1932

Abstract

Filopodia are dynamic cell surface protrusions used for cell motility, pathogen infection, and tissue development. The molecular mechanisms determining how and where filopodia grow and retract need to integrate mechanical forces and membrane curvature with extracellular signaling and the broader state of the cytoskeleton. The involved actin regulatory machinery nucleates, elongates, and bundles actin filaments separately from the underlying actin cortex. The refined membrane and actin geometry of filopodia, importance of tissue context, high spatiotemporal resolution required, and high degree of redundancy all limit current models. New technologies are improving opportunities for functional insight, with reconstitution of filopodia in vitro from purified components, endogenous genetic modification, inducible perturbation systems, and the study of filopodia in multicellular environments. In this review, we explore recent advances in conceptual models of how filopodia form, the molecules involved in this process, and our latest understanding of filopodia in vitro and in vivo.

Keyword(s): actinEna/VASPfascinforminmyosinprotrusion
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020223-025210
2023-10-16
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-020223-025210.html?itemId=/content/journals/10.1146/annurev-cellbio-020223-025210&mimeType=html&fmt=ahah

Literature Cited

  1. Adebowale K, Gong Z, Hou JC, Wisdom KM, Garbett D et al. 2021. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20:91290–99
    [Google Scholar]
  2. Alieva NO, Efremov AK, Hu S, Oh D, Chen Z et al. 2019. Myosin IIA and formin dependent mechanosensitivity of filopodia adhesion. Nat. Commun. 10:13593
    [Google Scholar]
  3. Anthis NJ, Campbell ID. 2011. The tail of integrin activation. Trends Biochem. Sci. 36:4191–98
    [Google Scholar]
  4. Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G et al. 2014. Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. J. Clin. Invest. 124:31069–82
    [Google Scholar]
  5. Arthur AL, Songster LD, Sirkia H, Bhattacharya A, Kikuti C et al. 2019. Optimized filopodia formation requires myosin tail domain cooperation. PNAS 116:4422196–204
    [Google Scholar]
  6. Atherton J, Stouffer M, Francis F, Moores CA. 2022. Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. J. Cell Sci. 135:7jcs259234
    [Google Scholar]
  7. Bachg AC, Horsthemke M, Skryabin BV, Klasen T, Nagelmann N et al. 2019. Phenotypic analysis of Myo10 knockout (Myo10tm2/tm2) mice lacking full-length (motorized) but not brain-specific headless myosin X. Sci. Rep. 9:597
    [Google Scholar]
  8. Baldauf L, Frey F, Perez MA, Mladenov M, Way M et al. 2023. Biomimetic actin cortices shape cell-sized lipid vesicles. bioRxiv 2023.01.15.524117. https://doi.org/10.1101/2023.01.15.524117
  9. Barzik M, McClain LM, Gupton SL, Gertler FB. 2014. Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function. Mol. Biol. Cell 25:172604–19
    [Google Scholar]
  10. Bashirzadeh Y, Wubshet NH, Liu AP. 2020. Confinement geometry tunes fascin-actin bundle structures and consequently the shape of a lipid bilayer vesicle. Front. Mol. Biosci. 7:610277
    [Google Scholar]
  11. Bernheim-Groswasser A, Wiesner S, Golsteyn RM, Carlier M-F, Sykes C. 2002. The dynamics of actin-based motility depend on surface parameters. Nature 417:6886308–11
    [Google Scholar]
  12. Bischoff MC, Lieb S, Renkawitz-Pohl R, Bogdan S. 2021. Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nat. Commun. 12:1791
    [Google Scholar]
  13. Blake TCA, Fox HM, Urbančič V, Wolowczyk A, Allgeyer ES et al. 2023. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. bioRxiv 2023.01.04.522504. https://doi.org/10.1101/2023.01.04.522504
    [Crossref]
  14. Bornschlögl T, Romero S, Vestergaard CL, Joanny J-F, Tran Van Nhieu G, Bassereau P 2013. Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. PNAS 110:4718928–33
    [Google Scholar]
  15. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV et al. 2020. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182:3685–712.e19
    [Google Scholar]
