1932

Abstract

Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on the impact of () pH on adsorption, intermolecular interactions, and conformational changes; () surface coatings and coadsorbates on protein adsorption kinetics and protein conformation; () surface adsorption on the temperature dependence of protein structure phase changes; and () the use of two-dimensional correlation spectroscopy to analyze spectroscopic results for complex systems. An outlook of the field and remaining challenges is also presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091420-092928
2021-07-27
2024-06-07
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091420-092928.html?itemId=/content/journals/10.1146/annurev-anchem-091420-092928&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lee J, Mahendra S, Alvarez PJJ. 2010. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:73580–90
    [Google Scholar]
  2. 2. 
    Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46:42242–50
    [Google Scholar]
  3. 3. 
    Azimi A, Azari A, Rezakazemi M, Ansarpour M. 2017. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 4:137–59
    [Google Scholar]
  4. 4. 
    Meng A, Zhang L, Cheng B, Yu J 2019. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 31:301807660
    [Google Scholar]
  5. 5. 
    Arami H, Khandhar A, Liggitt D, Krishnan KM. 2015. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44:238576–607
    [Google Scholar]
  6. 6. 
    Ustunol IB, Gonzalez-Pech NI, Grassian VH 2019. pH-dependent adsorption of α-amino acids, lysine, glutamic acid, serine and glycine, on TiO2 nanoparticle surfaces. J. Colloid Interface Sci. 554:362–75
    [Google Scholar]
  7. 7. 
    Jeng HA, Swanson J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A 41:122699–711
    [Google Scholar]
  8. 8. 
    Abdelhalim MAK. 2011. Exposure to gold nanoparticles produces cardiac tissue damage that depends on the size and duration of exposure. Lipids Health Dis 10:205
    [Google Scholar]
  9. 9. 
    Schulz H, Harder V, Ibald-Mulli A, Khandoga A, Koenig W et al. 2005. Cardiovascular effects of fine and ultrafine particles. J. Aerosol Med. 18:11–22
    [Google Scholar]
  10. 10. 
    Wongrakpanich A, Mudunkotuwa IA, Geary SM, Morris AS, Mapuskar KA et al. 2016. Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environ. Sci. Nano 3:2365–74
    [Google Scholar]
  11. 11. 
    Singh SP, Kumari M, Kumari SI, Rahman MF, Mahboob M, Grover P. 2013. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28days of repeated oral exposure. J. Appl. Toxicol. 33:101165–79
    [Google Scholar]
  12. 12. 
    Situm A, Rahman MA, Allen N, Kabengi N, Al-Abadleh HA. 2017. ATR-FTIR and flow microcalorimetry studies on the initial binding kinetics of arsenicals at the organic-hematite interface. J. Phys. Chem. A 121:305569–79
    [Google Scholar]
  13. 13. 
    Dutta T, Bagchi D, Bera A, Das S, Adhikari T, Pal SK. 2019. Surface engineered ZnO-humic/citrate interfaces: photoinduced charge carrier dynamics and potential application for smart and sustained delivery of Zn micronutrient. ACS Sustain. Chem. Eng. 7:1210920–30
    [Google Scholar]
  14. 14. 
    Wang X, Wang X, Wang M, Zhang D, Yang Q et al. 2018. Probing adsorption behaviors of BSA onto chiral surfaces of nanoparticles. Small 14:161703982
    [Google Scholar]
  15. 15. 
    Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M et al. 2015. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:76996–7008
    [Google Scholar]
  16. 16. 
    Huang R, Carney RP, Ikuma K, Stellacci F, Lau BLT. 2014. Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 8:65402–12
    [Google Scholar]
  17. 17. 
    Rashid M, Price NT, Gracia Pinilla , O'Shea KE 2017. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–60
    [Google Scholar]
  18. 18. 
    Sit I, Xu Z, Grassian VH. 2019. Plasma protein adsorption on TiO2 nanoparticles: impact of surface adsorption on temperature-dependent structural changes. Polyhedron 171:147–54
    [Google Scholar]
  19. 19. 
    Phan HT, Haes AJ. 2018. Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements. J. Phys. Chem. C 122:2614846–56
    [Google Scholar]
  20. 20. 
    Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H et al. 2012. Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal. Chem. 84:188013–19
    [Google Scholar]
  21. 21. 
