1932

Abstract

The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-012023-013036
2023-10-16
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-012023-013036.html?itemId=/content/journals/10.1146/annurev-cellbio-012023-013036&mimeType=html&fmt=ahah

Literature Cited

  1. Agathocleous M, Harris WA. 2009. From progenitors to differentiated cells in the vertebrate retina. Annu. Rev. Cell Dev. Biol. 25:45–69
    [Google Scholar]
  2. Albadri S, Naso F, Thauvin M, Gauron C, Parolin C et al. 2019. Redox signaling via lipid peroxidation regulates retinal progenitor cell differentiation. Dev. Cell 50:173–89.e6
    [Google Scholar]
  3. Almeida AD, Boije H, Chow RW, He J, Tham J et al. 2014. Spectrum of fates: a new approach to the study of the developing zebrafish retina. Development 141:91971–80
    [Google Scholar]
  4. ALSomiry AS, Gregory-Evans CY, Gregory-Evans K. 2019. An update on the genetics of ocular coloboma. Hum. Genet. 138:8–9865–80
    [Google Scholar]
  5. Amini R, Bhatnagar A, Schlüßler R, Möllmert S, Guck J, Norden C. 2022. Amoeboid-like migration ensures correct horizontal cell layer formation in the developing vertebrate retina. eLife 11:e76408
    [Google Scholar]
  6. Amini R, Labudina AA, Norden C. 2019. Stochastic single cell migration leads to robust horizontal cell layer formation in the vertebrate retina. Development 146:12dev173450
    [Google Scholar]
  7. Amini R, Rocha-Martins M, Norden C. 2018. Neuronal migration and lamination in the vertebrate retina. Front. Neurosci. 11:742
    [Google Scholar]
  8. Arendt D, Tessmar K, de Campos-Baptista M-IM, Dorresteijn A, Wittbrodt J. 2002. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:51143–54
    [Google Scholar]
  9. Ayala R, Shu T, Tsai L-H. 2007. Trekking across the brain: the journey of neuronal migration. Cell 128:129–43
    [Google Scholar]
  10. Azizi A, Herrmann A, Wan Y, Buse SJ, Keller PJ et al. 2020. Nuclear crowding and nonlinear diffusion during interkinetic nuclear migration in the zebrafish retina. eLife 9:e58635
    [Google Scholar]
  11. Baye LM, Link BA. 2007. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci. 27:3810143–52
    [Google Scholar]
  12. Bazin-Lopez N, Valdivia LE, Wilson SW, Gestri G. 2015. Watching eyes take shape. Curr. Opin. Genet. Dev. 32:73–79
    [Google Scholar]
  13. Bogdanović O, Delfino-Machín M, Nicolás-Pérez M, Gavilán MP, Gago-Rodrigues I et al. 2012. Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev. Cell 23:4782–95
    [Google Scholar]
  14. Boije H, Edqvist P-HD, Hallböök F. 2009. Horizontal cell progenitors arrest in G2-phase and undergo terminal mitosis on the vitreal side of the chick retina. Dev. Biol. 330:1105–13
    [Google Scholar]
  15. Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. 2015. The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina. Dev. Cell 34:5532–43
    [Google Scholar]
  16. Chalut KJ, Paluch EK. 2016. The actin cortex: a bridge between cell shape and function. Dev. Cell 38:6571–73
    [Google Scholar]
  17. Chow RW-Y, Almeida AD, Randlett O, Norden C, Harris WA. 2015. Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development 142:152665–77
    [Google Scholar]
  18. Cooper JA. 2008. A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:3113–19
    [Google Scholar]
  19. Cooper JA. 2013. Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J. Cell Biol. 202:5725–34
    [Google Scholar]
  20. Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. 2018. Epigenetic control of gene regulation during development and disease: a view from the retina. Prog. Retin. Eye Res. 65:1–27
    [Google Scholar]
  21. Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV. 2011. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71:5820–32
    [Google Scholar]
  22. Del Bene F, Wehman AM, Link BA, Baier H. 2008. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:61055–65
