1932

Abstract

This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021815-111431
2017-02-08
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/animal/5/1/annurev-animal-021815-111431.html?itemId=/content/journals/10.1146/annurev-animal-021815-111431&mimeType=html&fmt=ahah

Literature Cited

  1. Micheel C, Ball JR. 1.  2010. Evaluation of Biomarkers and Surrogate Endpoints in Chronic Disease Washington, DC: Inst. Med.
  2. 2. FDA-NIH Biomark. Work. Group 2016. BEST (Biomarkers, EndpointS, and Other Tools) Resource. Bethesda, MD: Food Drug Adm http://www.ncbi.nlm.nih.gov/books/NBK326791/
  3. Figueroa ME, Rawls WE. 3.  1969. Biological markers for differentiation of herpes-virus strains of oral and genital origin. J. Gen. Virol. 4:259–67 [Google Scholar]
  4. 4. Biomark. Defin. Work. Group (DWG) 2001. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69:89–95 [Google Scholar]
  5. Fry TL, Dunbar MR. 5.  2007. A review of biomarkers used for wildlife damage and disease management Presented at 12th Wildl. Damage Manag. Conf., Corpus Christi, Tex.
  6. Mobasheri A, Cassidy JP. 6.  2010. Biomarkers in veterinary medicine: towards targeted, individualised therapies for companion animals. Vet. J. 185:1–3 [Google Scholar]
  7. Matheis K, Laurie D, Andriamandroso C, Arber N, Badimon L. 7.  et al. 2011. A generic operational strategy to qualify translational safety biomarkers. Drug Discov. Today 16:600–8 [Google Scholar]
  8. Campion S, Aubrecht J, Boekelheide K, Brewster DW, Vaidya VS. 8.  et al. 2013. The current status of biomarkers for predicting toxicity. Expert Opin. Drug Metab. Toxicol. 9:1391–408 [Google Scholar]
  9. Lavezzari G, Womack AW. 9.  2016. Industry perspectives on biomarker qualification. Clin. Pharmacol. Ther. 99:208–13 [Google Scholar]
  10. Drucker E, Krapfenbauer K. 10.  2013. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine. EPMA J 4:7 http://www.epmajournal.com/content/4/1/7 [Google Scholar]
  11. Sargent DJ, Mandrekar SJ. 11.  2013. Statistical issues in the validation of prognostic, predictive, and surrogate biomarkers. Clin. Trials 10:647–52 [Google Scholar]
  12. Matharoo-Ball B, Miles AK, Creaser CS, Ball G, Rees R. 12.  2008. Serum biomarker profiling in cancer studies: A question of standardisation?. Vet. Comp. Oncol. 6:224–47 [Google Scholar]
  13. Zhang Z, Chan DW. 13.  2010. The road from discovery to clinical diagnostics: lessons learned from the first FDA-cleared in vitro diagnostic multivariate index assay of proteomic biomarkers. Cancer Epidemiol. Biomark. Prev. 19:2995–99 [Google Scholar]
  14. Hewitt SM. 14.  2004. Discovery of protein biomarkers for renal diseases. J. Am. Soc. Nephrol. 15:1677–89 [Google Scholar]
  15. McDermott JE, Wang J, Mitchell H, Webb-Robertson BJ, Hafen R. 15.  et al. 2013. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin. Med. Diagn. 7:37–51 [Google Scholar]
  16. Goossens N, Nakagawa S, Sun X, Hoshida Y. 16.  2015. Cancer biomarker discovery and validation. Transl. Cancer Res. 4:256–69 [Google Scholar]
  17. LaBaer J. 17.  2005. So, you want to look for biomarkers (introduction to the special biomarkers issue). J. Proteome Res. 4:1053–59 [Google Scholar]
  18. Raszek MM, Guan LL, Plastow GS. 18.  2016. Use of genomic tools to improve cattle health in the context of infectious diseases. Front. Genet. 7:30 [Google Scholar]