    Wei H, Vikesland PJ. 2015. pH-triggered molecular alignment for reproducible SERS detection via an AuNP/nanocellulose platform. Sci. Rep. 5:18131
    [Google Scholar]
  22. 22. 
    Xie L-Q, Ding D, Zhang M, Chen S, Qiu Z et al. 2016. Adsorption of dye molecules on single crystalline semiconductor surfaces: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study. J. Phys. Chem. C 120:3922500–7
    [Google Scholar]
  23. 23. 
    Schwaminger SP, Fraga-García P, Selbach F, Hein FG, Fuß EC et al. 2017. Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. Adsorption 23:2281–92
    [Google Scholar]
  24. 24. 
    Zhou W, Liu Y-L, Stallworth AM, Ye C, Lenhart JJ. 2016. Effects of pH, electrolyte, humic acid, and light exposure on the long-term fate of silver nanoparticles. Environ. Sci. Technol. 50:2212214–24
    [Google Scholar]
  25. 25. 
    Shakiba S, Hakimian A, Barco LR, Louie SM. 2018. Dynamic intermolecular interactions control adsorption from mixtures of natural organic matter and protein onto titanium dioxide nanoparticles. Environ. Sci. Technol. 52:2414158–68
    [Google Scholar]
  26. 26. 
    Lu R, Li W-W, Katzir A, Raichlin Y, Yu H-Q, Mizaikoff B. 2015. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 140:3765–70
    [Google Scholar]
  27. 27. 
    Murayama K, Tomida M. 2004. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:3611526–32
    [Google Scholar]
  28. 28. 
    Xu Z, Grassian VH. 2017. Bovine serum albumin adsorption on TiO2 nanoparticle surfaces: effects of pH and coadsorption of phosphate on protein-surface interactions and protein structure. J. Phys. Chem. C 121:3921763–71
    [Google Scholar]
  29. 29. 
    Kim J, Doudrick K. 2019. Emerging investigator series: protein adsorption and transformation on catalytic and food-grade TiO2 nanoparticles in the presence of dissolved organic carbon. Environ. Sci. Nano 6:61688–1703
    [Google Scholar]
  30. 30. 
    Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ. Pollut. 185:69–76
    [Google Scholar]
  31. 31. 
    Piccinno F, Gottschalk F, Seeger S, Nowack B. 2012. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanoparticle Res. 14:1109
    [Google Scholar]
  32. 32. 
    Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M et al. 2018. Risks, release and concentrations of engineered nanomaterial in the environment. Sci. Rep. 8:11565
    [Google Scholar]
  33. 33. 
    Gondikas AP, von der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T. 2014. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the Old Danube recreational lake. Environ. Sci. Technol. 48:105415–22
    [Google Scholar]
  34. 34. 
    Gottschalk F, Nowack B. 2011. The release of engineered nanomaterials to the environment. J. Environ. Monit. 13:51145–55
    [Google Scholar]
  35. 35. 
    Chen F, Zhao ER, Hableel G, Hu T, Kim T et al. 2019. Increasing the efficacy of stem cell therapy via triple-function inorganic nanoparticles. ACS Nano 13:66605–17
    [Google Scholar]
  36. 36. 
    Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Anthony TR et al. 2019. Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J. Occup. Environ. Hyg. 16:6387–99
    [Google Scholar]
  37. 37. 
    Stebounova LV, Gonzalez-Pech NI, Park JH, Anthony TR, Grassian VH, Peters TM. 2018. Particle concentrations in occupational settings measured with a nanoparticle respiratory deposition (NRD) sampler. Ann. Work Expo. Health 62:6699–710
    [Google Scholar]
  38. 38. 
    Stebounova LV, Gonzalez-Pech NI, Peters TM, Grassian VH. 2018. Physicochemical properties of air discharge-generated manganese oxide nanoparticles: comparison to welding fumes. Environ. Sci. Nano 5:3696–707
    [Google Scholar]
  39. 39. 
    Karlsson HL, Gustafsson J, Cronholm P, Möller L. 2009. Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol. Lett. 188:2112–18
    [Google Scholar]
  40. 40. 
    Karlsson HL, Cronholm P, Gustafsson J, Möller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21:91726–32
    [Google Scholar]
  41. 41. 
    Mudunkotuwa IA, Grassian VH. 2014. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions. Langmuir 30:298751–60
    [Google Scholar]
  42. 42. 
