1932

Abstract

Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035307
2014-06-02
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035307.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035307&mimeType=html&fmt=ahah

Literature Cited

  1. Bigay J, Antonny B. 1.  2012. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23:886–95 [Google Scholar]
  2. Andreyev AY, Fahy E, Guan Z, Kelly S, Li X. 2.  et al. 2010. Subcellular organelle lipidomics in TLR-4-activated macrophages. J. Lipid Res. 51:2785–97 [Google Scholar]
  3. Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G. 3.  et al. 1999. Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15:601–14 [Google Scholar]
  4. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K. 4.  et al. 2009. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106:2136–41 [Google Scholar]
  5. Janssen MJ, Koorengevel MC, de Kruijff B, de Kroon AI. 5.  2000. The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase. Yeast 16:641–50 [Google Scholar]
  6. Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K. 6.  2012. Flexibility of a eukaryotic lipidome: insights from yeast lipidomics. PLoS ONE 7:e35063 [Google Scholar]
  7. Leidl K, Liebisch G, Richter D, Schmitz G. 7.  2008. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim. Biophys. Acta 1781:655–64 [Google Scholar]
  8. Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H. 8.  et al. 2011. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA 108:1903–7 [Google Scholar]
  9. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF. 9.  et al. 2003. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21:813–17 [Google Scholar]
  10. Boumann HA, Gubbens J, Koorengevel MC, Oh CS, Martin CE. 10.  et al. 2006. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol. Biol. Cell 17:1006–17 [Google Scholar]
  11. Sprong H, van der Sluijs P, van Meer G. 11.  2001. How proteins move lipids and lipids move proteins. Nat. Rev. Mol. Cell Biol. 2:504–13 [Google Scholar]
  12. Guan XL, Wenk MR. 12.  2006. Mass spectrometry–based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23:465–77 [Google Scholar]
  13. Zinser E, Paltauf F, Daum G. 13.  1993. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J. Bacteriol. 175:2853–58 [Google Scholar]
  14. Radhakrishnan A, McConnell HM. 14.  1999. Condensed complexes of cholesterol and phospholipids. Biophys. J. 77:1507–17 [Google Scholar]
  15. Huang J, Feigenson GW. 15.  1999. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76:2142–57 [Google Scholar]
  16. Ali MR, Cheng KH, Huang J. 16.  2007. Assess the nature of cholesterol–lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 104:5372–77 [Google Scholar]
  17. Holthuis JC, Pomorski T, Raggers RJ, Sprong H, Van Meer G. 17.  2001. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81:1689–723 [Google Scholar]
  18. Lingwood D, Simons K. 18.  2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50 [Google Scholar]
  19. Munro S.19.  2003. Lipid rafts: elusive or illusive?. Cell 115:377–88 [Google Scholar]
  20. Tuller G, Nemec T, Hrastnik C, Daum G. 20.  1999. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15:1555–64 [Google Scholar]
  21. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G. 21.  1991. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173:2026–34 [Google Scholar]
  22. Vance JE, Steenbergen R. 22.  2005. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44:207–34 [Google Scholar]
  23. Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A. 23.  et al. 1999. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain–based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146:741–54 [Google Scholar]
  24. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. 24.  2008. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8:512–21 [Google Scholar]
  25. Glick BS, Luini A. 25.  2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb. Perspect. Biol. 3:a005215 [Google Scholar]
  26. Santiago-Tirado FH, Bretscher A. 26.  2011. Membrane-trafficking sorting hubs: cooperation between PI4P and small GTPases at the trans-Golgi network. Trends Cell Biol. 21:515–25 [Google Scholar]
  27. Blanchette-Mackie EJ.27.  2000. Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486:171–83 [Google Scholar]