  19. Morris JS. 19.  2016. Genomic and proteomic profiling for cancer diagnosis in dogs. Vet. J. 215:101–9 [Google Scholar]
  20. Simpson S, Edwards J, Ferguson-Mignan TF, Cobb M, Mongan NP, Rutland CS. 20.  2015. Genetics of human and canine dilated cardiomyopathy. Int. J. Genom. 2015:1–13 [Google Scholar]
  21. van Altena SE, de Klerk B, Hettinga KA, van Neerven RJ, Boeren S. 21.  et al. 2016. A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet. Immunol. Immunopathol. 174:11–18 [Google Scholar]
  22. Ceciliani F, Eckersall D, Burchmore R, Lecchi C. 22.  2014. Proteomics in veterinary medicine: applications and trends in disease pathogenesis and diagnostics. Vet. Pathol. 51:351–62 [Google Scholar]
  23. Fernandes M, Rosa N, Esteves E, Correia MJ, Arrais J. 23.  et al. 2016. CanisOme—the protein signatures of Canis lupus familiaris diseases. J. Proteom. 136:193–201 [Google Scholar]
  24. Hesselager MO, Codrea MC, Sun Z, Deutsch EW, Bennike TB, Stensballe A. 24.  et al. 2016. The Pig PeptideAtlas: a resource for systems biology in animal production and biomedicine. Proteomics 16:634–44 [Google Scholar]
  25. 25. Eur. Coop. Sci. Technol. 2011. Farm animal proteomics. FA COST Action FA1002, Eur. Coop. Sci. Technol., Brussels. http://www.cost.eu/COST_Actions/fa/FA1002
  26. Guest PC, Gottschalk MG, Bahn S. 26.  2013. Proteomics: Improving biomarker translation to modern medicine?. Genome Med 5:17 [Google Scholar]
  27. Celi P. 27.  2011. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol. Immunotoxicol. 33:233–40 [Google Scholar]
  28. Basoglu A, Baspinar N, Tenori L, Vignoli A, Yildiz R. 28.  2016. Plasma metabolomics in calves with acute bronchopneumonia. Metabolomics 12:128 [Google Scholar]
  29. Puurunen J, Tiira K, Lehtonen M, Hanhineva K, Lohi H. 29.  2016. Non-targeted metabolite profiling reveals changes in oxidative stress, tryptophan and lipid metabolisms in fearful dogs. Behav. Brain Funct. 12:7 [Google Scholar]
  30. Dietert RR, Silbergeld EK. 30.  2015. Biomarkers for the 21st century: listening to the microbiome. Toxicol. Sci. 144:208–16 [Google Scholar]
  31. McConathy J, Sheline YI. 31.  2015. Imaging biomarkers associated with cognitive decline: a review. Biol. Psychiatry 77:685–92 [Google Scholar]
  32. Nishida H. 32.  2014. Biomarkers for neural injury and infection in small animals. Vet. Clin. N. Am. Small Anim. Pract. 44:1187–99 [Google Scholar]
  33. Klopfleisch R, Gruber AD. 33.  2012. Transcriptome and proteome research in veterinary science: What is possible and what questions can be asked?. ScientificWorldJournal 2012:254962 [Google Scholar]
  34. Moore RE, Kirwan J, Doherty MK, Whitfield PD. 34.  2007. Biomarker discovery in animal health and disease: the application of post-genomic technologies. Biomark. Insights 2:185–96 [Google Scholar]
  35. 35. US Dep. Health Hum. Serv. 2001. Bioanalytical method validation. Guid. Ind., May, US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Vet. Med. http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf
  36. 36. US Dep. Health Hum. Serv. 2013. Bioanalytical method validation. Draft Guid. Ind., Sept., US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Vet. Med. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM368107.pdf The draft Guidance for Industry includes information on bioanalytical methods for biomarkers.