    Mudunkotuwa IA, Grassian VH. 2015. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. 2:5429–39
    [Google Scholar]
  43. 43. 
    Mudunkotuwa IA, Al Minshid A, Grassian VH 2014. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst 139:5870–81
    [Google Scholar]
  44. 44. 
    Precupas A, Gheorghe D, Botea-Petcu A, Leonties AR, Sandu R et al. 2020. Thermodynamic parameters at bio-nano interface and nanomaterial toxicity: a case study on BSA interaction with ZnO, SiO2, and TiO2. Chem. Res. Toxicol. 33:82054–71
    [Google Scholar]
  45. 45. 
    Xue M, Sampath J, Gebhart RN, Haugen HJ, Lyngstadaas SP et al. 2020. Studies of dynamic binding of amino acids to TiO2 nanoparticle surfaces by solution NMR and molecular dynamics simulations. Langmuir 36:3510341–50
    [Google Scholar]
  46. 46. 
    Givens BE, Diklich ND, Fiegel J, Grassian VH. 2017. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: impact of pH on nanoparticle-protein interactions. Biointerphases 12:02D404
    [Google Scholar]
  47. 47. 
    Givens BE, Xu Z, Fiegel J, Grassian VH. 2017. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: a tale of two nano-bio surface interactions. J. Colloid Interface Sci. 493:334–41
    [Google Scholar]
  48. 48. 
    Wu H, Gonzalez-Pech NI, Grassian VH 2019. Displacement reactions between environmentally and biologically relevant ligands on TiO2 nanoparticles: insights into the aging of nanoparticles in the environment. Environ. Sci. Nano 6:2489–504
    [Google Scholar]
  49. 49. 
    He J, Yang X, Men B, Bi Z, Pu Y, Wang D. 2014. Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe3O4: role of the interface. Chem. Eng. J. 258:433–41
    [Google Scholar]
  50. 50. 
    Morsch S, van Driel BA, van den Berg KJ, Dik J. 2017. Investigating the photocatalytic degradation of oil paint using ATR-IR and AFM-IR. ACS Appl. Mater. Interfaces 9:1110169–79
    [Google Scholar]
  51. 51. 
    Long J-J, Liu B, Wang G-F, Shi W. 2017. Photocatalitic stripping of fixed Reactive Red X-3B dye from cotton with nano-TiO2/UV system. J. Clean. Prod. 165:788–800
    [Google Scholar]
  52. 52. 
    Schmidt MP, Martinez CE. 2016. Kinetic and conformational insights of protein adsorption onto montmorillonite revealed using in situ ATR-FTIR/2D-COS. Langmuir 32:317719–29
    [Google Scholar]
  53. 53. 
    Gankanda A, Cwiertny DM, Grassian VH. 2016. Role of atmospheric CO2 and H2O adsorption on ZnO and CuO nanoparticle aging: formation of new surface phases and the impact on nanoparticle dissolution. J. Phys. Chem. C 120:3419195–203
    [Google Scholar]
  54. 54. 
    Jayalath S, Wu H, Larsen SC, Grassian VH. 2018. Surface adsorption of Suwannee River humic acid on TiO2 nanoparticles: a study of pH and particle size. Langmuir 34:93136–45
    [Google Scholar]
  55. 55. 
    Lehman SE, Mudunkotuwa IA, Grassian VH, Larsen SC. 2016. Nano-bio interactions of porous and nonporous silica nanoparticles of varied surface chemistry: a structural, kinetic, and thermodynamic study of protein adsorption from RPMI culture medium. Langmuir 32:3731–42
    [Google Scholar]
  56. 56. 
    Lehman SE, Morris AS, Mueller PS, Salem AK, Grassian VH, Larsen SC. 2016. Silica nanoparticle-generated ROS as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ. Sci. Nano 3:156–66
    [Google Scholar]
  57. 57. 
    Jayalath S, Larsen SC, Grassian VH. 2018. Surface adsorption of Nordic aquatic fulvic acid on amine-functionalized and non-functionalized mesoporous silica nanoparticles. Environ. Sci. Nano 5:92162–71
    [Google Scholar]
  58. 58. 
    Kolasinski KW. 2012. Surface Science: Foundations of Catalysis and Nanoscience Hoboken, NJ: Wiley. , 3rd ed..