  28. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ. 28.  et al. 2009. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185:601–12 [Google Scholar]
  29. Lange Y, Swaisgood MH, Ramos BV, Steck TL. 29.  1989. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem. 264:3786–93 [Google Scholar]
  30. Sullivan DP, Ohvo-Rekila H, Baumann NA, Beh CT, Menon AK. 30.  2006. Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast. Biochem. Soc. Trans. 34:356–58 [Google Scholar]
  31. Lange Y, Steck TL. 31.  1997. Quantitation of the pool of cholesterol associated with acyl-CoA:cholesterol acyltransferase in human fibroblasts. J. Biol. Chem. 272:13103–8 [Google Scholar]
  32. Lange Y, Ye J, Rigney M, Steck TL. 32.  1999. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 40:2264–70 [Google Scholar]
  33. Cerbon J, Calderon V. 33.  1995. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity. Biochim. Biophys. Acta 1235:100–6 [Google Scholar]
  34. Rawyler A, van der Schaft PH, Roelofsen B, Op den Kamp JA. 34.  1985. Phospholipid localization in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes. Biochemistry 24:1777–83 [Google Scholar]
  35. Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL. 35.  1973. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 323:178–93 [Google Scholar]
  36. Mesmin B, Maxfield FR. 36.  2009. Intracellular sterol dynamics. Biochim. Biophys. Acta 1791:636–45 [Google Scholar]
  37. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. 37.  2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–13 [Google Scholar]
  38. Di Paolo G, De Camilli P. 38.  2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–57 [Google Scholar]
  39. Henry SA, Kohlwein SD, Carman GM. 39.  2012. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–49 [Google Scholar]
  40. Vance JE, Tasseva G. 40.  2013. Formation and function of phosphatidylserine and phosphatidylethanola-mine in mammalian cells. Biochim. Biophys. Acta 1831:543–54 [Google Scholar]
  41. Espenshade PJ, Hughes AL. 41.  2007. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41:401–27 [Google Scholar]
  42. Breslow DK, Weissman JS. 42.  2010. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol. Cell 40:267–79 [Google Scholar]
  43. Bishop WR, Bell RM. 43.  1985. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell 42:51–60 [Google Scholar]
  44. Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L. 44.  et al. 2011. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194:257–75 [Google Scholar]
  45. Kim YJ, Guzman-Hernandez ML, Balla T. 45.  2011. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21:813–24 [Google Scholar]
  46. Moravcevic K, Oxley CL, Lemmon MA. 46.  2012. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15–27 [Google Scholar]
  47. Motamed M, Zhang Y, Wang ML, Seemann J, Kwon HJ. 47.  et al. 2011. Identification of luminal loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J. Biol. Chem. 286:18002–12 [Google Scholar]
  48. Zhang Y, Motamed M, Seemann J, Brown MS, Goldstein JL. 48.  2013. Point mutation in luminal loop 7 of Scap protein blocks interaction with loop 1 and abolishes movement to Golgi. J. Biol. Chem. 288:14059–67 [Google Scholar]
  49. Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT. 49.  et al. 2004. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–47 [Google Scholar]
  50. Loewen CJ, Roy A, Levine TP. 50.  2003. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22:2025–35 [Google Scholar]
  51. Stace CL, Ktistakis NT. 51.  2006. Phosphatidic acid– and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 1761:913–26 [Google Scholar]
  52. Kooijman EE, Burger KN. 52.  2009. Biophysics and function of phosphatidic acid: a molecular perspective. Biochim. Biophys. Acta 1791:881–88 [Google Scholar]
  53. Kooijman EE, Tieleman DP, Testerink C, Munnik T, Rijkers DT. 53.  et al. 2007. An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 282:11356–64 [Google Scholar]
  54. Fernandez-Murray JP, Gaspard GJ, Jesch SA, McMaster CR. 54.  2009. NTE1-encoded phosphatidylcholine phospholipase B regulates transcription of phospholipid biosynthetic genes. J. Biol. Chem. 284:36034–46 [Google Scholar]
  55. Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S. 55.  2010. A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc. Natl. Acad. Sci. USA 107:17539–44 [Google Scholar]
