1932

Abstract

The diversity of mammalian coat colors, and their potential adaptive significance, have long fascinated scientists as well as the general public. The recent decades have seen substantial improvement in our understanding of their genetic bases and evolutionary relevance, revealing novel insights into the complex interplay of forces that influence these phenotypes. At the same time, many aspects remain poorly known, hampering a comprehensive understanding of these phenomena. Here we review the current state of this field and indicate topics that should be the focus of additional research. We devote particular attention to two aspects of mammalian pigmentation, melanism and pattern formation, highlighting recent advances and outstanding challenges, and proposing novel syntheses of available information. For both specific areas, and for pigmentation in general, we attempt to lay out recommendations for establishing novel model systems and integrated research programs that target the genetics and evolution of these phenotypes throughout the Mammalia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022114-110847
2021-02-15
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-022114-110847.html?itemId=/content/journals/10.1146/annurev-animal-022114-110847&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Darwin C. 1993 (1859). The Origin of Species New York: Random House
  2. 2. 
    Darwin C. 1883. The Variation of Animals and Plants under Domestication Baltimore, MD: Johns Hopkins Univ. Press. , 2nd. ed.
  3. 3. 
    Mendel G. 1913 (1865). Experiments in plant hybridization. Mendel's Principles of Heredity W Bateson Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  4. 4. 
    Galton F. 1889. Natural Inheritance London: MacMillan
  5. 5. 
    Bateson W. 1913. Mendel's Principles of Heredity Cambridge, UK: Cambridge Univ. Press
  6. 6. 
    Fisher R. 1999 (1930). The Genetical Theory of Natural Selection Oxford, UK: Oxford Univ. Press Complet. variorium ed .
  7. 7. 
    Muller HJ. 1922. Variation due to change in the individual gene. Am. Nat. 56:64223–50
    [Google Scholar]
  8. 8. 
    Wright S. 1978. Evolution and the Genetics of Populations, Vol. 4: Variability Within and Among Natural Populations Chicago: Univ. Chicago Press
    [Google Scholar]
  9. 9. 
    Mayr E. 1973. The recent historiography of genetics. J. Hist. Biol. 6:125–54
    [Google Scholar]
  10. 10. 
    Searle AG. 1968. Comparative Genetics of Coat Colour in Mammals London: Logos
  11. 11. 
    Robinson R. 1970. Homologous mutants in mammalian coat colour variation. Symp. Zool. Soc. Lond. 26:251–69
    [Google Scholar]
  12. 12. 
    Silvers WK. 1979. The Coat Colors of Mice: A Model for Mammalian Gene Action and Interaction New York: Springer-Verlag
  13. 13. 
    Wright S. 1918. Color inheritance in mammals—X. The cat. J. Hered. 9:139–44
    [Google Scholar]
  14. 14. 
    Gloger CWL. 1833. Das Abändern der Vögel durch Einfluss des Klima's Breslau, Pol: August Schulz
  15. 15. 
    Wallace AR. 1853. A Narrative of Travels on the Amazon and Rio Negro: With an Account of the Native Tribes, and Observations on the Climate, Geology and Natural History of the Amazon Valley London: Reeve & Co.
  16. 16. 
    Beddard FE. 1892. Animal Coloration London: Swan Sonnenschein
  17. 17. 
    Cott HB. 1940. Adaptive Coloration in Animals London: Methuen & Co.
  18. 18. 
    Castle WE, Wright S. 1916. Studies of Inheritance in Guinea-Pigs and Rats Carnegie Inst. Publ. 241 Washington, DC: Carnegie Inst. Wash. Publ.
  19. 19. 
    Wright S. 1917. Color inheritance in mammals. J. Hered. 8:224–35
    [Google Scholar]
  20. 20. 
    Haldane JBS. 1927. The comparative genetics of colour in rodents and carnivora. Biol. Rev. Biol. Proc. Cambr. Philos. Soc. 2:201–12
    [Google Scholar]
  21. 21. 
    Poulton EB. 1890. The Colours of Animals: Their Meaning and Use. Especially Considered in the Case of Insects London: Kegan Paul, Trench Trübner & Co. , 2nd. ed.