    [Google Scholar]
  23. Edqvist P-HD, Hallböök F. 2004. Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development. Development 131:61343–51
    [Google Scholar]
  24. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:734151–56
    [Google Scholar]
  25. Engerer P, Suzuki SC, Yoshimatsu T, Chapouton P, Obeng N et al. 2017. Uncoupling of neurogenesis and differentiation during retinal development. EMBO J 36:91134–46
    [Google Scholar]
  26. England SJ, Blanchard GB, Mahadevan L, Adams RJ. 2006. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development 133:234613–17
    [Google Scholar]
  27. Fathi M, Ross CT, Hosseinzadeh Z. 2021. Functional 3-dimensional retinal organoids: technological progress and existing challenges. Front. Neurosci. 15:668857
    [Google Scholar]
  28. Fernald RD. 2000. Evolution of eyes. Curr. Opin. Neurobiol. 10:444–50
    [Google Scholar]
  29. Franze K, Grosche J, Skatchkov SN, Schinkinger S, Foja C et al. 2007. Müller cells are living optical fibers in the vertebrate retina. PNAS 104:208287–92
    [Google Scholar]
  30. Fuhrmann S. 2010. Eye morphogenesis and patterning of the optic vesicle. Curr. Topics Dev. Biol. 93:61–84
    [Google Scholar]
  31. Gallego A. 1986. Chapter 7: comparative studies on horizontal cells and a note on microglial cells. Prog. Retin. Res. 5:165–206
    [Google Scholar]
  32. Génis Gálvez J, Puelles L, Prada C 1977. Inverted (displaced) retinal amacrine cells and their embryonic development in the chick. Exp. Neurol. 56:1151–57
    [Google Scholar]
  33. Gilmour D, Rembold M, Leptin M. 2017. From morphogen to morphogenesis and back. Nature 541:7637311–20
    [Google Scholar]
  34. Godinho L, Williams PR, Claassen Y, Provost E, Leach SD et al. 2007. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56:4597–603
    [Google Scholar]
  35. Graw J. 2010. Eye development. Curr. Topics Dev. Biol. 90:343–86
    [Google Scholar]
  36. Grimes WN, Zhang J, Graydon CW, Kachar B, Diamond JS. 2010. Retinal parallel processors: more than 100 independent microcircuits operate within a single interneuron. Neuron 65:6873–85
    [Google Scholar]
  37. Guilak F, Tedrow JR, Burgkart R. 2000. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269:3781–86
    [Google Scholar]
  38. Gunhaga L. 2011. The lens: a classical model of embryonic induction providing new insights into cell determination in early development. Philos. Trans. R. Soc. B 366:15681193–203
    [Google Scholar]
  39. Hafler BP, Surzenko N, Beier KT, Punzo C, Trimarchi JM et al. 2012. Transcription factor Olig2 defines subpopulations of retinal progenitor cells biased toward specific cell fates. PNAS 109:207882–87
    [Google Scholar]
  40. Harzsch S, Hafner G. 2006. Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Struct. Dev. 35:4319–40
    [Google Scholar]
  41. Hatanaka Y, Zhu Y, Torigoe M, Kita Y, Murakami F. 2016. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 92:11–19
    [Google Scholar]
  42. He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA. 2012. How variable clones build an invariant retina. Neuron 75:5786–98
    [Google Scholar]
  43. Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J. 2015. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLife 4:e05216
    [Google Scholar]
  44. Hinds JW, Hinds PL. 1974. Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Dev. Biol. 37:2381–416
    [Google Scholar]
  45. Hinds JW, Hinds PL. 1979. Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol. 187:3495–511
    [Google Scholar]
  46. Hinds JW, Hinds PL. 1983. Development of retinal amacrine cells in the mouse embryo: evidence for two modes of formation. J. Comp. Neurol. 213:11–23
    [Google Scholar]
  47. Icha J. 2016. Ganglion cell translocation across the retina and its importance for retinal lamination PhD Thesis Tech. Univ. Dresden Dresden, Ger:.