  56. Lee J, Johnson J, Ding Z, Paetzel M, Cornell RB. 56.  2009. Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J. Biol. Chem. 284:33535–48 [Google Scholar]
  57. Huang HK, Taneva SG, Lee J, Silva LP, Schriemer DC, Cornell RB. 57.  2013. The membrane-binding domain of an amphitropic enzyme suppresses catalysis by contact with an amphipathic helix flanking its active site. J. Mol. Biol. 425:1546–64 [Google Scholar]
  58. Taneva S, Johnson JE, Cornell RB. 58.  2003. Lipid-induced conformational switch in the membrane binding domain of CTP: phosphocholine cytidylyltransferase: a circular dichroism study. Biochemistry 42:11768–76 [Google Scholar]
  59. Arnold RS, Cornell RB. 59.  1996. Lipid regulation of CTP: phosphocholine cytidylyltransferase: electrostatic, hydrophobic, and synergistic interactions of anionic phospholipids and diacylglycerol. Biochemistry 35:9917–24 [Google Scholar]
  60. Arnold RS, DePaoli-Roach AA, Cornell RB. 60.  1997. Binding of CTP: phosphocholine cytidylyltransferase to lipid vesicles: Diacylglycerol and enzyme dephosphorylation increase the affinity for negatively charged membranes. Biochemistry 36:6149–56 [Google Scholar]
  61. Davies SM, Epand RM, Kraayenhof R, Cornell RB. 61.  2001. Regulation of CTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. Biochemistry 40:10522–31 [Google Scholar]
  62. Hristova K, Wimley WC, Mishra VK, Anantharamiah GM, Segrest JP, White SH. 62.  1999. An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J. Mol. Biol. 290:99–117 [Google Scholar]
  63. Seelig J.63.  2004. Thermodynamics of lipid–peptide interactions. Biochim. Biophys. Acta 1666:40–50 [Google Scholar]
  64. Cornell RB, Taneva SG. 64.  2006. Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties. Curr. Protein Pept. Sci. 7:539–52 [Google Scholar]
  65. van Meer G. 65.  2011. Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3:a004671 [Google Scholar]
  66. Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC. 66.  2006. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol. Biol. Cell 17:1632–42 [Google Scholar]
  67. Gall WE, Geething NC, Hua Z, Ingram MF, Liu K. 67.  et al. 2002. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol. 12:1623–27 [Google Scholar]
  68. Baldridge RD, Graham TR. 68.  2012. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proc. Natl. Acad. Sci. USA 109:E290–98 [Google Scholar]
  69. Strahl T, Thorner J. 69.  2007. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 1771:353–404 [Google Scholar]
  70. Walch-Solimena C, Novick P. 70.  1999. The yeast phosphatidylinositol-4-OH kinase Pik1 regulates secretion at the Golgi. Nat. Cell Biol. 1:523–25 [Google Scholar]
  71. Conibear E, Stevens TH. 71.  1998. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404:211–30 [Google Scholar]
  72. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX. 72.  et al. 2003. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310 [Google Scholar]
  73. Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH. 73.  2013. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152:755–67 [Google Scholar]
  74. Demmel L, Gravert M, Ercan E, Habermann B, Müller-Reichert T. 74.  et al. 2008. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol. Biol. Cell 19:1991–2002 [Google Scholar]
  75. Harsay E, Schekman R. 75.  2002. A subset of yeast vacuolar protein sorting mutants is blocked in one branch of the exocytic pathway. J. Cell Biol. 156:271–85 [Google Scholar]
  76. Gurunathan S, David D, Gerst JE. 76.  2002. Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO J. 21:602–14 [Google Scholar]
  77. Harsay E, Bretscher A. 77.  1995. Parallel secretory pathways to the cell surface in yeast. J. Cell Biol. 131:297–310 [Google Scholar]
  78. Kawasaki M, Nakayama K, Wakatsuki S. 78.  2005. Membrane recruitment of effector proteins by Arf and Rab GTPases. Curr. Opin. Struct. Biol. 15:681–89 [Google Scholar]
  79. Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR. 79.  2009. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat. Cell Biol. 11:1421–26 [Google Scholar]
  80. Mizuno-Yamasaki E, Medkova M, Coleman J, Novick P. 80.  2010. Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab GEF Sec2p. Dev. Cell 18:828–40 [Google Scholar]