  22. 22. 
    Ortolani A, Caro T. 1996. The adaptive significance of color patterns in carnivores: phylogenetic test of classic hypotheses. Carnivore Behavior, Ecology and Evolution JL Gittleman 132–88 New York: Cornell Univ. Press
    [Google Scholar]
  23. 23. 
    Caro T. 2005. The adaptive significance of coloration in mammals. Bioscience 55:2125–36
    [Google Scholar]
  24. 24. 
    Caro T. 2013. The colours of extant mammals. Semin. Cell Dev. Biol. 24:6–7542–52
    [Google Scholar]
  25. 25. 
    Caro T, Allen WL. 2017. Interspecific visual signalling in animals and plants: a functional classification. Philos. Trans. R. Soc. Lond. B 372:172420160344
    [Google Scholar]
  26. 26. 
    Caro T, Mallarino R. 2020. Coloration in mammals. Trends Ecol. Evol. 35:4357–66
    [Google Scholar]
  27. 27. 
    Hoekstra HE. 2006. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:3222–34
    [Google Scholar]
  28. 28. 
    Castle WE, Allen GM. 1903. The heredity of albinism. Am. Acad. Arts Sci. 38:21603–22
    [Google Scholar]
  29. 29. 
    Haldane JBS, Sprunt AD, Haldane NM 1915. Reduplication in mice. J. Genet. 5:133–35
    [Google Scholar]
  30. 30. 
    Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73
    [Google Scholar]
  31. 31. 
    Barsh GS. 1996. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet 12:8299–305
    [Google Scholar]
  32. 32. 
    Barsh GS. 1995. Pigmentation, pleiotropy, and genetic pathways in humans and mice. Am. J. Hum. Genet. 57:4743–47
    [Google Scholar]
  33. 33. 
    Jackson IJ. 1994. Molecular and developmental genetics of mouse coat color. Annu. Rev. Genet. 28:189–217
    [Google Scholar]
  34. 34. 
    Sturm RA, Teasdale RD, Box NF 2001. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 277:1–249–62
    [Google Scholar]
  35. 35. 
    Box NF, Wyeth JR, O'Gorman LE, Martin NG, Sturm RA 1997. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum. Mol. Genet. 6:111891–97
    [Google Scholar]
  36. 36. 
    Harding RM, Healy E, Ray AJ, Ellis NS, Flanagan N et al. 2000. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66:41351–61
    [Google Scholar]
  37. 37. 
    Jablonski NG, Chaplin G. 2010. Human skin pigmentation as an adaptation to UV radiation. PNAS 107:Suppl. 28962–68
    [Google Scholar]
  38. 38. 
    Klungland H, Vage DI, Gomez-Raya L, Adalsteinsson S, Lien S 1995. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome 6:636–39
    [Google Scholar]
  39. 39. 
    Joerg H, Fries HR, Meijerink E, Stranzinger GF 1996. Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm. Genome 7:4317–18
    [Google Scholar]
  40. 40. 
    Kijas JMH, Moller M, Plastow G, Andersson L 2001. A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158:2779–85
    [Google Scholar]
  41. 41. 
    Marklund S, Moller M, Sandberg K, Andersson L 1999. Close association between sequence polymorphism in the KIT gene and the roan coat color in horses. Mamm. Genome 10:3283–88
    [Google Scholar]
  42. 42. 
    Kaelin CB, Barsh GS. 2013. Genetics of pigmentation in dogs and cats. Annu. Rev. Anim. Biosci. 1:125–56
    [Google Scholar]
  43. 43. 
    Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26:5231–39
    [Google Scholar]
  44. 44. 
    Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G et al. 2017. The biology of color. Science 357:6350eaan0221
    [Google Scholar]
  45. 45. 
    Valverde P, Healy E, Jackson I, Rees JL, Thody AJ 1995. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11:3328–30
    [Google Scholar]
  46. 46. 
    Theron E, Hawkins K, Bermingham E, Ricklefs RE, Mundy NI 2001. The molecular basis of an avian plumage polymorphism in the wild: A melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the bananaquit. Coereba flaveola. Curr. Biol. 11:8550–57
    [Google Scholar]
  47. 47. 
