar]
  121. Vétizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, et al. 2015.. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. . Science 350::107984
    [Crossref] [Google Scholar]
  122. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, et al. 2013.. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. . Science 342::97176
    [Crossref] [Google Scholar]
  123. Vinolo M, Rodrigues H, Nachbar R, Curi R. 2011.. Regulation of inflammation by short chain fatty acids. . Nutrients 3::85876
    [Crossref] [Google Scholar]
  124. Vrzáčková N, Ruml T, Zelenka J. 2021.. Postbiotics, metabolic signaling, and cancer. . Molecules 26::1528
    [Crossref] [Google Scholar]
  125. Walton KL, He J, Kelsall BL, Sartor RB, Fisher NC. 2006.. Dendritic cells in germ-free and specific pathogen-free mice have similar phenotypes and in vitro antigen presenting function. . Immunol. Lett. 102::1624
    [Crossref] [Google Scholar]
  126. Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, et al. 2018.. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. . Nat. Med. 24::180408
    [Crossref] [Google Scholar]
  127. Ye X, Li H, Anjum K, Zhong X, Miao S, et al. 2022.. Dual role of indoles derived from intestinal microbiota on human health. . Front. Immunol. 13::903526
    [Crossref] [Google Scholar]
  128. Zaph C, Du Y, Saenz SA, Nair MG, Perrigoue JG, et al. 2008.. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. . J. Exp. Med. 205::219198
    [Crossref] [Google Scholar]
  129. Zhao L, Xing C, Sun W, Hou G, Yang G, Yuan L. 2018.. Lactobacillus supplementation prevents cisplatin-induced cardiotoxicity possibly by inflammation inhibition. . Cancer Chemother. Pharmacol. 82::9991008
    [Crossref] [Google Scholar]
  130. Zhao T-S, Xie L-W, Cai S, Xu J-Y, Zhou H, et al. 2021.. Dysbiosis of gut microbiota is associated with the progression of radiation-induced intestinal injury and is alleviated by oral compound probiotics in mouse model. . Front. Cell. Infect. Microbiol. 11::717636
    [Crossref] [Google Scholar]
  131. Zheng D, Liwinski T, Elinav E. 2020.. Interaction between microbiota and immunity in health and disease. . Cell Res. 30::492506
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-035210
Loading
/content/journals/10.1146/annurev-cancerbio-062722-035210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error