  48. Icha J, Kunath C, Rocha-Martins M, Norden C. 2016. Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. J. Cell Biol. 215:2259–75
    [Google Scholar]
  49. Icha J, Norden C. 2014. Neuronal migration: an overview of modes, molecular mechanisms and model systems. eLS. New York: John Wiley & Sons https://doi.org/10.1002/9780470015902.0000796.pub2
    [Google Scholar]
  50. Ivanovitch K, Cavodeassi F, Wilson SW. 2013. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev. Cell 27:3293–305
    [Google Scholar]
  51. Jusuf PR, Albadri S, Paolini A, Currie PD, Argenton F et al. 2012. Biasing amacrine subtypes in the Atoh7 lineage through expression of Barhl2. J. Neurosci. 32:4013929–44
    [Google Scholar]
  52. Jusuf PR, Almeida AD, Randlett O, Joubin K, Poggi L, Harris WA. 2011. Origin and determination of inhibitory cell lineages in the vertebrate retina. J. Neurosci. 31:72549–62
    [Google Scholar]
  53. Kaewkhaw R, Kaya KD, Brooks M, Homma K, Zou J et al. 2015. Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks. Stem Cells 33:123504–18
    [Google Scholar]
  54. Kay JN, Finger-Baier KC, Roeser T, Staub W, Baier H. 2001. Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron 30:3725–36
    [Google Scholar]
  55. Kechad A, Jolicoeur C, Tufford A, Mattar P, Chow RWY et al. 2012. Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina. J. Neurosci. 32:4817197–210
    [Google Scholar]
  56. Kim S, Amini R, Campàs O. 2022. A nuclear jamming transition in vertebrate organogenesis. bioRxiv 2022.07.31.502244. https://doi.org/10.1101/2022.07.31.502244
  57. Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P et al. 2008. Assembly of the cnidarian camera-type eye from vertebrate-like components. PNAS 105:268989–93
    [Google Scholar]
  58. Kressmann S, Campos C, Castanon I, Fürthauer M, González-Gaitán M. 2015. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nat. Cell Biol. 17:3333–39
    [Google Scholar]
  59. Krol A, Henle SJ, Goodrich LV. 2016. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development 143:122172–82
    [Google Scholar]
  60. Kwan KM, Otsuna H, Kidokoro H, Carney KR, Saijoh Y, Chien C-B. 2012. A complex choreography of cell movements shapes the vertebrate eye. Development 139:2359–72
    [Google Scholar]
  61. Lamb TD, Collin SP, Pugh EN. 2007. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8:12960–76
    [Google Scholar]
  62. Lämmermann T, Sixt M. 2009. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21:5636–44
    [Google Scholar]
  63. Lee HO, Norden C. 2013. Mechanisms controlling arrangements and movements of nuclei in pseudostratified epithelia. Trends Cell Biol 23:3141–50
    [Google Scholar]
  64. Liu W, Wang J-H, Xiang M. 2000. Specific expression of the LIM/Homeodomain protein Lim-1 in horizontal cells during retinogenesis. Dev. Dyn. 217:3320–25
    [Google Scholar]
  65. MacDonald RB, Randlett O, Oswald J, Yoshimatsu T, Franze K, Harris WA. 2015. Müller glia provide essential tensile strength to the developing retina. J. Cell Biol. 210:71075–83
    [Google Scholar]
  66. Marín O, Rubenstein JLR. 2003. Cell migration in the forebrain. Annu. Rev. Neurosci. 26:441–83
    [Google Scholar]
  67. Martinez-Morales JR, Rembold M, Greger K, Simpson JC, Brown KE et al. 2009. ojoplano-mediated basal constriction is essential for optic cup morphogenesis. Development 136:132165–75
    [Google Scholar]
  68. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:2266–80
    [Google Scholar]
  69. Matejčić M, Salbreux G, Norden C. 2018. A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLOS Biol 16:8e2006018
    [Google Scholar]
