1932

Abstract

Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-022723-024045
2023-10-16
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-022723-024045.html?itemId=/content/journals/10.1146/annurev-cellbio-022723-024045&mimeType=html&fmt=ahah

Literature Cited

  1. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al. 2017. RNA targeting with CRISPR–Cas13. Nature 550:7675280–84
    [Google Scholar]
  2. Adivarahan S, Kalhara Abeykoon AM, Zenklusen D. 2021. Single-molecule imaging suggests compact and spliceosome dependent organization of long introns. bioRxiv 2021.10.27.466141. https://doi.org/10.1101/2021.10.27.466141
    [Crossref]
  3. Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS et al. 2014. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:3536–43
    [Google Scholar]
  4. Alexander KA, Coté A, Nguyen SC, Zhang L, Gholamalamdari O et al. 2021. p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol. Cell 81:81666–81.e6
    [Google Scholar]
  5. Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F et al. 2021. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371:6528aax2656
    [Google Scholar]
  6. Ashkenazy-Titelman A, Atrash MK, Boocholez A, Kinor N, Shav-Tal Y. 2022. RNA export through the nuclear pore complex is directional. Nat. Commun. 13:15881
    [Google Scholar]
  7. Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L et al. 2015. Bursty gene expression in the intact mammalian liver. Mol. Cell 58:1147–56
    [Google Scholar]
  8. Bashirullah A, Cooperstock RL, Lipshitz HD. 2001. Spatial and temporal control of RNA stability. PNAS 98:137025–28
    [Google Scholar]
  9. Battich N, Stoeger T, Pelkmans L. 2013. Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat. Methods 10:111127–33
    [Google Scholar]
  10. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 1998. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2:4437–45
    [Google Scholar]
  11. Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA et al. 2023. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. bioRxiv 2023.01.04.522632. https://doi.org/10.1101/2023.01.04.522632
    [Crossref]
  12. Biswas J, Li W, Singer RH, Coleman RA. 2021. Imaging organization of RNA processing within the nucleus. Cold Spring Harb. Perspect. Biol. 13:12a039453
    [Google Scholar]
  13. Boersma S, Khuperkar D, Verhagen BMP, Sonneveld S, Grimm JB et al. 2019. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. Cell 178:2458–72.e19
    [Google Scholar]
  14. Borm LE, Mossi Albiach A, Mannens CCA, Janusauskas J, Özgün C et al. 2023. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41:222–31
    [Google Scholar]
  15. Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M. 2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111:2910598–603
    [Google Scholar]
  16. Brodsky AS, Silver PA. 2002. Identifying proteins that affect mRNA localization in living cells. Methods 26:2151–55
    [Google Scholar]
  17. Brody Y, Neufeld N, Bieberstein N, Causse SZ, Böhnlein E-M et al. 2011. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing. PLOS Biol 9:1e1000573
    [Google Scholar]
  18. Bullock SL, Ish-Horowicz D. 2001. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature 414:6864611–16
    [Google Scholar]
  19. Burke KS, Antilla KA, Tirrell DA. 2017. A fluorescence in situ hybridization method to quantify mRNA translation by visualizing ribosome-mRNA interactions in single cells. ACS Cent. Sci. 3:5425–33
    [Google Scholar]
  20. Calvet JP, Pederson T. 1981. Base-pairing interactions between small nuclear RNAs and nuclear RNA precursors as revealed by psoralen cross-linking in vivo. Cell 26:3, Part 1363–70
    [Google Scholar]
  21. Calvo L, Ronshaugen M, Pettini T. 2021. smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arthropods. Commun. Biol. 4:1352
    [Google Scholar]
  22. Cawte AD, Unrau PJ, Rueda DS. 2020. Live cell imaging of single RNA molecules with fluorogenic Mango II arrays. Nat. Commun. 11:11283
    [Google Scholar]
  23. Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J et al. 2014. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344:6181307–10
    [Google Scholar]
  24. Chen AK, Behlke MA, Tsourkas A. 2007. Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Res 35:16e105
    [Google Scholar]
  25. Chen AK, Davydenko O, Behlke MA, Tsourkas A. 2010. Ratiometric bimolecular beacons for the sensitive detection of RNA in single living cells. Nucleic Acids Res 38:14e148
    [Google Scholar]