  16. Boyer NP, McCormick LE, Menon S, Urbina FL, Gupton SL. 2020. A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance. J. Cell Biol. 219:1e201902088
    [Google Scholar]
  17. Breitsprecher D, Kiesewetter AK, Linkner J, Vinzenz M, Stradal TEB et al. 2011. Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J 30:3456–67
    [Google Scholar]
  18. Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S. 2009. The Toca-1-N-WASP complex links filopodial formation to endocytosis. J. Biol. Chem. 284:1711622–36
    [Google Scholar]
  19. Butler B, Gao C, Mersich AT, Blystone SD. 2006. Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr. Biol. 16:3242–51
    [Google Scholar]
  20. Cao L, Kerleau M, Suzuki EL, Wioland H, Jouet S et al. 2018. Modulation of formin processivity by profilin and mechanical tension. eLife 7:e34176
    [Google Scholar]
  21. Cheng KW, Mullins RD. 2020. Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin. Mol. Biol. Cell 31:182021–34
    [Google Scholar]
  22. Chou AM, Sem KP, Wright GD, Sudhaharan T, Ahmed S. 2014. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J. Biol. Chem. 289:3524383–96
    [Google Scholar]
  23. Cowell AR, Jacquemet G, Singh AK, Varela L, Nylund AS et al. 2021. Talin rod domain-containing protein 1 (TLNRD1) is a novel actin-bundling protein which promotes filopodia formation. J. Cell Biol. 220:9e202005214
    [Google Scholar]
  24. Daly CA, Hall ET, Ogden SK. 2022. Regulatory mechanisms of cytoneme-based morphogen transport. Cell. Mol. Life Sci. 79:2119
    [Google Scholar]
  25. Damiano-Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M et al. 2020. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. eLife 9:e55351
    [Google Scholar]
  26. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M et al. 2007. Filopodia are required for cortical neurite initiation. Nat. Cell Biol. 9:121347–59
    [Google Scholar]
  27. Dimchev G, Amiri B, Fäßler F, Falcke M, Schur FK. 2021a. Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data. J. Struct. Biol. 213:4107808
    [Google Scholar]
  28. Dimchev G, Amiri B, Humphries AC, Schaks M, Dimchev V et al. 2020. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. J. Cell Sci. 133:7jcs239020
    [Google Scholar]
  29. Dimchev V, Lahmann I, Koestler SA, Kage F, Dimchev G et al. 2021b. Induced Arp2/3 complex depletion increases FMNL2/3 formin expression and filopodia formation. Front. Cell Dev. Biol. 9:634708
    [Google Scholar]
  30. Disanza A, Bisi S, Winterhoff M, Milanesi F, Ushakov DS et al. 2013. CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J 32:202735–50
    [Google Scholar]
  31. Dobramysl U, Jarsch IK, Inoue Y, Shimo H, Richier B et al. 2021. Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation. J. Cell Biol. 220:4e202003052
    [Google Scholar]
  32. Efremov AK, Yao M, Sun Y, Tee YH, Sheetz MP et al. 2022. Application of piconewton forces to individual filopodia reveals mechanosensory role of L-type Ca2+ channels. Biomaterials 284:121477
    [Google Scholar]
  33. Faix J, Breitsprecher D, Stradal TEB, Rottner K. 2009. Filopodia: complex models for simple rods. Int. J. Biochem. Cell Biol. 41:8–91656–64
    [Google Scholar]
  34. Faix J, Rottner K. 2006. The making of filopodia. Curr. Opin. Cell Biol. 18:118–25
    [Google Scholar]
  35. Faust JJ, Millis BA, Tyska MJ. 2019. Profilin-mediated actin allocation regulates the growth of epithelial microvilli. Curr. Biol. 29:203457–65.e3
    [Google Scholar]
  36. Fehon RG, McClatchey AI, Bretscher A. 2010. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Bio. 11:4276–87
    [Google Scholar]
  37. Fitz GN, Weck ML, Bodnya C, Perkins OL, Tyska MJ. 2022. Protrusion growth driven by myosin-generated force. Dev. Cell 58:118–33.e6
    [Google Scholar]
  38. Fox S, Tran A, Trinkle-Mulcahy L, Copeland JW. 2022. Cooperative assembly of filopodia by the formin FMNL2 and I-BAR domain protein IRTKS. J. Biol. Chem. 298:11102512
    [Google Scholar]
  39. Frost A, Perera R, Roux A, Spasov K, Destaing O et al. 2008. Structural basis of membrane invagination by F-BAR domains. Cell 132:5807–17
    [Google Scholar]