    Ritland K, Newton C, Marshall HD 2001. Inheritance and population structure of the white-phased “Kermode” black bear. Curr. Biol. 11:181468–72
    [Google Scholar]
  48. 48. 
    Eizirik E, Yuhki N, Johnson WE, Menotti-Raymond M, Hannah SS, O'Brien SJ 2003. Molecular genetics and evolution of melanism in the cat family. Curr. Biol. 13:5448–53
    [Google Scholar]
  49. 49. 
    Nachman MW, Hoekstra HE, D'Agostino SL 2003. The genetic basis of adaptive melanism in pocket mice. PNAS 100:95268–73
    [Google Scholar]
  50. 50. 
    Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:633392–95
    [Google Scholar]
  51. 51. 
    Wang Z, Gerstein M, Snyder M 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63
    [Google Scholar]
  52. 52. 
    Hong LZ, Li J, Schmidt-Küntzel A, Warren WC, Barsh GS 2011. Digital gene expression for non-model organisms. Genome Res 21:111905–15
    [Google Scholar]
  53. 53. 
    Orteu A, Jiggins CD. 2020. The genomics of coloration provides insights into adaptive evolution. Nat. Rev. Genet. 21:461–75
    [Google Scholar]
  54. 54. 
    Xu X, Dong GX, Hu XS, Miao L, Zhang XL et al. 2013. The genetic basis of white tigers. Curr. Biol. 23:111031–35
    [Google Scholar]
  55. 55. 
    Figueiró HV, Li G, Trindade FJ, Assis J, Pais F et al. 2017. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv. 3:7e1700299
    [Google Scholar]
  56. 56. 
    Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA et al. 2012. Specifying and sustaining pigmentation patterns in domestic and wild cats. Science 337:61011536–41
    [Google Scholar]
  57. 57. 
    Nigenda-Morales SF, Hu Y, Beasley JC, Ruiz-Piña HA, Valenzuela-Galván D, Wayne RK 2018. Transcriptomic analysis of skin pigmentation variation in the Virginia opossum (Didelphis virginiana). Mol. Ecol. 27:122680–97
    [Google Scholar]
  58. 58. 
    Fan R, Xie J, Bai J, Wang H, Tian X et al. 2013. Skin transcriptome profiles associated with coat color in sheep. BMC Genom 14:389
    [Google Scholar]
  59. 59. 
    Song X, Xu C, Liu Z, Yue Z, Liu L et al. 2017. Comparative transcriptome analysis of mink (Neovison vison) skin reveals the key genes involved in the melanogenesis of black and white coat colour. Sci. Rep. 7:12461
    [Google Scholar]
  60. 60. 
    Barrett RDH, Laurent S, Mallarino R, Pfeifer SP, Xu CCY et al. 2019. Linking a mutation to survival in wild mice. Science 363:6426499–504
    [Google Scholar]
  61. 61. 
    Anderson TM, VonHoldt BM, Candille SI, Musiani M, Greco C et al. 2009. Molecular and evolutionary history of melanism in Norths American gray wolves. Science 323:59191339–43
    [Google Scholar]
  62. 62. 
    Trigo TC, Schneider A, De Oliveira TG, Lehugeur LM, Silveira L et al. 2013. Molecular data reveal complex hybridization and a cryptic species of Neotropical wild cat. Curr. Biol. 23:242528–33
    [Google Scholar]
  63. 63. 
    VonHoldt BM, Cahill JA, Fan Z, Gronau I, Robinson J et al. 2016. Whole-genome sequence analysis shows that two endemic species of North American Wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2:7e1501714
    [Google Scholar]
  64. 64. 
    Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N et al. 2018. A comprehensive genomic history of extinct and living elephants. PNAS 115:11E2566–74
    [Google Scholar]
  65. 65. 
    Jones MR, Mills LS, Alves PC, Callahan CM, Alves JM et al. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360:63951355–58
    [Google Scholar]
  66. 66. 
    Barrett RDH, Hoekstra HE. 2011. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12:767–80
    [Google Scholar]
  67. 67. 