  37. 37. Eur. Med. Agency. 2011. Guideline on Bioanalytical Method Validation. London: Eur. Med. Agency http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf
  38. Holland RL. 38.  2016. What makes a good biomarker?. Adv. Precis. Med. 1:4–11 [Google Scholar]
  39. 39. US Dep. Health Hum. Serv. 2016. Considerations for use of histopathology and its associated methodologies to support biomarker qualification. Guid. Ind., May, US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Vet. Med. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM285297.pdf
  40. Naeger DM, Kohi MP, Webb EM, Phelps A, Ordovas KG, Newman TB. 40.  2013. Correctly using sensitivity, specificity, and predictive values in clinical practice: how to avoid three common pitfalls. Am. J. Roentgenol. 200:W566–70 [Google Scholar]
  41. Parikh N, Vasan R. 41.  2007. Assessing the clinical utility of biomarkers in medicine. Biomark. Med. 1:419–36 [Google Scholar]
  42. Pletcher MJ, Pignone M. 42.  2011. Evaluating the clinical utility of a biomarker: a review of methods for estimating health impact. Circulation 123:1116–24 [Google Scholar]
  43. Peters SM, Yancy H, Bremer E, Monroe J, Paul D. 43.  et al. 2011. In vitro identification and verification of inflammatory biomarkers in swine. Vet. Immunol. Immunopathol. 139:67–72 [Google Scholar]
  44. Peters SM, Yancy H, Deaver C, Jones YL, Kenyon E. 44.  et al. 2012. In vivo characterization of inflammatory biomarkers in swine and the impact of flunixin meglumine administration. Vet. Immunol. Immunopathol. 148:236–42 [Google Scholar]
  45. 45. US Food Drug Adm. 2016. Biomarker Qualification Program. Washington, DC: US Food Drug Adm. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284076.htm
  46. Mobasheri A, Cassidy JP. 46.  2010. Biomarkers in veterinary medicine. Vet. J. 185Spec. Issue Amsterdam: Elsevier [Google Scholar]
  47. Eckersall PD, Slater K, Mobasheri A. 47.  2009. Biomarkers in veterinary medicine: establishing a new international forum for veterinary biomarker research. Biomarkers 14:637–41 [Google Scholar]
  48. Screven R, Kenyon E, Myers MJ, Yancy HF, Skasko M. 48.  et al. 2014. Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet. Immunol. Immunopathol. 161:21–31 [Google Scholar]
  49. 49. Broad Inst. 2016. 29 Mammals Project Cambridge, MA: Broad Inst. https://www.broadinstitute.org/scientific-community/science/projects/mammals-models/29-mammals-project
  50. Arendt ML, Melin M, Tonomura N, Koltookian M, Courtay-Cahen C. 50.  et al. 2015. Genome-wide association study of golden retrievers identifies germ-line risk factors predisposing to mast cell tumours. PLOS Genet 11:e1005647 [Google Scholar]
  51. Meurs KM. 51.  2016. An Update on Dilated Cardiomyopathy in the Doberman Pinscher Raleigh: N.C. State Coll. Vet. Med. https://mymediasite.online.ncsu.edu/online/Play/d84281e7f40643bd84d96f0755f0cb9b1d
  52. Gabreski NA, Haase B, Armstrong CD, Distl O, Brooks SA. 52.  2012. Investigation of allele frequencies for Lavender foal syndrome in the horse. Anim. Genet. 43:650 [Google Scholar]
  53. Menzi F, Besuchet-Schmutz N, Fragniere M, Hofstetter S, Jagannathan V. 53.  et al. 2016. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle. Anim. Genet. 47:253–57 [Google Scholar]
  54. Neibergs HL, Seabury CM, Wojtowicz AJ, Wang Z, Scraggs E. 54.  et al. 2014. Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned Holstein calves. BMC Genom. 15:1164 [Google Scholar]
  55. Lipkin E, Strillacci MG, Eitam H, Yishay M, Schiavini F. 55.  et al. 2016. The use of kosher phenotyping for mapping QTL affecting susceptibility to bovine respiratory disease. PLOS ONE 11:e0153423 [Google Scholar]