  26. Chen F, Tillberg PW, Boyden ES. 2015. Optical imaging. Expansion microscopy. Science 347:6221543–48
    [Google Scholar]
  27. Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T. 2018. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50:91296–303
    [Google Scholar]
  28. Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE et al. 2009. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. PNAS 106:3213535–40
    [Google Scholar]
  29. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090
    [Google Scholar]
  30. Chen X, Sun Y-C, Church GM, Lee JH, Zador AM. 2018. Efficient in situ barcode sequencing using padlock probe-based BaristaSeq. Nucleic Acids Res 46:4e22
    [Google Scholar]
  31. Chen Y, Belmont AS. 2019. Genome organization around nuclear speckles. Curr. Opin. Genet. Dev. 55:91–99
    [Google Scholar]
  32. Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK et al. 2018. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. J. Cell Biol. 217:114025–48
    [Google Scholar]
  33. Cho W-K, Jayanth N, English BP, Inoue T, Andrews JO et al. 2016. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5:e13617
    [Google Scholar]
  34. Choi HMT, Chang JY, Trinh LA, Padilla JE, Fraser SE, Pierce NA. 2010. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28:111208–12
    [Google Scholar]
  35. Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G et al. 2018. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145:12dev165753
    [Google Scholar]
  36. Chubb JR, Trcek T, Shenoy SM, Singer RH. 2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:101018–25
    [Google Scholar]
  37. Cialek CA, Galindo G, Morisaki T, Zhao N, Montgomery TA, Stasevich TJ. 2022. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat. Commun. 13:13345
    [Google Scholar]
  38. Cioni J-M, Lin JQ, Holtermann AV, Koppers M, Jakobs MAH et al. 2019. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176:156–72.e15
    [Google Scholar]
  39. Coté A, Coté C, Bayatpour S, Drexler HL, Alexander KA et al. 2021. pre-mRNA spatial distributions suggest that splicing can occur post-transcriptionally. bioRxiv 2020.04.06.028092. https://doi.org/10.1101/2020.04.06.028092
    [Crossref]
  40. Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR 2014. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3:e03939
    [Google Scholar]
  41. Daigle N, Ellenberg J. 2007. λN-GFP: an RNA reporter system for live-cell imaging. Nat. Methods 4:8633–36
    [Google Scholar]
  42. Daneholt B. 2001. Assembly and transport of a premessenger RNP particle. PNAS 98:137012–17
    [Google Scholar]
  43. Dardani I, Emert BL, Goyal Y, Jiang CL, Kaur A et al. 2022. ClampFISH 2.0 enables rapid, scalable amplified RNA detection in situ. Nat. Methods 19:111403–10
    [Google Scholar]
  44. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:9796–806
    [Google Scholar]
  45. Das S, Moon HC, Singer RH, Park HY. 2018. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. Sci. Adv. 4:6eaar3448
    [Google Scholar]
  46. Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. 2023. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol. Cell 83:4589–606.e6
    [Google Scholar]
  47. Dias AP, Dufu K, Lei H, Reed R. 2010. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1:97
    [Google Scholar]
  48. Dirks RM, Pierce NA. 2004. Triggered amplification by hybridization chain reaction. PNAS 101:4315275–78
    [Google Scholar]
  49. Dolgosheina EV, Jeng SCY, Panchapakesan SSS, Cojocaru R, Chen PSK et al. 2014. RNA Mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9:102412–20
    [Google Scholar]
  50. Donlin-Asp PG, Polisseni C, Klimek R, Heckel A, Schuman EM. 2021. Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression. PNAS 118:13e2017578118
    [Google Scholar]
  51. Donovan BT, Huynh A, Ball DA, Patel HP, Poirier MG et al. 2019. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J 38:12e100809
    [Google Scholar]
  52. Dopie J, Sweredoski MJ, Moradian A, Belmont AS. 2020. Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins. J. Cell Biol. 219:9e201910207
    [Google Scholar]
  53. Dufourt J, Bellec M, Trullo A, Dejean M, De Rossi S, Favard C, Lagha M. 2021. Imaging translation dynamics in live embryos reveals spatial heterogeneities. Science 372:6544840–44
    [Google Scholar]
  54. Duong H, Han M. 2013. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods 220:146–54
    [Google Scholar]
  55. Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:7751235–39
    [Google Scholar]
