1932

Abstract

Underwater soft robots are typically constructed from soft and flexible materials, which enable them to adapt to aquatic environments where the terrain can be complex. They are often inspired by soft-bodied aquatic animals and can be used for a range of tasks, such as underwater exploration, environmental monitoring, and rescue operations. However, the design of these robots presents significant challenges, as it requires soft materials and systems that can withstand the harsh and varied conditions of ocean environments. This review delves into the physics of soft materials and outlines the constitutive models for such materials. Through an exploration of the muscle structures in aquatic creatures like octopuses and stingrays, we highlight the interplay between the materials that make up artificial muscles and how these muscles interact with their external surroundings. Finally, we conclude by outlining unresolved challenges and providing potential avenues for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-032822-041146
2024-03-11
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/15/1/annurev-conmatphys-032822-041146.html?itemId=/content/journals/10.1146/annurev-conmatphys-032822-041146&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Laschi C, Mazzolai B, Cianchetti M. 2016. Sci. Robot. 1:eaah3690
    [Google Scholar]
  2. 2.
    Kim S, Laschi C, Trimmer B. 2013. Trends Biotechnol. 31:287–94
    [Google Scholar]
  3. 3.
    Pfeifer R, Lungarella M, Iida F. 2007. Science 318:1088–93
    [Google Scholar]
  4. 4.
    Mazzolai B, Mondini A, Del Dottore E, Margheri L, Carpi F et al. 2022. Multifunct. Mater. 5:032001
    [Google Scholar]
  5. 5.
    Zaidi S, Maselli M, Laschi C, Cianchetti M. 2021. Curr. Robot. Rep. 2:355–69
    [Google Scholar]
  6. 6.
    Pons JL. 2005. Emerging Actuator Technologies: A Micromechatronic Approach Chichester, UK: John Wiley & Sons
    [Google Scholar]
  7. 7.
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Adv. Eng. Mater. 19:1700016
    [Google Scholar]
  8. 8.
    Acome E, Mitchell SK, Morrissey TG, Emmett MB, Benjamin C et al. 2018. Science 359:61–5
    [Google Scholar]
  9. 9.
    Park S-J, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Science 353:158–62
    [Google Scholar]
  10. 10.
    Laschi C, Mazzolai B, Mattoli V, Cianchetti M, Dario P 2009. Bioinspir. Biomim. 4:015006
    [Google Scholar]
  11. 11.
    Herzog W. 2018. Biophys. Rev. 10:1187–99
    [Google Scholar]
  12. 12.
    Paulsen BD, Fabiano S, Rivnay J. 2021. Annu. Rev. Mater. Res. 51:73–99
    [Google Scholar]
  13. 13.
    Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J. 1998. Smart Mater. Struct. 7:R15
    [Google Scholar]
  14. 14.
    Tang S-Y, Tabor C, Kalantar-Zadeh K, Dickey MD. 2021. Annu. Rev. Mater. Res. 51:381–408
    [Google Scholar]
  15. 15.
    Lantman CW, MacKnight WJM, Lundberg RD. 1989. Annu. Rev. Mater. Sci. 19:295–317
    [Google Scholar]
  16. 16.
    Armand MB. 1986. Annu. Rev. Mater. Sci. 16:245–61
    [Google Scholar]
  17. 17.
    Cao Y, Tan YJ, Li S, Lee WW, Guo H et al. 2019. Nat. Electron. 2:75–82
    [Google Scholar]
  18. 18.
    Zhao Y, Hua M, Yan Y, Wu S, Alsaid Y, He X. 2022. Annu. Rev. Control Robot. Auton. Syst. 5:515–45
    [Google Scholar]
  19. 19.
    Horgan CO, Ogden RW, Saccomandi G. 2004. Proc. R. Soc. Lond. A 460:1737–54
    [Google Scholar]
  20. 20.
    Foo CC, Cai S, Koh SJA, Bauer S, Suo Z. 2012. J. Appl. Phys. 111:034102
    [Google Scholar]
  21. 21.
    Gu GY, Gupta U, Zhu J, Zhu LM, Zhu X. 2017. IEEE Trans. Robot. 33:1263–71
    [Google Scholar]
  22. 22.
    Mooney M. 1940. J. Appl. Phys. 11:582–92
    [Google Scholar]
  23. 23.
    Rivlin RS, Saunders DW. 1951. Philos. Trans. R. Soc. Lond. A 243:251–88
    [Google Scholar]
  24. 24.
    Boyce MC, Arruda EM. 2000. Rubber Chem. Technol. 73:504–23
    [Google Scholar]
  25. 25.
    Destrade M, Dorfmann L, Saccomandi G. 2022. Philos. Trans. R. Soc. A 380:20210332
    [Google Scholar]
  26. 26.