  59. 59. 
    Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. 2018. Surface modifications of nanoparticles for stability in biological fluids. Materials 11:71154
    [Google Scholar]
  60. 60. 
    Tamura H, Mita K, Tanaka A, Ito M. 2001. Mechanism of hydroxylation of metal oxide surfaces. J. Colloid Interface Sci. 243:1202–7
    [Google Scholar]
  61. 61. 
    Kubicki JD, Kwon KD, Paul KW, Sparks DL. 2007. Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. Eur. J. Soil Sci. 58:4932–44
    [Google Scholar]
  62. 62. 
    Kubicki JD, Paul KW, Kabalan L, Zhu Q, Mrozik MK et al. 2012. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto Goethite. Langmuir 28:4114573–87
    [Google Scholar]
  63. 63. 
    Kwon KD, Kubicki JD. 2004. Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: calculation of vibrational frequencies and adsorption energies. Langmuir 20:219249–54
    [Google Scholar]
  64. 64. 
    Rubasinghege G, Kyei PK, Scherer MM, Grassian VH. 2012. Proton-promoted dissolution of α-FeOOH nanorods and microrods: size dependence, anion effects (carbonate and phosphate), aggregation and surface adsorption. J. Colloid Interface Sci. 385:115–23
    [Google Scholar]
  65. 65. 
    Elzinga EJ, Sparks DL. 2007. Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci. 308:153–70
    [Google Scholar]
  66. 66. 
    Arai Y, Sparks DL. 2001. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interface Sci. 241:2317–26
    [Google Scholar]
  67. 67. 
    de Alwis C, Perrine KA. 2020. In situ PM-IRRAS at the air/electrolyte/solid interface reveals oxidation of iron to distinct minerals. J. Phys. Chem. A 124:336735–44
    [Google Scholar]
  68. 68. 
    de Alwis C, Leftwich TR, Perrine KA. 2020. New approach to simultaneous in situ measurements of the air/liquid/solid interface using PM-IRRAS. Langmuir 36:133404–14
    [Google Scholar]
  69. 69. 
    Han J, Ro H-M. 2018. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading. Environ. Sci. Pollut. Res. 25:2828572–82
    [Google Scholar]
  70. 70. 
    Du P, Moulijn JA, Mul G. 2006. Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields. J. Catal. 238:2342–52
    [Google Scholar]
  71. 71. 
    Nakamura R, Imanishi A, Murakoshi K, Nakato Y. 2003. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc. 125:247443–50
    [Google Scholar]
  72. 72. 
    Mueller R, Kammler HK, Wegner K, Pratsinis SE. 2003. OH surface density of SiO2 and TiO2 by thermogravimetric analysis. Langmuir 19:1160–65
    [Google Scholar]
  73. 73. 
    Lagström T, Gmür TA, Quaroni L, Goel A, Brown MA. 2015. Surface vibrational structure of colloidal silica and its direct correlation with surface charge density. Langmuir 31:123621–26
    [Google Scholar]
  74. 74. 
    Barisik M, Atalay S, Beskok A, Qian S. 2014. Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C 118:41836–42
    [Google Scholar]
  75. 75. 
    Larkin P. 2011. Origin of group frequencies. Infrared and Raman Spectroscopy P Larkin63–72 Oxford, UK: Elsevier
    [Google Scholar]
  76. 76. 
    Woods DA, Bain CD. 2014. Total internal reflection spectroscopy for studying soft matter. Soft Matter 10:81071–96
    [Google Scholar]
  77. 77. 
    Hug SJ, Sulzberger B. 1994. In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10:103587–97
    [Google Scholar]
  78. 78. 
    Mirabella FM 1992. Internal Reflection Spectroscopy: Theory and Applications New York: Marcel Dekker
  79. 79. 
    Sit I, Sagisaka S, Grassian VH. 2020. Nucleotide adsorption on iron(III) oxide nanoparticle surfaces: insights into nano–geo–bio interactions through vibrational spectroscopy. Langmuir 36:5115501–13
    [Google Scholar]
  80. 80. 
    Wu H, Or VW, Gonzalez-Calzada S, Grassian VH. 2020. CuS nanoparticles in humid environments: adsorbed water enhances the transformation of CuS to CuSO4. Nanoscale 12:19350–58
    [Google Scholar]
  81. 81. 