  56. Borgeat K, Connolly DJ, Luis Fuentes V. 56.  2015. Cardiac biomarkers in cats. J. Vet. Cardiol. 17:Suppl. 1S74–86 [Google Scholar]
  57. Cahill RJ, Pigeon K, Strong-Townsend MI, Drexel JP, Clark GH, Buch JS. 57.  2015. Analytical validation of a second-generation immunoassay for the quantification of N-terminal pro-B-type natriuretic peptide in canine blood. J. Vet. Diagn. Investig. 27:61–67 [Google Scholar]
  58. Couto KM, Iazbik MC, Marín LM, Zaldivar-López S, Beal MJ. 58.  et al. 2015. Plasma N-terminal pro-B-type natriuretic peptide concentration in healthy retired racing Greyhounds. Vet. Clin. Pathol. 44:405–9 [Google Scholar]
  59. Haggstrom J, Luis Fuentes V, Wess G. 59.  2015. Screening for hypertrophic cardiomyopathy in cats. J. Vet. Cardiol. 17:Suppl. 1S134–49 [Google Scholar]
  60. Oyama MA. 60.  2015. Using cardiac biomarkers in veterinary practice. Clin. Lab. Med. 35:555–66 [Google Scholar]
  61. Sargent J, Muzzi R, Mukherjee R, Somarathne S, Schranz K. 61.  et al. 2015. Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease. J. Vet. Cardiol. 17:1–12 [Google Scholar]
  62. Langhorn R, Willesen JL. 62.  2016. Cardiac troponins in dogs and cats. J. Vet. Intern. Med. 30:36–50 [Google Scholar]
  63. Hezzell MJ, Rush JE, Humm K, Rozanski EA, Sargent J. 63.  et al. 2016. Differentiation of cardiac from noncardiac pleural effusions in cats using second-generation quantitative and point-of-care NT-proBNP measurements. J. Vet. Intern. Med. 30:536–42 [Google Scholar]
  64. Van Der Vekens N, van Dievoet M-A, De Puydt H, Decloedt A, Ven S. 64.  et al. 2015. Analytical validation of a high-sensitivity cardiac troponin T assay in horses. J. Vet. Diagn. Investig. 27:504–9 [Google Scholar]
  65. Van Der Vekens N, Decloedt A, Sys S, Ven S, De Clercq D, van Loon G. 65.  2015. Evaluation of assays for troponin I in healthy horses and horses with cardiac disease. Vet. J. 203:97–102 [Google Scholar]
  66. Ruaux C, Scollan K, Suchodolski JS, Steiner JM, Sisson DD. 66.  2015. Biologic variability in NT-proBNP and cardiac troponin-I in healthy dogs and dogs with mitral valve degeneration. Vet. Clin. Pathol. 44:420–30 [Google Scholar]
  67. Polizopoulou ZS, Koutinas CK, Cerón JJ, Tvarijonaviciute A, Martínez-Subiela S. 67.  et al. 2015. Correlation of serum cardiac troponin I and acute phase protein concentrations with clinical staging in dogs with degenerative mitral valve disease. Vet. Clin. Pathol. 44:397–404 [Google Scholar]
  68. Mainville CA, Clark GH, Esty KJ, Foster WM, Hanscom JL. 68.  et al. 2015. Analytical validation of an immunoassay for the quantification of N-terminal pro-B-type natriuretic peptide in feline blood. J. Vet. Diagn. Investig. 27:414–21 [Google Scholar]
  69. Winter RL, Saunders AB, Gordon SG, Miller MW, Sykes KT. 69.  et al. 2014. Analytical validation and clinical evaluation of a commercially available high-sensitivity immunoassay for the measurement of troponin I in humans for use in dogs. J. Vet. Cardiol. 16:81–89 [Google Scholar]
  70. Trachsel DS, Schwarzwald CC, Grenacher B, Weishaupt MA. 70.  2014. Analytic validation and comparison of three commercial immunoassays for measurement of plasma atrial/A-type natriuretic peptide concentration in horses. Res. Vet. Sci. 96:180–86 [Google Scholar]
  71. Sangster JK, Panciera DL, Abbott JA, Zimmerman KC, Lantis AC. 71.  2014. Cardiac biomarkers in hyperthyroid cats. J. Vet. Intern. Med. 28:465–72 [Google Scholar]
  72. Langhorn R, Willesen JL, Tarnow I, Kjelgaard-Hansen M. 72.  2013. Evaluation of a high-sensitivity assay for measurement of canine and feline serum cardiac troponin I. Vet. Clin. Pathol. 42:490–98 [Google Scholar]
  73. Cianciolo R, Hokamp J, Nabity M. 73.  2016. Advances in the evaluation of canine renal disease. Vet. J. 215:21–29 [Google Scholar]