  56. Faber GP, Nadav-Eliyahu S, Shav-Tal Y. 2022. Nuclear speckles–a driving force in gene expression. J. Cell Sci. 135:13jcs259594
    [Google Scholar]
  57. Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B et al. 2017. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130:244180–92
    [Google Scholar]
  58. Femino AM, Fay FS, Fogarty K, Singer RH. 1998. Visualization of single RNA transcripts in situ. Science 280:5363585–90
    [Google Scholar]
  59. Filonov GS, Moon JD, Svensen N, Jaffrey SR. 2014. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J. Am. Chem. Soc. 136:4616299–308
    [Google Scholar]
  60. Forrest KM, Gavis ER. 2003. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13:141159–68
    [Google Scholar]
  61. Fukaya T, Lim B, Levine M. 2016. Enhancer control of transcriptional bursting. Cell 166:2358–68
    [Google Scholar]
  62. Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard J-M et al. 2003. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13:2161–67
    [Google Scholar]
  63. Garcia HG, Tikhonov M, Lin A, Gregor T. 2013. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23:212140–45
    [Google Scholar]
  64. Garcia JF, Parker R. 2015. MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21:81393–95
    [Google Scholar]
  65. Gaspar I, Wippich F, Ephrussi A. 2017. Enzymatic production of single-molecule FISH and RNA capture probes. RNA 23:101582–91
    [Google Scholar]
  66. Goh JJL, Chou N, Seow WY, Ha N, Cheng CPP et al. 2020. Highly specific multiplexed RNA imaging in tissues with split-FISH. Nat. Methods 17:7689–93
    [Google Scholar]
  67. Gregor T, Garcia HG, Little SC. 2014. The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet 30:8364–75
    [Google Scholar]
  68. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:3244–50
    [Google Scholar]
  69. Grünwald D, Singer RH. 2010. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467:7315604–7
    [Google Scholar]
  70. Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A et al. 2019. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572:7770543–48
    [Google Scholar]
  71. Gyllborg D, Langseth CM, Qian X, Choi E, Salas SM et al. 2020. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res 48:19e112
    [Google Scholar]
  72. Hall LL, Smith KP, Byron M, Lawrence JB. 2006. Molecular anatomy of a speckle. Anat. Rec. A 288:7664–75
    [Google Scholar]
  73. Halstead JM, Lionnet T, Wilbertz JH, Wippich F, Ephrussi A et al. 2015. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347:62281367–671
    [Google Scholar]
  74. Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Churchman LS. 2016. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep 15:102147–58
    [Google Scholar]
  75. Hasenson SE, Shav-Tal Y. 2020. Speculating on the roles of nuclear speckles: how RNA-protein nuclear assemblies affect gene expression. Bioessays 42:10e2000104
    [Google Scholar]
  76. Heintzmann R, Huser T. 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117:2313890–908
    [Google Scholar]
  77. Heist T, Fukaya T, Levine M. 2019. Large distances separate coregulated genes in living Drosophila embryos. PNAS 116:3015062–67
    [Google Scholar]
  78. Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A et al. 1987. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238:48331570–73
    [Google Scholar]
  79. Hochberg-Laufer H, Neufeld N, Brody Y, Nadav-Eliyahu S, Ben-Yishay R, Shav-Tal Y. 2019. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLOS Genet 15:11e1008459
    [Google Scholar]
  80. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. 2013. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10:2119–21
    [Google Scholar]
  81. Hoek TA, Khuperkar D, Lindeboom RGH, Sonneveld S, Verhagen BMP et al. 2019. Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay. Mol. Cell 75:2324–39.e11
    [Google Scholar]
  82. Hoppe C, Bowles JR, Minchington TG, Sutcliffe C, Upadhyai P et al. 2020. Modulation of the promoter activation rate dictates the transcriptional response to graded BMP signaling levels in the Drosophila embryo. Dev. Cell 54:6727–41.e7
    [Google Scholar]
  83. Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG et al. 2017. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Mol. Cell 68:3615–25.e9
    [Google Scholar]
  84. Hu Y, Plutz M, Belmont AS. 2010. Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J. Cell Biol. 191:4711–19
    [Google Scholar]
  85. Ilik İA, Malszycki M, Lübke AK, Schade C, Meierhofer D, Aktaş T 2020. SON and SRRM2 are essential for nuclear speckle formation. eLife 9:e60579