    Wu H, Huang L, Rose A, Grassian VH 2020. Impact of surface adsorbed biologically and environmentally relevant coatings on TiO2 nanoparticle reactivity. Environ. Sci. Nano 7:3783–93
    [Google Scholar]
  82. 82. 
    Boateng LK, Mirshahghassemi S, Wu H, Flora JRV, Grassian VH, Lead JR. 2021. Mechanistic study of oil adsorption onto PVP-coated magnetic nanoparticles: an integrated experimental and molecular dynamics study to inform remediation. Environ. Sci. Nano 8:485–92
    [Google Scholar]
  83. 83. 
    Chen W, Qian C, Liu X-Y, Yu H-Q. 2014. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles. Environ. Sci. Technol. 48:1911119–26
    [Google Scholar]
  84. 84. 
    Jin P, Song J, Wang XC, Jin X 2018. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. 64:181–89
    [Google Scholar]
  85. 85. 
    Liu J, Zhu R, Liang X, Ma L, Lin X et al. 2018. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study. Chem. Geol. 477:12–21
    [Google Scholar]
  86. 86. 
    Han J, Ro H-M. 2019. Characterizing preferential adsorption of phosphate on binary sorbents of goethite and maghaemite using in situ ATR-FTIR and 2D correlation spectroscopy. Sci. Rep. 9:16130
    [Google Scholar]
  87. 87. 
    Gomaa AI, Sedman J, Ismail AA. 2013. An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vib. Spectrosc. 65:101–9
    [Google Scholar]
  88. 88. 
    Liu F, Li X, Sheng A, Shang J, Wang Z, Liu J 2019. Kinetics and mechanisms of protein adsorption and conformational change on hematite particles. Environ. Sci. Technol. 53:1710157–65
    [Google Scholar]
  89. 89. 
    Smedley PL, Kinniburgh DG. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:5517–68
    [Google Scholar]
  90. 90. 
    Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:4287–314
    [Google Scholar]
  91. 91. 
    Lounsbury AW, Yamani JS, Johnston CP, Larese-Casanova P, Zimmerman JB. 2016. The role of counter ions in nano-hematite synthesis: implications for surface area and selenium adsorption capacity. J. Hazard. Mater. 310:117–24
    [Google Scholar]
  92. 92. 
    Jordan N, Franzen C, Lützenkirchen J, Foerstendorf H, Hering D et al. 2018. Adsorption of selenium(VI) onto nano transition alumina. Environ. Sci. Nano 5:1661–69
    [Google Scholar]
  93. 93. 
    Barrón V, Torrent J. 1996. Surface hydroxyl configuration of various crystal faces of hematite and goethite. J. Colloid Interface Sci. 177:2407–10
    [Google Scholar]
  94. 94. 
    Rubasinghege G, Lentz RW, Park H, Scherer MM, Grassian VH. 2010. Nanorod dissolution quenched in the aggregated state. Langmuir 26:31524–27
    [Google Scholar]
  95. 95. 
    Rubasinghege G, Lentz RW, Scherer MM, Grassian VH 2010. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. PNAS 107:156628–33
    [Google Scholar]
  96. 96. 
    Satzer P, Svec F, Sekot G, Jungbauer A. 2016. Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng. Life Sci. 16:3238–46
    [Google Scholar]
  97. 97. 
    Deacon GB, Phillips RJ. 1980. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 33:3227–50
    [Google Scholar]
  98. 98. 
    Carter DC, Ho JX 1994. Structure of serum albumin. Advances in Protein ChemistryVol. 45 CB Anfinsen, JT Edsall, FM Richards, DS Eisenberg 153–203 New York: Academic
    [Google Scholar]
  99. 99. 
    Alexov EG, Gunner MR. 1997. Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys. J. 72:52075–93
    [Google Scholar]
  100. 100. 
    Nguyen PA, Soto CS, Polishchuk A, Caputo GA, Tatko CD et al. 2008. pH-induced conformational change of the influenza M2 protein C-terminal domain. Biochemistry 47:389934–36
    [Google Scholar]
  101. 101. 
    Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B. 2010. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 26:118336–46
    [Google Scholar]
  102. 102. 
    Erhayem M, Sohn M. 2014. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter. Sci. Total Environ. 468–469:249–57
    [Google Scholar]
  103. 103. 