    Ogden RW. 1972. Proc. R. Soc. Lond. A 326:565–84
    [Google Scholar]
  27. 27.
    Fung YC. 2013. Biomechanics: Mechanical Properties of Living Tissues New York: Springer
    [Google Scholar]
  28. 28.
    Marko JF, Siggia ED. 1995. Macromolecules 28:8759–70
    [Google Scholar]
  29. 29.
    Lakes RS. 2009. Viscoelastic Materials New York: Cambridge Univ. Press
    [Google Scholar]
  30. 30.
    Pineda F, Bottausci F, Icard B, Malaquin L, Fouillet Y. 2015. Microelectron. Eng. 144:27–31
    [Google Scholar]
  31. 31.
    Paternò L, Tortora G, Menciassi A. 2018. Mech. Responsive Mater. Soft Robot. 5:783–99
    [Google Scholar]
  32. 32.
    Marantan A, Mahadevan L. 2018. Am. J. Phys. 86:86–94
    [Google Scholar]
  33. 33.
    Treloar LRG. 1975. The Physics of Rubber Elasticity. Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  34. 34.
    Marechal L, Balland P, Lindenroth L, Petrou F, Kontovounisios C, Bello F. 2021. Soft Robot. 8:3284–97
    [Google Scholar]
  35. 35.
    Kier WM. 2016. Front. Cell Dev. Biol. 4:10
    [Google Scholar]
  36. 36.
    Mengaldo G, Renda F, Brunton SL, Bächer M, Calisti M et al. 2022. Nat. Rev. Phys. 4:595–610
    [Google Scholar]
  37. 37.
    Xavier MS, Fleming AJ, Yong YK. 2021. Adv. Intell. Syst. 3:2000187
    [Google Scholar]
  38. 38.
    Della Santina C, Duriez C, Rus D. 2021. IEEE Control Syst. Mag. 43:330–65
    [Google Scholar]
  39. 39.
    Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. 2014. IEEE Trans. Robot. 30:1109–22
    [Google Scholar]
  40. 40.
    Chirikjian GS, Burdick JW. 1994. IEEE Trans. Robot. Autom. 10:343–54
    [Google Scholar]
  41. 41.
    Lu T, Ma C, Wang T. 2020. Extreme Mech. Lett. 38:100752
    [Google Scholar]
  42. 42.
    Zhao Y, Tan YJ, Yang W, Ling S, Yang Z et al. 2021. Adv. Healthc. Mater. 10:2100221
    [Google Scholar]
  43. 43.
    Zhao Y, Yang W, Tan YJ, Li S, Zeng X et al. 2019. APL Mater. 7:031508
    [Google Scholar]
  44. 44.
    Manghi M, Schlagberger X, Kim Y-W, Netz RR. 2006. Soft Matter 2:653–68
    [Google Scholar]
  45. 45.
    Ladd AJ. 1994. J. Fluid Mech. 271:285–309
    [Google Scholar]
  46. 46.
    Ladd AJ. 1993. Phys. Rev. Lett. 70:1339
    [Google Scholar]
  47. 47.
    Succi S. 2001. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  48. 48.
    Ahlrichs P, Dünweg B. 1998. Int. J. Mod. Phys. B 9:1429–38
    [Google Scholar]
  49. 49.
    Groot RD, Warren PB. 1997. J. Chem. Phys. 107:4423–35
    [Google Scholar]
  50. 50.
    Hoogerbrugge P, Koelman J. 1992. Europhys. Lett. 19:155
    [Google Scholar]
  51. 51.
    Ripoll M, Ernst M, Espanol P. 2001. J. Chem. Phys. 115:7271–84
    [Google Scholar]
  52. 52.
    Lamura A, Gompper G, Ihle T, Kroll D. 2001. Europhys. Lett. 56:319
    [Google Scholar]
  53. 53.
    Winkler R, Mussawisade K, Ripoll M, Gompper G. 2004. J. Phys. Condens. Matter 16:S3941
    [Google Scholar]
  54. 54.
    Cundall PA, Strack OD. 1979. Geotechnique 29:47–65
    [Google Scholar]
  55. 55.
    Nase ST, Vargas WL, Abatan AA, McCarthy J. 2001. Powder Technol. 116:214–23
    [Google Scholar]
  56. 56.
    Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR. 2010. Annu. Rev. Mater. Res. 40:179–211
    [Google Scholar]
  57. 57.
    Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK. 2021. Adv. Mater. 33:2002800
    [Google Scholar]
  58. 58.
    Tan YJ, Wu J, Li H, Tee BC. 2018. ACS Appl. Mater. Interfaces 10:15331–45
    [Google Scholar]
  59. 59.
    Sadeghi A, Mondini A, Mazzolai B. 2017. Soft Robot. 4:211–23
    [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-032822-041146
Loading
/content/journals/10.1146/annurev-conmatphys-032822-041146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error