  40. Galic M, Tsai F-C, Collins SR, Matis M, Bandara S, Meyer T. 2014. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. eLife 3:e03116
    [Google Scholar]
  41. Gallop JL. 2020. Filopodia and their links with membrane traffic and cell adhesion. Semin. Cell Dev. Biol. 102:81–89
    [Google Scholar]
  42. Gandy KAO, Canals D, Adada M, Wada M, Roddy P et al. 2013. Sphingosine 1-phosphate induces filopodia formation through S1PR2 activation of ERM proteins. Biochem. J. 449:3661–72
    [Google Scholar]
  43. Garbett D, Bisaria A, Yang C, McCarthy DG, Hayer A et al. 2020. T-plastin reinforces membrane protrusions to bridge matrix gaps during cell migration. Nat. Commun. 11:14818
    [Google Scholar]
  44. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM. 2010. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–33
    [Google Scholar]
  45. Gat S, Simon C, Campillo C, Bernheim-Groswasser A, Sykes C. 2020. Finger-like membrane protrusions are favored by heterogeneities in the actin network. Soft Matter 16:317222–30
    [Google Scholar]
  46. Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I et al. 2003. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. PNAS 100:2615554–59
    [Google Scholar]
  47. Goley ED, Welch MD. 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Bio. 7:10713–26
    [Google Scholar]
  48. Guerrier S, Coutinho-Budd J, Sassa T, Gresset A, Jordan NV et al. 2009. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:5990–1004
    [Google Scholar]
  49. Guillou H, Depraz-Depland A, Planus E, Vianay B, Chaussy J et al. 2008. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling. Exp. Cell Res. 314:3478–88
    [Google Scholar]
  50. Hakeem RM, Subramanian BC, Hockenberry MA, King ZT, Butler MT et al. 2023. A photopolymerized hydrogel system with dual stiffness gradients reveals distinct actomyosin-based mechano-responses in fibroblast durotaxis. ACS Nano 17:197–211
    [Google Scholar]
  51. Hammers DW, Hart CC, Matheny MK, Heimsath EG, Lee YI et al. 2021. Filopodia powered by class x myosin promote fusion of mammalian myoblasts. eLife 10:e72419
    [Google Scholar]
  52. Hansen SD, Mullins RD. 2015. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments. eLife 4:e06585
    [Google Scholar]
  53. Harker AJ, Katkar HH, Bidone TC, Aydin F, Voth GA et al. 2019. Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin. Mol. Biol. Cell 30:7851–62
    [Google Scholar]
  54. He K, Sakai T, Tsukasaki Y, Watanabe TM, Ikebe M. 2017. Myosin X is recruited to nascent focal adhesions at the leading edge and induces multi-cycle filopodial elongation. Sci. Rep. 7:113685
    [Google Scholar]
  55. Heimsath EG, Yim Y-I, Mustapha M, Hammer JA, Cheney RE. 2017. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci. Rep. 7:117354
    [Google Scholar]
  56. Hensel A, Stahl P, Moews L, König L, Patwardhan R et al. 2022. The Taspase1/Myosin1f-axis regulates filopodia dynamics. iScience 25:6104355
    [Google Scholar]
  57. Houdusse A, Titus MA. 2021. The many roles of myosins in filopodia, microvilli and stereocilia. Curr. Biol. 31:10R586–602
    [Google Scholar]
  58. Hu X, Weston TA, He C, Jung RS, Heizer PJ et al. 2019. Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia. eLife 8:e50231
    [Google Scholar]
  59. Hylton RK, Heebner JE, Grillo MA, Swulius MT. 2022. Cofilactin filaments regulate filopodial structure and dynamics in neuronal growth cones. Nat. Commun. 13:12439
    [Google Scholar]
  60. Jacinto A, Wolpert L. 2001. Filopodia. Curr. Biol. 11:16R634
    [Google Scholar]
  61. Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E et al. 2019. Filopodome mapping identifies p130Cas as a mechanosensitive regulator of filopodia stability. Curr. Biol. 29:2202–16.e7
    [Google Scholar]
  62. Jaiswal R, Breitsprecher D, Collins A, Corrêa IR Jr., Xu M-Q, Goode BL. 2013. The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23:141373–79
    [Google Scholar]
  63. Jansen S, Collins A, Yang C, Rebowski G, Svitkina T, Dominguez R. 2011. Mechanism of actin filament bundling by fascin. J. Biol. Chem. 286:3430087–96
    [Google Scholar]
  64. Jarsch IK, Gadsby JR, Nuccitelli A, Mason J, Shimo H et al. 2020. A direct role for SNX9 in the biogenesis of filopodia. J. Cell Biol. 219:4e201909178