    Márquez A, Berger T, Feinle A, Hüsing N, Himly M et al. 2017. Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir 33:102551–58
    [Google Scholar]
  104. 104. 
    Philippe A, Schaumann GE 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ. Sci. Technol. 48:168946–62
    [Google Scholar]
  105. 105. 
    Erhayem M, Sohn M. 2014. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Sci. Total Environ. 470–471:92–98
    [Google Scholar]
  106. 106. 
    Dobson KD, McQuillan AJ. 2000. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 56:3557–65
    [Google Scholar]
  107. 107. 
    Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. 2013. Protein-Nanoparticle Interactions, Vol. 15 Berlin/Heidelberg: Springer
  108. 108. 
    Yuan B, Murayama K, Yan H. 2007. Study of thermal dynamics of defatted bovine serum albumin in D2O solution by Fourier transform infrared spectra and evolving factor analysis. Appl. Spectrosc. 61:9921–27
    [Google Scholar]
  109. 109. 
    Roach P, Farrar D, Perry CC. 2005. Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127:228168–73
    [Google Scholar]
  110. 110. 
    Roach P, Farrar D, Perry CC. 2006. Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128:123939–45
    [Google Scholar]
  111. 111. 
    Schmidt MP, Martínez CE. 2017. Ironing out genes in the environment: an experimental study of the DNA-goethite interface. Langmuir 33:348525–32
    [Google Scholar]
  112. 112. 
    Liu F, Zhang Y, Wang H, Li L, Zhao W et al. 2020. Study on the adsorption orientation of DNA on two-dimensional MoS2 surface via molecular dynamics simulation: a vertical orientation phenomenon. Chem. Phys. 529:110546
    [Google Scholar]
  113. 113. 
    Trueblood JV, Alves MR, Power D, Santander MV, Cochran RE et al. 2019. Shedding light on photosensitized reactions within marine-relevant organic thin films. ACS Earth Space Chem. 3:81614–23
    [Google Scholar]
  114. 114. 
    McQuillan AJ. 2001. Probing solid-solution interfacial chemistry with ATR-IR spectroscopy of particle films. Adv. Mater. 13:12–131034–38
    [Google Scholar]
  115. 115. 
    Pegueroles M, Tonda-Turo C, Planell JA, Gil F-J, Aparicio C. 2012. Adsorption of fibronectin, fibrinogen, and albumin on TiO2: time-resolved kinetics, structural changes, and competition study. Biointerphases 7:148
    [Google Scholar]
  116. 116. 
    Yu J, Wang G, Cheng B, Zhou M. 2007. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl. Catal. B Environ. 69:3171–80
    [Google Scholar]
  117. 117. 
    Wang X, Pehkonen SO, Rämö J, Väänänen M, Highfield JG, Laasonen K. 2012. Experimental and computational studies of nitrogen doped Degussa P25 TiO2: application to visible-light driven photo-oxidation of As(III). Catal. Sci. Technol. 2:4784–93
    [Google Scholar]
  118. 118. 
    Jachimska B, Wasilewska M, Adamczyk Z. 2008. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir 24:136866–72
    [Google Scholar]
  119. 119. 
    Srinivasu BY, Bose B, Mitra G, Kurpad AV, Mandal AK. 2017. Adsorption induced changes of human hemoglobin on ferric pyrophosphate nanoparticle surface probed by isotope exchange mass spectrometry: an implication on structure-function correlation. Langmuir 33:328032–42
    [Google Scholar]
  120. 120. 
    Buijs J, Ramström M, Danfelter M, Larsericsdotter H, Håkansson P, Oscarsson S. 2003. Localized changes in the structural stability of myoglobin upon adsorption onto silica particles, as studied with hydrogen/deuterium exchange mass spectrometry. J. Colloid Interface Sci. 263:2441–48
    [Google Scholar]
  121. 121. 
    Komives EA. 2005. Protein-protein interaction dynamics by amide H/2H exchange mass spectrometry. Int. J. Mass Spectrom. 240:3285–90
    [Google Scholar]
  122. 122. 
    Balasubramaniam D, Komives EA. 2013. Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochim. Biophys. Acta Proteins Proteom. 1834:61202–9
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091420-092928
Loading
/content/journals/10.1146/annurev-anchem-091420-092928
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error