  81. Ortiz D, Medkova M, Walch-Solimena C, Novick P. 81.  2002. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157:1005–15 [Google Scholar]
  82. Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A. 82.  2011. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell 20:47–59 [Google Scholar]
  83. Surma MA, Klose C, Simons K. 83.  2012. Lipid-dependent protein sorting at the trans-Golgi network. Biochim. Biophys. Acta 1821:1059–67 [Google Scholar]
  84. Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y. 84.  et al. 2005. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc. Natl. Acad. Sci. USA 102:17981–86 [Google Scholar]
  85. Ha KD, Clarke BA, Brown WJ. 85.  2012. Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochim. Biophys. Acta 1821:1078–88 [Google Scholar]
  86. Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M. 86.  et al. 2009. Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol. Biol. Cell 20:780–90 [Google Scholar]
  87. Fernández-Ulibarri I, Vilella M, Lázaro-Diéguez F, Sarri E, Martínez SE. 87.  et al. 2007. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol. Biol. Cell 18:3250–63 [Google Scholar]
  88. Antonny B, Huber I, Paris S, Chabre M, Cassel D. 88.  1997. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272:30848–51 [Google Scholar]
  89. Bigay J, Gounon P, Robineau S, Antonny B. 89.  2003. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426:563–66 [Google Scholar]
  90. Shemesh T, Luini A, Malhotra V, Burger KN, Kozlov MM. 90.  2003. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J. 85:3813–27 [Google Scholar]
  91. Baron CL, Malhotra V. 91.  2002. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295:325–28 [Google Scholar]
  92. Pusapati GV, Krndija D, Armacki M, von Wichert G, von Blume J. 92.  et al. 2010. Role of the second cysteine-rich domain and Pro275 in protein kinase D2 interaction with ADP-ribosylation factor 1, trans-Golgi network recruitment, and protein transport. Mol. Biol. Cell 21:1011–22 [Google Scholar]
  93. Gehart H, Goginashvili A, Beck R, Morvan J, Erbs E. 93.  et al. 2012. The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network. Dev. Cell 23:756–68 [Google Scholar]
  94. Cruz-Garcia D, Ortega-Bellido M, Scarpa M, Villeneuve J, Jovic M. 94.  et al. 2013. Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO J. 32:1717–29 [Google Scholar]
  95. Brügger B, Sandhoff R, Wegehingel S, Gorgas K, Malsam J. 95.  et al. 2000. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151:507–18 [Google Scholar]
  96. Baumann NA, Sullivan DP, Ohvo-Rekila H, Simonot C, Pottekat A. 96.  et al. 2005. Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. Biochemistry 44:5816–26 [Google Scholar]
  97. Aitken JF, van Heusden GP, Temkin M, Dowhan W. 97.  1990. The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J. Biol. Chem. 265:4711–17 [Google Scholar]
  98. Bankaitis VA, Aitken JR, Cleves AE, Dowhan W. 98.  1990. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561–62 [Google Scholar]
  99. Curwin AJ, Leblanc MA, Fairn GD, McMaster CR. 99.  2013. Localization of lipid raft proteins to the plasma membrane is a major function of the phospholipid transfer protein Sec14. PLoS ONE 8:e55388 [Google Scholar]
  100. Cleves AE, McGee TP, Whitters EA, Champion KM, Aitken JR. 100.  et al. 1991. Mutations in the CDP–choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64:789–800 [Google Scholar]
  101. Sha B, Phillips SE, Bankaitis VA, Luo M. 101.  1998. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391:506–10 [Google Scholar]
  102. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE. 102.  et al. 2008. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily. Mol. Cell 29:191–206 [Google Scholar]
  103. Fairn GD, Curwin AJ, Stefan CJ, McMaster CR. 103.  2007. The oxysterol binding protein Kes1p regulates Golgi apparatus phosphatidylinositol-4-phosphate function. Proc. Natl. Acad. Sci. USA 104:15352–57 [Google Scholar]
  104. Patton-Vogt JL, Griac P, Sreenivas A, Bruno V, Dowd S. 104.  et al. 1997. Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J. Biol. Chem. 272:20873–83 [Google Scholar]
  105. Henneberry AL, Lagace TA, Ridgway ND, McMaster CR. 105.  2001. Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for SEC14p-dependent Golgi function and cell growth. Mol. Biol. Cell 12:511–20 [Google Scholar]