  74. Hokamp JA, Nabity MB. 74.  2016. Renal biomarkers in domestic species. Vet. Clin. Pathol. 45:28–56 [Google Scholar]
  75. Ichii O, Otsuka S, Ohta H, Yabuki A, Horino T, Kon Y. 75.  2014. MicroRNA expression profiling of cat and dog kidneys. Res. Vet. Sci. 96:299–303 [Google Scholar]
  76. Nabity MB, Lees GE, Boggess MM, Yerramilli M, Obare E. 76.  et al. 2015. Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. J. Vet. Intern. Med. 29:1036–44 [Google Scholar]
  77. Hall JA, Yerramilli M, Obare E, Yerramilli M, Jewell DE. 77.  2014. Comparison of serum concentrations of symmetric dimethylarginine and creatinine as kidney function biomarkers in cats with chronic kidney disease. J. Vet. Intern. Med. 28:1676–83 [Google Scholar]
  78. 78. Int. Ren. Interest Soc. 2015. IRIS Staging of CKD (Modified 2015). Int. Ren. Interest Soc. http://www.iris-kidney.com/pdf/staging-of-ckd.pdf
  79. Hall JA, Yerramilli M, Obare E, Yerramilli M, Melendez LD, Jewell DE. 79.  2015. Relationship between lean body mass and serum renal biomarkers in healthy dogs. J. Vet. Intern. Med. 29:808–14 [Google Scholar]
  80. Selting KA, Sharp CR, Ringold R, Knouse J. 80.  2015. Serum thymidine kinase 1 and C-reactive protein as biomarkers for screening clinically healthy dogs for occult disease. Vet. Comp. Oncol. 13:373–84 [Google Scholar]
  81. Taylor SS, Dodkin S, Papasouliotis K, Evans H, Graham PA. 81.  et al. 2013. Serum thymidine kinase activity in clinically healthy and diseased cats: a potential biomarker for lymphoma. J. Feline Med. Surg. 15:142–47 [Google Scholar]
  82. Thamm DH, Kamstock DA, Sharp CR, Johnson SI, Mazzaferro E. 82.  et al. 2012. Elevated serum thymidine kinase activity in canine splenic hemangiosarcoma. Vet. Comp. Oncol. 10:292–302 [Google Scholar]
  83. Von Euler HP, Rivera P, Aronsson A-C, Bengtsson C, Hansson L-O, Eriksson SK. 83.  2008. Monitoring therapy in canine malignant lymphoma and leukemia with serum thymidine kinase 1 activity—evaluation of a new, fully automated non-radiometric assay. Int. J. Oncol. 34:505–10 [Google Scholar]
  84. Smedley RC, Spangler WL, Esplin DG, Kitchell BE, Bergman PJ. 84.  et al. 2011. Prognostic markers for canine melanocytic neoplasms: a comparative review of the literature and goals for future investigation. Vet. Pathol. 48:54–72 [Google Scholar]
  85. Stokol T, Schaefer DM, Shuman M, Belcher N, Dong L. 85.  2015. Alkaline phosphatase is a useful cytochemical marker for the diagnosis of acute myelomonocytic and monocytic leukemia in the dog. Vet. Clin. Pathol. 44:79–93 [Google Scholar]
  86. Williams MJ, Avery AC, Lana SE, Hillers KR, Bachand AM, Avery PR. 86.  2008. Canine lymphoproliferative disease characterized by lymphocytosis: immunophenotypic markers of prognosis. J. Vet. Intern. Med. 22:596–601 [Google Scholar]
  87. Peña L, Gama A, Goldschmidt MH, Abadie J, Benazzi C. 87.  et al. 2014. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet. Pathol. 51:127–45 [Google Scholar]
  88. 88. Food Drug Adm., Cent. Vet. Med. 2016. Original new animal drug application: Thyro-Tabs Canine (levothyroxine sodium tablets) for dogs. Freedom Inf. Summ., NADA 141-448, Food Drug Adm., Cent. Vet. Med., Rockville, MD. http://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM484490.pdf
  89. 89. Food Drug Adm., Cent. Vet. Med. 2009. Original new animal drug application: Felimazole Coated Tablets (methimazole) cats. Freedom Inf. Summ., NADA 141-292, Food Drug Adm., Cent. Vet. Med., Rockville, MD. http://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM165091.pdf
  90. 90. Food Drug Adm., Cent. Vet. Med. 2016. Original new animal drug application: Zycortal Suspension (desoxycorticosterone pivalate injectable suspension) dogs. Freedom Inf. Summ., NADA 141-444, Food Drug Adm., Cent. Vet. Med., Rockville, MD. http://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM488818.pdf