    [Google Scholar]
  65. Jasnin M, Asano S, Gouin E, Hegerl R, Plitzko JM et al. 2013. Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails. PNAS 110:5120521–26
    [Google Scholar]
  66. Jones T, Liu A, Cui B. 2020. Light-inducible generation of membrane curvature in live cells with engineered BAR domain proteins. ACS Synth. Biol. 9:4893–901
    [Google Scholar]
  67. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  68. Kadzik RS, Homa KE, Kovar DR. 2020. F-actin cytoskeleton network self-organization through competition and cooperation. Annu. Rev. Cell Dev. Biol. 36:35–60
    [Google Scholar]
  69. Kast DJ, Dominguez R. 2019a. IRSp53 coordinates AMPK and 14-3-3 signaling to regulate filopodia dynamics and directed cell migration. Mol. Biol. Cell 30:111285–97
    [Google Scholar]
  70. Kast DJ, Dominguez R. 2019b. Mechanism of IRSp53 inhibition by 14-3-3. Nat. Commun. 10:1483
    [Google Scholar]
  71. Kishimoto T, Tomishige N, Murate M, Ishitsuka R, Schaller H et al. 2020. Cholesterol asymmetry at the tip of filopodia during cell adhesion. FASEB J 34:56185–97
    [Google Scholar]
  72. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A. 2001. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11:211645–55
    [Google Scholar]
  73. Kühn S, Erdmann C, Kage F, Block J, Schwenkmezger L et al. 2015. The structure of FMNL2-Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6:17088
    [Google Scholar]
  74. Kyykallio H, Oikari S, Álvez MB, Dodd CJG, Capra J, Rilla K. 2020. The density and length of filopodia associate with the activity of hyaluronan synthesis in tumor cells. Cancers 12:71908
    [Google Scholar]
  75. Lee D, Fong KP, King MR, Brass LF, Hammer DA. 2012. Differential dynamics of platelet contact and spreading. Biophys. J. 102:3472–82
    [Google Scholar]
  76. Lee K, Gallop JL, Rambani K, Kirschner MW. 2010. Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329:59971341–45
    [Google Scholar]
  77. Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W. 2005. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170:2317–25
    [Google Scholar]
  78. Leijnse N, Barooji YF, Arastoo MR, Sønder SL, Verhagen B et al. 2022. Filopodia rotate and coil by actively generating twist in their actin shaft. Nat. Commun. 13:11636
    [Google Scholar]
  79. Leung K-M, van Horck FP, Lin AC, Allison R, Standart N, Holt CE. 2006. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat. Neurosci. 9:101247–56
    [Google Scholar]
  80. Li JXH, Tang VW, Boateng KA, Brieher WM. 2021. Cadherin puncta are interdigitated dynamic actin protrusions necessary for stable cadherin adhesion. PNAS 118:24e2023510118
    [Google Scholar]
  81. Li X, Wang L, Huang B, Gu Y, Luo Y et al. 2020. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Sci. Adv. 6:47eabb7135
    [Google Scholar]
  82. Litschel T, Schwille P. 2021. Protein reconstitution inside giant unilamellar vesicles. Annu. Rev. Biophys. 50:525–48
    [Google Scholar]
  83. Liu AP, Fletcher DA. 2006. Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. 91:114064–70
    [Google Scholar]
  84. Liu R, Billington N, Yang Y, Bond C, Hong A et al. 2021. A binding protein regulates myosin-7a dimerization and actin bundle assembly. Nat. Commun. 12:1563
    [Google Scholar]
  85. Ma L, Cantley LC, Janmey PA, Kirschner MW. 1998. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol. 140:51125–36
    [Google Scholar]
  86. Ma S, Cheng MH, Guthrie DA, Newman AH, Bahar I, Sorkin A. 2017. Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Sci. Rep. 7:15399
    [Google Scholar]
  87. Mallavarapu A, Mitchison T. 1999. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146:51097–106
    [Google Scholar]
  88. Mancinelli G, Lamparter L, Nosov G, Saha T, Pawluchin A et al. 2021. Dendrite tapering actuates a self-organizing signaling circuit for stochastic filopodia initiation in neurons. PNAS 118:43e2106921118
    [Google Scholar]
  89. Matoo S, Graves MJ, Acharya P, Choi MS, Storad ZA et al. 2021. Comparative analysis of the MyTH4-FERM myosins reveals insights into the determinants of actin track selection in polarized epithelia. Mol. Biol. Cell 32:21ar30