  106. Henneberry AL, Wright MM, McMaster CR. 106.  2002. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell 13:3148–61 [Google Scholar]
  107. Leber A, Hrastnik C, Daum G. 107.  1995. Phospholipid-synthesizing enzymes in Golgi membranes of the yeast, Saccharomyces cerevisiae. FEBS Lett. 377:271–74 [Google Scholar]
  108. Bankaitis VA, Phillips S, Yanagisawa L, Li X, Routt S, Xie Z. 108.  2005. Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae. Adv. Enzyme Regul. 45:155–70 [Google Scholar]
  109. Audhya A, Foti M, Emr SD. 109.  2000. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell 11:2673–89 [Google Scholar]
  110. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB. 110.  1999. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274:34294–300 [Google Scholar]
  111. Stock SD, Hama H, DeWald DB, Takemoto JY. 111.  1999. SEC14-dependent secretion in Saccharomyces cerevisiae. Nondependence on sphingolipid synthesis-coupled diacylglycerol production. J. Biol. Chem. 274:12979–83 [Google Scholar]
  112. Fang M, Kearns BG, Gedvilaite A, Kagiwada S, Kearns M. 112.  et al. 1996. Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J. 15:6447–59 [Google Scholar]
  113. Alfaro G, Johansen J, Dighe SA, Duamel G, Kozminski KG, Beh CT. 113.  2011. The sterol-binding protein Kes1/Osh4p is a regulator of polarized exocytosis. Traffic 12:1521–36 [Google Scholar]
  114. Raychaudhuri S, Prinz WA. 114.  2010. The diverse functions of oxysterol-binding proteins. Annu. Rev. Cell Dev. Biol. 26:157–77 [Google Scholar]
  115. Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. 115.  2005. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 437:154–58 [Google Scholar]
  116. Fairn GD, McMaster CR. 116.  2005. Identification and assessment of the role of a nominal phospholipid binding region of ORP1S (oxysterol-binding-protein-related protein 1 short) in the regulation of vesicular transport. Biochem. J. 387:889–96 [Google Scholar]
  117. Li X, Rivas MP, Fang M, Marchena J, Mehrotra B. 117.  et al. 2002. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J. Cell Biol. 157:63–77 [Google Scholar]
  118. Raychaudhuri S, Im YJ, Hurley JH, Prinz WA. 118.  2006. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J. Cell Biol. 173:107–19 [Google Scholar]
  119. Beh CT, Rine J. 119.  2004. A role for yeast oxysterol-binding protein homologs in endocytosis and in the maintenance of intracellular sterol–lipid distribution. J. Cell Sci. 117:2983–96 [Google Scholar]
  120. Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. 120.  2011. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 12:1341–55 [Google Scholar]
  121. de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B. 121.  et al. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195:965–78 [Google Scholar]
  122. Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Knodler A, Mayinger P. 122.  2005. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J. Cell Biol. 168:185–91 [Google Scholar]
  123. LeBlanc MA, McMaster CR. 123.  2010. Lipid binding requirements for oxysterol-binding protein Kes1 inhibition of autophagy and endosome-trans-Golgi trafficking pathways. J. Biol. Chem. 285:33875–84 [Google Scholar]
  124. Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y. 124.  et al. 2013. Impaired α-TTP-PIPs interaction underlies familial vitamin E deficiency. Science 340:1106–10 [Google Scholar]
  125. Muthusamy BP, Raychaudhuri S, Natarajan P, Abe F, Liu K. 125.  et al. 2009. Control of protein and sterol trafficking by antagonistic activities of a type IV P-type ATPase and oxysterol binding protein homologue. Mol. Biol. Cell 20:2920–31 [Google Scholar]
  126. Phillips SE, Sha B, Topalof L, Xie Z, Alb JG. 126.  et al. 1999. Yeast Sec14p deficient in phosphatidylinositol transfer activity is functional in vivo. Mol. Cell 4:187–97 [Google Scholar]
  127. Tahotna D, Holic R, Poloncova K, Simockova M, Griac P. 127.  2007. Phosphatidylcholine transfer activity of yeast Sec14p is not essential for its function in vivo. Biochim. Biophys. Acta 1771:83–92 [Google Scholar]
  128. Skinner HB, McGee TP, McMaster CR, Fry MR, Bell RM, Bankaitis VA. 128.  1995. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl. Acad. Sci. USA 92:112–16 [Google Scholar]