    Harris RB, Irwin K, Jones MR, Laurent S, Barrett RDH et al. 2020. The population genetics of crypsis in vertebrates: recent insights from mice, hares, and lizards. Heredity 124:1–14
    [Google Scholar]
  68. 68. 
    Majerus MEN, Mundy NI. 2003. Mammalian melanism: natural selection in black and white. Trends Genet 19:11585–88
    [Google Scholar]
  69. 69. 
    Wallace AR. 1878. The colours of animals and sexual selection. Tropical Nature, and Other Essays158–220 London: MacMillan & Co.
    [Google Scholar]
  70. 70. 
    Benson SB. 1933. Concealing Coloration Among Some Desert Rodents of the Southwestern United States Berkeley: Univ. Calif. Press
  71. 71. 
    Dice LR, Blossom PM. 1937. Studies of Mammalian Ecology in Southwestern North America: With Special Attention to the Colors of Desert Mammals Washington, DC: Carnegie Inst. Wash.
  72. 72. 
    Rensch VB. 1929. Das Prinzip geographischer Rassenkreise und das Problem der Artbildung Berlin: Gebrüder Borntraeger
  73. 73. 
    Delhey K. 2019. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94:41294–316
    [Google Scholar]
  74. 74. 
    da Silva LG, de Oliveira TG, Kasper CB, Cherem JJ, Moraes EA et al. 2016. Biogeography of polymorphic phenotypes: mapping and ecological modelling of coat colour variants in an elusive Neotropical cat, the jaguarundi (Puma yagouaroundi). J. Zool. 299:4295–303
    [Google Scholar]
  75. 75. 
    Schneider A, David VA, Johnson WE, O'Brien SJ, Barsh GS et al. 2012. How the leopard hides its spots: ASIP mutations and melanism in wild cats. PLOS ONE 7:12e50386
    [Google Scholar]
  76. 76. 
    Kawanishi K, Sunquist ME, Eizirik E, Lynam AJ, Ngoprasert D et al. 2010. Near fixation of melanism in leopards of the Malay Peninsula. J. Zool. 282:3201–6
    [Google Scholar]
  77. 77. 
    da Silva LG, Kawanishi K, Henschel P, Kittle A, Sanei A et al. 2017. Mapping black panthers: macroecological modeling of melanism in leopards (Panthera pardus). PLOS ONE 12:4e0170378
    [Google Scholar]
  78. 78. 
    Burtt EH, Ichida JM. 2004. Gloger's rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106:3681–86
    [Google Scholar]
  79. 79. 
    Schneider A, Henegar C, Day K, Absher D, Napolitano C et al. 2015. Recurrent evolution of melanism in South American felids. PLOS Genet 11:2e1004892
    [Google Scholar]
  80. 80. 
    Graipel M, Oliveira-Santos L, Goulart F, Tortato M, Miller P, Cáceres N 2014. The role of melanism in oncillas on the temporal segregation of nocturnal activity. Braz. J. Biol. 74:3 Suppl. 1S142–45
    [Google Scholar]
  81. 81. 
    Mooring MS, Eppert AA, Botts RT 2020. Natural selection of melanism in Costa Rican jaguar and oncilla: a test of Gloger's rule and the temporal segregation hypothesis. Trop. Conserv. Sci. 13: https://doi.org/10.1177/1940082920910364
    [Crossref] [Google Scholar]
  82. 82. 
    Graipel ME, Bogoni JA, Giehl ELH, Cerezer FO, Cáceres NC, Eizirik E 2019. Melanism evolution in the cat family is influenced by intraspecific communication under low visibility. PLOS ONE 14:12e0226136
    [Google Scholar]
  83. 83. 
    Schweizer RM, Durvasula A, Smith J, Vohr SH, Stahler DR et al. 2018. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35:51190–209
    [Google Scholar]
  84. 84. 
    Coulson T, MacNulty DR, Stahler DR, VonHoldt B, Wayne RK, Smith DW 2011. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334:60601275–78
    [Google Scholar]
  85. 85. 
    Hedrick PW, Stahler DR, Dekker D 2014. Heterozygote advantage in a finite population: black color in wolves. J. Hered. 105:4457–65
    [Google Scholar]
  86. 86. 