    [Google Scholar]
  90. Mattila PK, Pykäläinen A, Saarikangas J, Paavilainen VO, Vihinen H et al. 2007. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain–like mechanism. J. Cell Biol. 176:7953–64
    [Google Scholar]
  91. McGrath J, Roy P, Perrin BJ. 2017. Stereocilia morphogenesis and maintenance through regulation of actin stability. Semin. Cell Dev. Biol. 65:88–95
    [Google Scholar]
  92. Mellor H. 2010. The role of formins in filopodia formation. Biochim. Biophys. Acta Mol. Cell Res. 1803:2191–200
    [Google Scholar]
  93. Menon S, Goldfarb D, Ho CT, Cloer EW, Boyer NP et al. 2021. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol. Biol. Cell 32:4314–30
    [Google Scholar]
  94. Miihkinen M, Grönloh MLB, Popović A, Vihinen H, Jokitalo E et al. 2021. Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 36:11109716
    [Google Scholar]
  95. Nast-Kolb T, Bleicher P, Payr M, Bausch AR. 2022. VASP localization to lipid bilayers induces polymerization driven actin bundle formation. Mol. Biol. Cell 33:10ar91
    [Google Scholar]
  96. Nishimura T, Oyama T, Hu HT, Fujioka T, Hanawa-Suetsugu K et al. 2021. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev. Cell 56:6842–59.e8
    [Google Scholar]
  97. Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y et al. 2021. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J. Cell Sci. 134:8jcs253708
    [Google Scholar]
  98. Nobes CD, Hall A. 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:153–62
    [Google Scholar]
  99. Nozaki R, Kasamatsu A, Moss J, Uzawa K. 2022. Lysyl hydroxylase 2 deficiency promotes filopodia formation and fibroblast migration. Biochem. Biophys. Res. Commun. 587:146–52
    [Google Scholar]
  100. Nozumi M, Nakatsu F, Katoh K, Igarashi M. 2017. Coordinated movement of vesicles and actin bundles during nerve growth revealed by superresolution microscopy. Cell Rep 18:92203–16
    [Google Scholar]
  101. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. 2005. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433:7025488–94
    [Google Scholar]
  102. Peng J, Wallar BJ, Flanders A, Swiatek PJ, Alberts AS. 2003. Disruption of the diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr. Biol. 13:7534–45
    [Google Scholar]
  103. Pepe A, Pietropaoli S, Vos M, Barba-Spaeth G, Zurzolo C. 2022. Tunneling nanotubes provide a route for SARS-CoV-2 spreading. Sci. Adv. 8:29eabo0171
    [Google Scholar]
  104. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG et al. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:5657495–99
    [Google Scholar]
  105. Peuhu E, Jacquemet G, Scheele CLGJ, Isomursu A, Laisne M-C et al. 2022. MYO10-filopodia support basement membranes at pre-invasive tumor boundaries. Dev. Cell 57:202350–64.e7
    [Google Scholar]
  106. Pfisterer K, Levitt J, Lawson CD, Marsh RJ, Heddleston JM et al. 2020. FMNL2 regulates dynamics of fascin in filopodia. J. Cell Biol. 219:5e201906111
    [Google Scholar]
  107. Picas L, Comunale F, André-Arpin C, Bousquet H, Tsai F-C et al. 2022. BIN1/Amphiphysin 2 and ezrin drive filopodia-like structures in myoblasts. bioRxiv 2022.03.21.485158. https://doi.org/10.1101/2022.03.21.485158
    [Crossref]
  108. Plantard L, Arjonen A, Lock JG, Nurani G, Ivaska J, Strömblad S. 2010. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation. J. Cell Sci. 123:203525–34
    [Google Scholar]
  109. Pokrant T, Hein JI, Körber S, Disanza A, Pich A et al. 2023. Ena/VASP clustering at microspike tips involves lamellipodin but not I-BAR proteins, and absolutely requires unconventional myosin-X. PNAS 120:2e2217437120
    [Google Scholar]
  110. Popkova A, Stone OJ, Chen L, Qin X, Liu C et al. 2020. A Cdc42-mediated supracellular network drives polarized forces and Drosophila egg chamber extension. Nat. Commun. 11:11921
    [Google Scholar]
  111. Popović A, Miihkinen M, Ghimire S, Saup R, Grönloh MLB et al. 2023. Myosin-X recruits lamellipodin to filopodia tips. J. Cell Sci. 136:5jcs260574
    [Google Scholar]