  91. 91. Food Drug Adm., Cent. Vet. Med. 1998. Supplemental new animal drug application: Banamine® Injectable Solution (flunixin meglumine). Freedom Inf. Summ., NADA 101-479, Food Drug Adm., Cent. Vet. Med., Rockville, MD. http://www.fda.gov/downloads/AnimalVeterinary/Products/ApprovedAnimalDrugProducts/FOIADrugSummaries/UCM064905.pdf
  92. Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. 92.  2016. Bovine tuberculosis in cattle: vaccines, DIVA tests, and host biomarker discovery. Annu. Rev. Anim. Biosci. 4:87–109 [Google Scholar]
  93. Katz R. 93.  2004. Biomarkers and surrogate markers: an FDA perspective. NeuroRx 1:189–95 [Google Scholar]
  94. Nguyen SM, Thamm DH, Vail DM, London CA. 94.  2015. Response evaluation criteria for solid tumours in dogs (v1.0): a Veterinary Cooperative Oncology Group (VCOG) consensus document. Vet. Comp. Oncol. 13:176–83 [Google Scholar]
  95. Burke HB. 95.  2016. Predicting clinical outcomes using molecular biomarkers. Biomark. Cancer 8:89–99 [Google Scholar]
  96. Fleming TR, DeMets DL. 96.  1996. Surrogate end points in clinical trials: Are we being misled?. Ann. Intern. Med. 125:605–13 [Google Scholar]
  97. Desai M, Stockbridge N, Temple R. 97.  2006. Blood pressure as an example of a biomarker that functions as a surrogate. AAPS J 8:E146–E52 [Google Scholar]
  98. Krumholz HM, Lee TH. 98.  2008. Redefining quality—implications of recent clinical trials. N. Engl. J. Med. 358:2537–39 [Google Scholar]
  99. Nambi V, Ballantyne CM. 99.  2007. Role of biomarkers in developing new therapies for vascular disease. World J. Surg. 31:676–81 [Google Scholar]
  100. 100. US Dep. Health Hum. Serv. 2014. Qualification process for drug development tools. Guid. Ind., Jan., US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm230597.pdf
  101. 101. US Dep. Health Hum. Serv. 2015. Product development under the animal rule. Guid. Ind., Oct., US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Biol. Eval. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm399217.pdf
  102. Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. 102.  2016. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev. Mol. Diagn. 16:65–81 [Google Scholar]
  103. Krivokrysenko VI, Shakhov AN, Singh VK, Bone F, Kononov Y. 103.  et al. 2012. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J. Pharmacol. Exp. Ther. 343:497–508 [Google Scholar]
  104. LeBlanc AK, Mazcko CN, Khanna C. 104.  2016. Defining the value of a comparative approach to cancer drug development. Clin. Cancer Res. 22:2133–38 [Google Scholar]
  105. Schiffman JD, Breen M. 105.  2015. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci.370
  106. Di Cerbo A, Palmieri B, De Vico G, Iannitti T. 106.  2014. Onco-epidemiology of domestic animals and targeted therapeutic attempts: perspectives on human oncology. J. Cancer Res. Clin. Oncol. 140:1807–14 [Google Scholar]
  107. O'Connell D, Roblin D. 107.  2006. Translational research in the pharmaceutical industry: from bench to bedside. Drug Discov. Today 11:833–38 [Google Scholar]
  108. Wendler A, Wehling M. 108.  2010. The translatability of animal models for clinical development: biomarkers and disease models. Curr. Opin. Pharmacol. 10:601–6 [Google Scholar]
  109. 109. US Dep. Health Hum. Serv. 2010. Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Biol. Eval. Res. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm073246.pdf
  110. Throckmorton DC. 110.  2009. Regulatory Perspective on the Integration of Preclinical and Clinical Safety Data Washington, DC: ILSI Health Environ. Sci. Inst.