  70. Moreno-Mármol T, Ledesma-Terrón M, Tabanera N, Martin-Bermejo MJ, Cardozo MJ et al. 2021. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis. eLife 10:e63396
    [Google Scholar]
  71. Morest DK. 1970. The pattern of neurogenesis in the retina of the rat. Z. Anat. Entwickl. Gesch. 131:145–67
    [Google Scholar]
  72. Nadarajah B, Parnavelas JG. 2002. Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci. 3:6423–32
    [Google Scholar]
  73. Nakajima Y, Meyer EJ, Kroesen A, McKinney SA, Gibson MC. 2013. Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature 500:7462359–62
    [Google Scholar]
  74. Nakano T, Ando S, Takata N, Kawada M, Muguruma K et al. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:6771–85
    [Google Scholar]
  75. Napoli FR, Daly CM, Neal S, McCulloch KJ, Zaloga AR et al. 2022. Cephalopod retinal development shows vertebrate-like mechanisms of neurogenesis. Curr. Biol. 32:235045–56.e3
    [Google Scholar]
  76. Nerli E, Kretzschmar J, Bianucci T, Rocha-Martins M, Zechner C, Norden C. 2023. Deterministic and probabilistic fate decisions co-exist in a single retinal lineage. EMBO J. 2023:e112657
    [Google Scholar]
  77. Nerli E, Rocha-Martins M, Norden C. 2020. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 9:e60462
    [Google Scholar]
  78. Neumann CJ. 2001. Pattern formation in the zebrafish retina. Semin. Cell Dev. Biol. 12:6485–90
    [Google Scholar]
  79. Nicolás-Pérez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martínez-Morales JR. 2016. Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. eLife 5:e15797
    [Google Scholar]
  80. Nilsson D-E. 2009. The evolution of eyes and visually guided behaviour. Philos. Trans. R. Soc. B 364:15312833–47
    [Google Scholar]
  81. Norden C. 2017. Pseudostratified epithelia—cell biology, diversity and roles in organ formation at a glance. J. Cell Sci. 130:111859–63
    [Google Scholar]
  82. Norden C, Young S, Link BA, Harris WA. 2009. Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138:61195–208
    [Google Scholar]
  83. Okamoto M, Namba T, Shinoda T, Kondo T, Watanabe T et al. 2013. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat. Neurosci. 16:111556–66
    [Google Scholar]
  84. Okuda S, Takata N, Hasegawa Y, Kawada M, Inoue Y et al. 2018. Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis. Sci. Adv. 4:11eaau1354
    [Google Scholar]
  85. Paolini A, Duchemin A-L, Albadri S, Patzel E, Bornhorst D et al. 2015. Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development 142:5832–39
    [Google Scholar]
  86. Picker A, Cavodeassi F, Machate A, Bernauer S, Hans S et al. 2009. Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina. PLOS Biol 7:10e1000214
    [Google Scholar]
  87. Poggi L, Vitorino M, Masai I, Harris WA. 2005. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J. Cell Biol. 171:6991–99
    [Google Scholar]
  88. Prada C, Puelles L, Genis-Gálvez JM, Ramírez G. 1987. Two modes of free migration of amacrine cell neuroblasts in the chick retina. Anat. Embryol. 175:3281–87
    [Google Scholar]
  89. Rahimi-Balaei M, Bergen H, Kong J, Marzban H. 2018. Neuronal migration during development of the cerebellum. Front. Cell. Neurosci. 12:484
    [Google Scholar]
  90. Rakic P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145:161–83
    [Google Scholar]
  91. Randlett O, MacDonald RB, Yoshimatsu T, Almeida AD, Suzuki SC et al. 2013. Cellular requirements for building a retinal neuropil. Cell Rep 3:2282–90
    [Google Scholar]
  92. Rapaport DH 2006. Retinal neurogenesis. In Retinal Development E Sernagor, S Eglen, B Harris, R Wong 30–58. Cambridge, UK: Cambridge Univ. Press. , 1st ed..