    Hedrick PW, Smith DW, Stahler DR 2016. Negative-assortative mating for color in wolves. Evolution 70:4757–66
    [Google Scholar]
  87. 87. 
    Hoekstra HE, Nachman MW. 2003. Different genes underlie adaptive melanism in different populations of rock pocket mice. Mol. Ecol. 12:51185–94
    [Google Scholar]
  88. 88. 
    Kingsley EP, Manceau M, Wiley CD, Hoekstra HE 2009. Melanism in Peromyscus is caused by independent mutations in Agouti. PLOS ONE 4:7e6435
    [Google Scholar]
  89. 89. 
    Hoekstra HE, Drumm KE, Nachman MW 2004. Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58:61329–41
    [Google Scholar]
  90. 90. 
    Hoekstra HE, Krenz JG, Nachman MW 2005. Local adaptation in the rock pocket mouse (Chaetodipus intermedius): natural selection and phylogenetic history of populations. Heredity 94:2217–28
    [Google Scholar]
  91. 91. 
    Lai Y-C, Shiroishi T, Moriwaki K, Motokawa M, Yu H-T 2008. Variation of coat color in house mice throughout Asia. J. Zool. 274:3270–76
    [Google Scholar]
  92. 92. 
    McRobie H, Thomas A, Kelly J 2009. The genetic basis of melanism in the gray squirrel (Sciurus carolinensis). J. Hered. 100:6709–14
    [Google Scholar]
  93. 93. 
    McRobie HR, King LM, Fanutti C, Coussons PJ, Moncrief ND, Thomas APM 2014. Melanocortin 1 receptor (MC1R) gene sequence variation and melanism in the gray (Sciurus carolinensis), fox (Sciurus niger), and red (Sciurus vulgaris) squirrel. J. Hered. 105:3423–28
    [Google Scholar]
  94. 94. 
    McRobie HR, King LM, Fanutti C, Symmons MF, Coussons PJ 2014. Agouti signalling protein is an inverse agonist to the wildtype and agonist to the melanic variant of the melanocortin-1 receptor in the grey squirrel (Sciurus carolinensis). FEBS Lett 588:142335–43
    [Google Scholar]
  95. 95. 
    McRobie HR, Moncrief ND, Mundy NI 2019. Multiple origins of melanism in two species of North American tree squirrel (Sciurus). BMC Evol. Biol. 19:1140
    [Google Scholar]
  96. 96. 
    Kiltie RA. 1992. Tests of hypotheses on predation as a factor maintaining polymorphic melanism in coastal-plain fox squirrels (Sciurus niger L.). Biol. J. Linn. Soc. 45:117–37
    [Google Scholar]
  97. 97. 
    Ciurej AK, Oblander A, Swift AW, Wilson JA 2020. Melanism as a potential thermal benefit in eastern fox squirrels (Sciurus niger). Eur. J. Ecol. 5:279–87
    [Google Scholar]
  98. 98. 
    Ducharme MB, Larochelle J, Richard D 1989. Thermogenic capacity in gray and black morphs of the gray squirrel, Sciurus carolinensis. Physiol. Zool. 62:61273–92
    [Google Scholar]
  99. 99. 
    Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:59991616–20
    [Google Scholar]
  100. 100. 
    Werdelin L, Olsson L. 1997. How the leopard got its spots: a phylogenetic view of the evolution of felid coat patterns. Biol. J. Linn. Soc. 62:3383–400
    [Google Scholar]
  101. 101. 
    Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R 2011. Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B Biol. Sci. 278:17101373–80
    [Google Scholar]
  102. 102. 
    Kiltie RA. 1988. Countershading: Universally deceptive or deceptively universal. Trends Ecol. Evol. 3:121–23
    [Google Scholar]
  103. 103. 
    Manceau M, Domingues VS, Mallarino R, Hoekstra HE 2011. The developmental role of Agouti in color pattern evolution. Science 331:60201062–66
    [Google Scholar]
  104. 104. 
    Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP 2006. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:5783101–4
    [Google Scholar]
  105. 105. 
    Mallarino R, Henegar C, Mirasierra M, Manceau M, Schradin C et al. 2016. Developmental mechanisms of stripe patterns in rodents. Nature 539:7630518–23
    [Google Scholar]
  106. 106. 
    Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA et al. 2007. A β-defensin mutation causes black coat color in domestic dogs. Science 318:58551418–23
    [Google Scholar]
  107. 107. 
    David VA, Menotti-Raymond M, Wallace AC, Roelke M, Kehler J et al. 2014. Endogenous retrovirus insertion in the KIT oncogene determines White and White spotting in domestic cats. G3 4:101881–91
    [Google Scholar]
  108. 108. 
    Eizirik E, David VA, Buckley-Beason V, Roelke ME, Schäffer AA et al. 2010. Defining and mapping mammalian coat pattern genes: multiple genomic regions implicated in domestic cat stripes and spots. Genetics 184:1267–75
    [Google Scholar]
  109. 109. 
    Kaelin C, Barsh G. 2010. Tabby pattern genetics—a whole new breed of cat. Pigment Cell Melanoma Res 23:4514–16
    [Google Scholar]
  110. 110. 
    Garcia RJ, Ittah A, Mirabal S, Figueroa J, Lopez L et al. 2008. Endothelin 3 induces skin pigmentation in a keratin-driven inducible mouse model. J. Investig. Dermatol. 128:1131–42
    [Google Scholar]
  111. 111. 
    Van Raamsdonk CD, Barsh GS, Wakamatsu K, Ito S 2009. Independent regulation of hair and skin color by two G protein-coupled pathways. Pigment Cell Melanoma Res 22:6819–26
    [Google Scholar]
  112. 112. 
    Johnson MR, Barsh GS, Mallarino R 2019. Periodic patterns in Rodentia: development and evolution. Exp. Dermatol. 28:509–13
    [Google Scholar]
  113. 113. 
    Krauss J, Frohnhöfer HG, Walderich B, Maischein HM, Weiler C et al. 2014. Endothelin signalling in iridophore development and stripe pattern formation of zebrafish. Biol. Open 3:6503–9
    [Google Scholar]
  114. 114. 
    Ceinos RM, Guillot R, Kelsh RN, Cerdá-Reverter JM, Rotllant J 2015. Pigment patterns in adult fish result from superimposition of two largely independent pigmentation mechanisms. Pigment Cell Melanoma Res 28:2196–209
    [Google Scholar]
  115. 115. 
    Kratochwil CF, Liang Y, Gerwin J, Woltering JM, Urban S et al. 2018. Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:6413457–60
    [Google Scholar]
  116. 116. 
    Haupaix N, Curantz C, Bailleul R, Beck S, Robic A, Manceau M 2018. The periodic coloration in birds forms through a prepattern of somite origin. Science 361:6408eaar4777
    [Google Scholar]
  117. 117. 
    Stoner CJ, Caro TM, Graham CM 2003. Ecological and behavioral correlates of coloration in artiodactyls: systematic analyses of conventional hypotheses. Behav. Ecol. 14:6823–40
    [Google Scholar]
  118. 118. 
    Newman C, Buesching CD, Wolff JO 2005. The function of facial masks in “midguild” carnivores. Oikos 108:3623–33
    [Google Scholar]
  119. 119. 
    Caro T, Izzo A, Reiner RC, Walker H, Stankowich T 2014. The function of zebra stripes. Nat. Commun. 5:3535
    [Google Scholar]
  120. 120. 
    Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M et al. 2019. Benefits of zebra stripes: behaviour of tabanid flies around zebras and horses. PLOS ONE 14:2e0210831
    [Google Scholar]
  121. 121. 
    Blount ZD, Lenski RE, Losos JB 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:6415eaam5979
    [Google Scholar]
  122. 122. 
    Wilson DE, Reeder DM 2005. Mammal Species of the World. A Taxonomic and Geographic Reference Baltimore, MD: Johns Hopkins Univ. Press. , 3rd. ed.
  123. 123. 
    Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA et al. 2011. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:6055521–24
    [Google Scholar]
  124. 124. 
    Li G, Davis BW, Eizirik E, Murphy WJ 2016. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:11–11
    [Google Scholar]
/content/journals/10.1146/annurev-animal-022114-110847
Loading
/content/journals/10.1146/annurev-animal-022114-110847
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error