  111. 111. US Dep. Health Hum. Serv. 2009. Drug-induced liver injury: premarketing clinical evaluation. US Dep. Health Hum. Serv., Food Drug Adm., Cent. Drug Eval. Res., Cent. Biol. Eval. Res. http://www.fda.gov/downloads/Drugs/.../guidances/UCM174090.pdf
  112. Greaves P, Williams A, Eve M. 112.  2004. First dose of potential new medicines to humans: how animals help. Nat. Rev. Drug Discov. 3:226–36 [Google Scholar]
  113. Olson H, Betton G, Robinson D, Thomas K, Monro A. 113.  et al. 2000. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32:56–67 [Google Scholar]
  114. Broadhead C, Betton G, Combes R, Damment S, Everett D. 114.  et al. 2000. Prospects for reducing and refining the use of dogs in the regulatory toxicity testing of pharmaceuticals. Hum. Exp. Toxicol. 8:440–47 [Google Scholar]
  115. Baldrick P. 115.  2008. Safety evaluation to support First-In-Man investigations II: toxicology studies. Regul. Toxicol. Pharmacol. 51:237–43 [Google Scholar]
  116. Horner S, Ryan D, Robinson S, Callander R, Stamp K, Roberts RA. 116.  2013. Target organ toxicities in studies conducted to support first time in man dosing: an analysis across species and therapy areas. Regul. Toxicol. Pharmacol. 65:334–43 [Google Scholar]
  117. 117. US Food Drug Adm 2014. Biomarker Qualification Context of Use Washington, DC: US Food Drug Adm http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm284620.htm
  118. Lock EA, Bonventre JV. 118.  2008. Biomarkers in translation: past, present and future. Toxicology 245:163–66 [Google Scholar]
  119. Mendrick DL. 119.  2008. Genomic and genetic biomarkers of toxicity. Toxicology 245:175–81 [Google Scholar]
  120. Sistare FD, DeGeorge JJ. 120.  2007. Preclinical predictors of clinical safety: opportunities for improvement. Clin. Pharmacol. Ther. 82:210–14 [Google Scholar]
  121. Harrill AH, Eaddy JS, Rose K, Cullen JM, Ramanathan L. 121.  et al. 2014. Liver biomarker and in vitro assessment confirm the hepatic origin of aminotransferase elevations lacking histopathological correlate in beagle dogs treated with GABAA receptor antagonist NP260. Toxicol. Appl. Pharmacol. 277:131–37 [Google Scholar]
  122. 122. Am. Vet. Med. Found. 2016. AMA Public Resources: Veterinary Specialists. Schaumburg, IL: Am. Vet. Med. Found. https://www.avma.org/public/YourVet/Pages/veterinary-specialists.aspx
  123. Dobson RL, Motlagh S, Quijano M, Cambron RT, Baker TR. 123.  et al. 2008. Identification and characterization of toxicity of contaminants in pet food leading to an outbreak of renal toxicity in cats and dogs. Toxicol. Sci. 106:251–62 [Google Scholar]
  124. Reimschuessel R, Gieseker CM, Miller RA, Ward J, Boehmer J. 124.  et al. 2008. Evaluation of the renal effects of experimental feeding of melamine and cyanuric acid to fish and pigs. Am. J. Vet. Res. 69:1217–28 [Google Scholar]
  125. Bischoff K. 125.  2014. Melamine.. Biomarkers in Toxicology R Gupta 475–83 Amsterdam: Elsevier Inc. [Google Scholar]
  126. Bandele O, Camacho L, Ferguson M, Reimschuessel R, Stine C. 126.  et al. 2013. Performance of urinary and gene expression biomarkers in detecting the nephrotoxic effects of melamine and cyanuric acid following diverse scenarios of co-exposure. Food Chem. Toxicol. 51:106–13 [Google Scholar]
  127. Bandele OJ, Stine CB, Ferguson M, Black T, Olejnik N. 127.  et al. 2014. Use of urinary renal biomarkers to evaluate the nephrotoxic effects of melamine or cyanuric acid in non-pregnant and pregnant rats. Food Chem. Toxicol. 74:301–8 [Google Scholar]
  128. Ventola CL. 128.  2013. Role of pharmacogenomic biomarkers in predicting and improving drug response. Part 1: the clinical significance of pharmacogenetic variants. Pharm. Ther. 38:545–59 [Google Scholar]
  129. Martinez MN, Antonovic L, Court M, Dacasto M, Fink-Gremmels J. 129.  et al. 2013. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab. Rev. 45:218–30 [Google Scholar]