  112. Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P et al. 2015. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 6:18529
    [Google Scholar]
  113. Reymann A-C, Boujemaa-Paterski R, Martiel J-L, Guérin C, Cao W et al. 2012. Actin network architecture can determine myosin motor activity. Science 336:60861310–14
    [Google Scholar]
  114. Richier B, Inoue Y, Dobramysl U, Friedlander J, Brown NH, Gallop JL. 2018. Integrin signaling downregulates filopodia during muscle–tendon attachment. J. Cell Sci. 131:16jcs217133
    [Google Scholar]
  115. Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. 2020. Force generation by myosin motors: a structural perspective. Chem. Rev. 120:15–35
    [Google Scholar]
  116. Ropars V, Yang Z, Isabet T, Blanc F, Zhou K et al. 2016. The myosin X motor is optimized for movement on actin bundles. Nat. Commun. 7:112456
    [Google Scholar]
  117. Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD et al. 2015. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev. Cell 32:154–67
    [Google Scholar]
  118. Saarikangas J, Kourdougli N, Senju Y, Chazal G, Segerstråle M et al. 2015. MIM-induced membrane bending promotes dendritic spine initiation. Dev. Cell 33:6644–59
    [Google Scholar]
  119. Sato O, Sakai T, Choo Y-Y, Ikebe R, Watanabe TM, Ikebe M. 2022. Mitochondria-associated myosin 19 processively transports mitochondria on actin tracks in living cells. J. Biol. Chem. 298:5101883
    [Google Scholar]
  120. Schäfer C, Borm B, Born S, Möhl C, Eibl E-M, Hoffmann B. 2009. One step ahead: role of filopodia in adhesion formation during cell migration of keratinocytes. Exp. Cell Res. 315:71212–24
    [Google Scholar]
  121. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J. 2005. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7:6619–25
    [Google Scholar]
  122. Senju Y, Kalimeri M, Koskela EV, Somerharju P, Zhao H et al. 2017. Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. PNAS 114:43E8977–86
    [Google Scholar]
  123. Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G et al. 2015. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat. Commun. 6:18730
    [Google Scholar]
  124. Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K et al. 2007. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:4761–72
    [Google Scholar]
  125. Simon C, Kusters R, Caorsi V, Allard A, Abou-Ghali M et al. 2019. Actin dynamics drive cell-like membrane deformation. Nat. Phys. 15:6602–9
    [Google Scholar]
  126. Skruber K, Read T-A, Vitriol EA. 2018. Reconsidering an active role for G-actin in cytoskeletal regulation. J. Cell Sci. 131:1jcs203760
    [Google Scholar]
  127. Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS et al. 2020. Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr. Biol. 30:142651–64.e5
    [Google Scholar]
  128. Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B et al. 2011. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev. Neurobiol. 71:9747–58
    [Google Scholar]
  129. Sudhaharan T, Hariharan S, Lim JSY, Liu JZ, Koon YL et al. 2019. Superresolution microscopy reveals distinct localisation of full length IRSp53 and its I-BAR domain protein within filopodia. Sci. Rep. 9:12524
    [Google Scholar]
  130. Summerbell ER, Mouw JK, Bell JSK, Knippler CM, Pedro B et al. 2020. Epigenetically heterogeneous tumor cells direct collective invasion through filopodia-driven fibronectin micropatterning. Sci. Adv. 6:30eaaz6197
    [Google Scholar]
  131. Suzuki EL, Chikireddy J, Dmitrieff S, Guichard B, Romet-Lemonne G, Jégou A. 2020. Geometrical constraints greatly hinder formin mDia1 activity. Nano Lett 20:122–32
    [Google Scholar]
  132. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S et al. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160:3409–21
    [Google Scholar]
  133. Tamada A, Kawase S, Murakami F, Kamiguchi H. 2010. Autonomous right-screw rotation of growth cone filopodia drives neurite turning. J. Cell Biol. 188:3429–41
    [Google Scholar]
  134. Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J et al. 2019. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci. Alliance 2:3e201800288
    [Google Scholar]