  129. Bankaitis VA, Mousley CJ, Schaaf G. 129.  2010. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem. Sci. 35:150–60 [Google Scholar]
  130. Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S. 130.  et al. 2005. The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large-scale green fluorescent protein tagging and high-resolution microscopy. Mol. Cell Proteomics 4:662–72 [Google Scholar]
  131. Brice SE, Alford CW, Cowart LA. 131.  2009. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. J. Biol. Chem. 284:7588–96 [Google Scholar]
  132. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A. 132.  et al. 2003. Global analysis of protein expression in yeast. Nature 425:737–41 [Google Scholar]
  133. Carrasco S, Meyer T. 133.  2011. STIM proteins and the endoplasmic reticulum–plasma membrane junctions. Annu. Rev. Biochem. 80:973–1000 [Google Scholar]
  134. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. 134.  2013. Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833:2526–41 [Google Scholar]
  135. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. 135.  1999. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144:1135–49 [Google Scholar]
  136. Levine TP, Munro S. 136.  1998. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr. Biol. 8:729–39 [Google Scholar]
  137. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M. 137.  et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–9 [Google Scholar]
  138. Levine TP, Munro S. 138.  2002. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase–dependent and –independent components. Curr. Biol. 12:695–704 [Google Scholar]
  139. Kawano M, Kumagai K, Nishijima M, Hanada K. 139.  2006. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein–interacting FFAT motif of CERT. J. Biol. Chem. 281:30279–88 [Google Scholar]
  140. Ngo M, Ridgway ND. 140.  2009. Oxysterol binding protein–related protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol. Biol. Cell 20:1388–99 [Google Scholar]
  141. Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL. 141.  1992. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol. 116:307–19 [Google Scholar]
  142. Wyles JP, McMaster CR, Ridgway ND. 142.  2002. Vesicle-associated membrane protein–associated protein A (VAP-A) interacts with the oxysterol-binding protein to modify export from the endoplasmic reticulum. J. Biol. Chem. 277:29908–18 [Google Scholar]
  143. Mohammadi A, Perry RJ, Storey MK, Cook HW, Byers DM, Ridgway ND. 143.  2001. Golgi localization and phosphorylation of oxysterol binding protein in Niemann–Pick C and U18666A-treated cells. J. Lipid Res. 42:1062–71 [Google Scholar]
  144. Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. 144.  2007. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104:6511–18 [Google Scholar]
  145. Ridgway ND.145.  1995. 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J. Lipid Res. 36:1345–58 [Google Scholar]
  146. Perry RJ, Ridgway ND. 146.  2006. Oxysterol-binding protein and vesicle-associated membrane protein–associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17:2604–16 [Google Scholar]
  147. Goto A, Liu X, Robinson CA, Ridgway ND. 147.  2012. Multi-site phosphorylation of oxysterol binding protein (OSBP) regulates sterol binding and activation of sphingomyelin synthesis. Mol. Biol. Cell 23:3624–35 [Google Scholar]
  148. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. 148.  2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER–Golgi tether OSBP. Cell 155:830–43 [Google Scholar]
  149. Lu D, Sun HQ, Wang H, Barylko B, Fukata Y. 149.  et al. 2012. Phosphatidylinositol 4-kinase IIα is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J. Biol. Chem. 287:21856–65 [Google Scholar]
  150. Banerji S, Ngo M, Lane CF, Robinson CA, Minogue S, Ridgway ND. 150.  2010. Oxysterol binding protein–dependent activation of sphingomyelin synthesis in the Golgi apparatus requires phosphatidylinositol 4-kinase IIα. Mol. Biol. Cell 21:4141–50 [Google Scholar]
  151. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G. 151.  et al. 1999. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1:280–87 [Google Scholar]
  152. Peretti D, Dahan N, Shimoni E, Hirschberg K, Lev S. 152.  2008. Coordinated lipid transfer between the endoplasmic reticulum and the Golgi complex requires the VAP proteins and is essential for Golgi-mediated transport. Mol. Biol. Cell 19:3871–84 [Google Scholar]