  130. Martinez M, Modric S, Sharkey M, Troutman L, Walker L, Mealey K. 130.  2008. The pharmacogenomics of P-glycoprotein and its role in veterinary medicine. J. Vet. Pharmacol. Ther. 31:285–300 [Google Scholar]
  131. Myers MJ, Martinez M, Li H, Qiu J, Troutman L. 131.  et al. 2015. Influence of ABCB1 genotype in collies on the pharmacokinetics and pharmacodynamics of loperamide in a dose-escalation study. Drug Metab. Dispos. 43:1392–407 [Google Scholar]
  132. Geyer J, Janko C. 132.  2012. Treatment of MDR1 mutant dogs with macrocyclic lactones. Curr. Pharm. Biotechnol. 13:969–86 [Google Scholar]
  133. Mizukami K, Yabuki A, Chang HS, Uddin MM, Rahman MM. 133.  et al. 2013. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs. Dis Markers 35:669–72 [Google Scholar]
  134. Mealey KL, Burke NS. 134.  2015. Identification of a nonsense mutation in feline ABCB1. J. Vet. Pharmacol. Ther. 38:429–33 [Google Scholar]
  135. Shrestha B, Reed JM, Starks PT, Kaufman GE, Goldstone JV. 135.  et al. 2011. Evolution of a major drug metabolizing enzyme defect in the domestic cat and other felidae: phylogenetic timing and the role of hypercarnivory. PLOS ONE 6:e18046 [Google Scholar]
  136. Zhou X, Ma B, Lin Z, Qu Z, Huo Y. 136.  et al. 2014. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs. Toxicol. Appl. Pharmacol. 280:30–35 [Google Scholar]
  137. Langhorn R, Persson F, Ablad B, Goddard A, Schoeman JP. 137.  et al. 2014. Myocardial injury in dogs with snake envenomation and its relation to systemic inflammation. J. Vet. Emerg. Crit. Care 24:174–81 [Google Scholar]
  138. Van Der Vekens N, Decloedt A, Ven S, De Clercq D, van Loon G. 138.  2015. Cardiac troponin I as compared to troponin T for the detection of myocardial damage in horses. J. Vet. Intern. Med. 29:348–54 [Google Scholar]
  139. Varga A, Schober KE, Holloman CH, Stromberg PC, Lakritz J, Rings DM. 139.  2009. Correlation of serum cardiac troponin I and myocardial damage in cattle with monensin toxicosis. J. Vet. Intern. Med. 23:1108–16 [Google Scholar]
  140. Casartelli A, Lanzoni A, Comelli R, Crivellente F, Defazio R. 140.  et al. 2011. A novel and integrated approach for the identification and characterization of drug-induced cardiac toxicity in the dog. Toxicol. Pathol. 39:361–71 [Google Scholar]
  141. Serra M, Papakonstantinou S, Adamcova M, O'Brien PJ. 141.  2010. Veterinary and toxicological applications for the detection of cardiac injury using cardiac troponin. Vet. J. 185:50–57 [Google Scholar]
  142. 142. Exec. Off. Pres., Pres. Counc. Adv. Sci. Technol. 2012. Transformation and opportunity: the future of the U.S. research enterprise Rep. Pres., Nov. Washington, DC: https://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast_future_research_enterprise_20121130.pdf
  143. Giuffrida MA, Brown DC. 143.  2012. Association between article citation rate and level of evidence in the companion animal literature. J. Vet. Intern. Med. 26:252–58 [Google Scholar]
  144. Amur S, LaVange L, Zineh I, Buckman-Garner S, Woodcock J. 144.  2015. Biomarker qualification: toward a multiple stakeholder framework for biomarker development, regulatory acceptance, and utilization. Clin. Pharmacol. Ther. 98:34–46 [Google Scholar]
  145. Stephenson D, Sauer JM. 145.  2014. The predictive safety testing consortium and the coalition against major diseases. Nat. Rev. Drug Discov. 13:793–94 [Google Scholar]
  146. Paoloni MC, Tandle A, Mazcko C, Hanna E, Kachala S. 146.  et al. 2009. Launching a novel preclinical infrastructure: comparative oncology trials consortium directed therapeutic targeting of TNFα to cancer vasculature. PLOS ONE 4:e4972 [Google Scholar]
  147. Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F. 147.  et al. 2015. Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17 [Google Scholar]
/content/journals/10.1146/annurev-animal-021815-111431
Loading
/content/journals/10.1146/annurev-animal-021815-111431
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error