  135. Tokuo H, Ikebe M. 2004. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319:1214–20
    [Google Scholar]
  136. Tokuo H, Mabuchi K, Ikebe M. 2007. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179:2229–38
    [Google Scholar]
  137. Tsai F-C, Bertin A, Bousquet H, Manzi J, Senju Y et al. 2018. Ezrin enrichment on curved membranes requires a specific conformation or interaction with a curvature-sensitive partner. eLife 7:e37262
    [Google Scholar]
  138. Tsai F-C, Henderson JM, Jarin Z, Kremneva E, Senju Y et al. 2022. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions. Sci. Adv. 8:41eabp8677
    [Google Scholar]
  139. Urbančič V, Butler R, Richier B, Peter M, Mason J et al. 2017. Filopodyan: an open-source pipeline for the analysis of filopodia. J. Cell Biol. 216:103405–22
    [Google Scholar]
  140. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C et al. 2021. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D1D439–44
    [Google Scholar]
  141. Ventura G, Amiri A, Thiagarajan R, Tolonen M, Doostmohammadi A, Sedzinski J. 2021. Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo. Nat. Commun. 13:16423
    [Google Scholar]
  142. Vignjevic D, Kojima S, Aratyn Y, Danciu O, Svitkina T, Borisy GG. 2006. Role of fascin in filopodial protrusion. J. Cell Biol. 174:6863–75
    [Google Scholar]
  143. Vignjevic D, Yarar D, Welch MD, Peloquin J, Svitkina T, Borisy GG. 2003. Formation of filopodia-like bundles in vitro from a dendritic network. J. Cell Biol. 160:6951–62
    [Google Scholar]
  144. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. 2004. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:7006325–29
    [Google Scholar]
  145. Welf ES, Danuser G. 2014. Using fluctuation analysis to establish causal relations between cellular events without experimental perturbation. Biophys. J. 107:112492–98
    [Google Scholar]
  146. Winkelman JD, Suarez C, Hocky GM, Harker AJ, Morganthaler AN et al. 2016. Fascin- and α-actinin-bundled networks contain intrinsic structural features that drive protein sorting. Curr. Biol. 26:202697–706
    [Google Scholar]
  147. Wit CB, Hiesinger PR. 2022. Neuronal filopodia: from stochastic dynamics to robustness of brain morphogenesis. Semin. Cell Dev. Biol. 133:10–19
    [Google Scholar]
  148. Wubshet NH, Wu B, Veerapaneni S, Liu AP. 2023. Differential regulation of GUV mechanics via actin network architectures. Biophys. J. 122 112068–81
    [Google Scholar]
  149. Yamada H, Abe T, Satoh A, Okazaki N, Tago S et al. 2013. Stabilization of actin bundles by a dynamin 1/cortactin ring complex is necessary for growth cone filopodia. J. Neurosci. 33:104514–26
    [Google Scholar]
  150. Yang C, Svitkina T. 2011. Filopodia initiation. Cell Adh. Migr. 5:5402–8
    [Google Scholar]
  151. Yang S, Miao X, Arnold S, Li B, Ly AT et al. 2022. Membrane curvature governs the distribution of Piezo1 in live cells. Nat. Commun. 13:17467
    [Google Scholar]
  152. Yoshinaga S, Ohkubo T, Sasaki S, Nuriya M, Ogawa Y et al. 2012. A phosphatidylinositol lipids system, lamellipodin, and Ena/VASP regulate dynamic morphology of multipolar migrating cells in the developing cerebral cortex. J. Neurosci. 32:3411643–56
    [Google Scholar]
  153. Zhai X, Shen Y, Zhang X, Li T, Lu Q, Xu Z. 2022. FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation. Biochim. Biophys. Acta Mol. Cell Res. 1869:1119134
    [Google Scholar]
  154. Zhang R, Lee DM, Jimah JR, Gerassimov N, Yang C et al. 2020. Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nat. Cell Biol. 22:6674–88
    [Google Scholar]
  155. Zhang Y, Zhang X, Li Z, Zhao W, Yang H et al. 2022. SARS-CoV-2 infected cells sprout actin-rich filopodia that facilitate viral invasion. bioRxiv. 2022.10.19.512957. https://doi.org/10.1101/2022.10.19.512957
  156. Zhang Z, Denans N, Liu Y, Zhulyn O, Rosenblatt HD et al. 2021. Optogenetic manipulation of cellular communication using engineered myosin motors. Nat. Cell Biol. 23:2198–208
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020223-025210
Loading
/content/journals/10.1146/annurev-cellbio-020223-025210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error