  153. Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S. 153.  2005. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat. Cell Biol. 7:225–34 [Google Scholar]
  154. Hausser A, Storz P, Martens S, Link G, Toker A, Pfizenmaier K. 154.  2005. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nat. Cell Biol. 7:880–86 [Google Scholar]
  155. Nhek S, Ngo M, Yang X, Ng MM, Field SJ. 155.  et al. 2010. Regulation of oxysterol-binding protein Golgi localization through protein kinase D-mediated phosphorylation. Mol. Biol. Cell 21:2327–37 [Google Scholar]
  156. Fugmann T, Hausser A, Schöffler P, Schmid S, Pfizenmaier K, Olayioye MA. 156.  2007. Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein. J. Cell Biol. 178:15–22 [Google Scholar]
  157. Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K. 157.  2007. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J. Biol. Chem. 282:17758–66 [Google Scholar]
  158. Duran JM, Campelo F, van Galen J, Sachsenheimer T, Sot J. 158.  et al. 2012. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J. 31:4535–46 [Google Scholar]
  159. Stefan CJ, Manford AG, Emr SD. 159.  2013. ER–PM connections: sites of information transfer and inter-organelle communication. Curr. Opin. Cell Biol. 24:434–42 [Google Scholar]
  160. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M. 160.  et al. 2013. PI(4,5)P2-dependent and Ca2+-regulated ER–PM interactions mediated by the extended synaptotagmins. Cell 153:1494–509 [Google Scholar]
  161. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. 161.  2012. ER–to–plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129–40 [Google Scholar]
  162. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD. 162.  2011. Osh proteins regulate phosphoinositide metabolism at ER–plasma membrane contact sites. Cell 144:389–401 [Google Scholar]
  163. Manford A, Xia T, Saxena AK, Stefan C, Hu F. 163.  et al. 2010. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J. 29:1489–98 [Google Scholar]
  164. Tong J, Yang H, Eom SH, Im YJ. 164.  2013. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure 21:1203–13 [Google Scholar]
  165. Alpy F, Tomasetto C. 165.  2005. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci. 118:2791–801 [Google Scholar]
  166. Lev S.166.  2010. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat. Rev. Mol. Cell Biol. 11:739–50 [Google Scholar]
  167. Saito K, Tautz L, Mustelin T. 167.  2007. The lipid-binding SEC14 domain. Biochim. Biophys. Acta 1771:719–26 [Google Scholar]
  168. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M. 168.  et al. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–56 [Google Scholar]
  169. Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A. 169.  et al. 2004. Structure–function analysis of human [corrected] phosphatidylinositol transfer protein α bound to phosphatidylinositol. Structure 12:317–26 [Google Scholar]
  170. Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM Jr. 170.  2001. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem. 276:9246–52 [Google Scholar]
  171. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S. 171.  et al. 2008. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc. Natl. Acad. Sci. USA 105:488–93 [Google Scholar]
  172. Arita M, Kojima H, Nagano T, Okabe T, Wakita T, Shimizu H. 172.  2013. Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J. Virol. 87:4252–60 [Google Scholar]
  173. Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C. 173.  et al. 2011. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 7:639–47 [Google Scholar]
  174. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J. 174.  et al. 2009. An ER–mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81 [Google Scholar]
  175. Toulmay A, Prinz WA. 175.  2012. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125:49–58 [Google Scholar]
  176. Antonny B.176.  2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101–23 [Google Scholar]
  177. Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA. 177.  2012. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125:4791–99 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035307
Loading
/content/journals/10.1146/annurev-biochem-060713-035307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error