    [Google Scholar]
  93. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM. 2004. Timing and topography of cell genesis in the rat retina. J. Comp. Neurol. 474:2304–24
    [Google Scholar]
  94. Rembold M, Loosli F, Adams RJ, Wittbrodt J. 2006. Individual cell migration serves as the driving force for optic vesicle evagination. Science 313:57901130–34
    [Google Scholar]
  95. Rempel SK, Welch MJ, Ludwig AL, Phillips MJ, Kancherla Y et al. 2022. Human photoreceptors switch from autonomous axon extension to cell-mediated process pulling during synaptic marker redistribution. Cell Rep 39:7110827
    [Google Scholar]
  96. Rocha-Martins M, Kretzschmar J, Nerli E, Weigert M, Icha J et al. 2021. Bidirectional neuronal migration coordinates retinal morphogenesis by preventing spatial competition. bioRxiv 2021.02.08.430189. https://doi.org/10.1101/2021.02.08.430189
  97. Ruan X, Liu Z, Luo L, Liu Y. 2020. The structure of the lens and its associations with the visual quality. BMJ Open Ophthalmol 5:1e000459
    [Google Scholar]
  98. Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K. 2011. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J. Neurosci. 31:259426–39
    [Google Scholar]
  99. Sidhaye J, Norden C. 2017. Concerted action of neuroepithelial basal shrinkage and active epithelial migration ensures efficient optic cup morphogenesis. eLife 6:e22689
    [Google Scholar]
  100. Simó R, Villarroel M, Corraliza L, Hernández C, Garcia-Ramírez M. 2010. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier–implications for the pathogenesis of diabetic retinopathy. J. Biomed. Biotechnol. 2010:190724
    [Google Scholar]
  101. Smart IH. 1972. Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse. J. Anat. 111:Pt 3365–80
    [Google Scholar]
  102. Soans KG, Ramos AP, Sidhaye J, Krishna A, Solomatina A et al. 2022. Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr. Bio. 32:224817–31.e9
    [Google Scholar]
  103. Strzyz PJ, Lee HO, Sidhaye J, Weber IP, Leung LC, Norden C. 2015. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 32:2203–19
    [Google Scholar]
  104. Strzyz PJ, Matejcic M, Norden C. 2016. Heterogeneity, cell biology and tissue mechanics of pseudostratified epithelia: coordination of cell divisions and growth in tightly packed tissues. Int. Rev. Cell Mol. Biol. 325:89–118
    [Google Scholar]
  105. Suzuki SC, Bleckert A, Williams PR, Takechi M, Kawamura S, Wong ROL. 2013. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. PNAS 110:3715109–14
    [Google Scholar]
  106. Tan S-S, Kalloniatis M, Sturm K, Tam PPL, Reese BE, Faulkner-Jones B. 1998. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21:2295–304
    [Google Scholar]
  107. Voinescu PE, Kay JN, Sanes JR. 2009. Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. J. Comp. Neurol. 517:5737–50
    [Google Scholar]
  108. Wässle H, Dacey DM, Haun T, Haverkamp S, Grünert U, Boycott BB. 2000. The mosaic of horizontal cells in the macaque monkey retina: with a comment on biplexiform ganglion cells. Vis. Neurosci. 17:4591–608
    [Google Scholar]
  109. Weber IP, Ramos AP, Strzyz PJ, Leung LC, Young S, Norden C. 2014. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation. Cell Rep 7:2386–97
    [Google Scholar]
  110. Wride MA. 2011. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos. Trans. R. Soc. B 366:15681219–33
    [Google Scholar]
  111. Yanakieva I, Erzberger A, Matejčić M, Modes CD, Norden C. 2019. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J. Cell Biol. 218:103272–89
    [Google Scholar]
  112. Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q et al. 2019. Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLife 8:e40093
    [Google Scholar]
  113. Zolessi FR, Poggi L, Wilkinson CJ, Chien C-B, Harris WA. 2006. Polarization and orientation of retinal ganglion cells in vivo. Neural Dev. 1:2
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-012023-013036
Loading
/content/journals/10.1146/annurev-cellbio-012023-013036
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error