    [Google Scholar]
  86. Jaramillo AM, Weil TT, Goodhouse J, Gavis ER, Schupbach T. 2008. The dynamics of fluorescently labeled endogenous gurken mRNA in Drosophila. J. Cell Sci. 121:6887–94
    [Google Scholar]
  87. Katz ZB, English BP, Lionnet T, Yoon YJ, Monnier N et al. 2016. Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes. eLife 5:e10415
    [Google Scholar]
  88. Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10:9857–60
    [Google Scholar]
  89. Khanna N, Hu Y, Belmont AS. 2014. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol. 24:101138–44
    [Google Scholar]
  90. Kim SH, Vieira M, Kim H-J, Kesawat MS, Park HY. 2019. MS2 labeling of endogenous beta-actin mRNA does not result in stabilization of degradation intermediates. Mol. Cells 42:4356–62
    [Google Scholar]
  91. Kishi JY, Lapan SW, Beliveau BJ, West ER, Zhu A et al. 2019. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat. Methods 16:6533–44
    [Google Scholar]
  92. Klimek R, Donlin-Asp PG, Polisseni C, Hanff V, Schuman EM, Heckel A. 2021. Visible light-activatable Q-dye molecular beacons for long-term mRNA monitoring in neurons. Chem. Commun. 57:9412683–86
    [Google Scholar]
  93. Kobayashi H, Singer RH. 2022. Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat. Commun. 13:11435
    [Google Scholar]
  94. Kong KYS, Jeng SCY, Rayyan B, Unrau PJ. 2021. RNA peach and mango: Orthogonal two-color fluorogenic aptamers distinguish nearly identical ligands. RNA 27:5604–15
    [Google Scholar]
  95. Lamond AI, Spector DL. 2003. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4:8605–12
    [Google Scholar]
  96. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. 2011. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:6028475–78
    [Google Scholar]
  97. Lee BH, Shim JY, Moon HC, Kim DW, Kim J et al. 2022. Real-time visualization of mRNA synthesis during memory formation in live mice. PNAS 119:27e2117076119
    [Google Scholar]
  98. Lee C-Y, Myong S 2021. Probing steps in DNA transcription using single-molecule methods. J. Biol. Chem. 297:3101086
    [Google Scholar]
  99. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC et al. 2015. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10:3442–58
    [Google Scholar]
  100. Levo M, Raimundo J, Bing XY, Sisco Z, Batut PJ et al. 2022. Transcriptional coupling of distant regulatory genes in living embryos. Nature 605:7911754–60
    [Google Scholar]
  101. Levsky JM, Shenoy SM, Pezo RC, Singer RH. 2002. Single-cell gene expression profiling. Science 297:5582836–40
    [Google Scholar]
  102. Lewis JD, Tollervey D. 2000. Like attracts like: getting RNA processing together in the nucleus. Science 288:54701385–89
    [Google Scholar]
  103. Li J, Dong A, Saydaminova K, Chang H, Wang G et al. 2019. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178:2491–506.e28
    [Google Scholar]
  104. Li W, Maekiniemi A, Sato H, Osman C, Singer RH. 2022. An improved imaging system that corrects MS2-induced RNA destabilization. Nat. Methods 19:121558–62
    [Google Scholar]
  105. Liao Y-C, Fernandopulle MS, Wang G, Choi H, Hao L et al. 2019. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179:1147–64.e20
    [Google Scholar]
  106. Lim B, Heist T, Levine M, Fukaya T. 2018. Visualization of transvection in living Drosophila embryos. Mol. Cell 70:2287–96.e6
    [Google Scholar]
  107. Lim B, Levine MS. 2021. Enhancer-promoter communication: hubs or loops?. Curr. Opin. Genet. Dev. 67:5–9
    [Google Scholar]
  108. Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL et al. 2011. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8:2165–70
    [Google Scholar]
  109. Liu Z, Tjian R. 2018. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 217:41181–91
    [Google Scholar]
  110. Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:4360–61
    [Google Scholar]
  111. Lucas T, Ferraro T, Roelens B, De Las Heras Chanes J, Walczak AM et al. 2013. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23:212135–39
    [Google Scholar]
  112. Maïno N, Hauling T, Cappi G, Madaboosi N, Dupouy DG, Nilsson M. 2019. A microfluidic platform towards automated multiplexed in situ sequencing. Sci. Rep. 9:13542
    [Google Scholar]
  113. Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M. 2013. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4:61144–55
    [Google Scholar]
  114. Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G, Chao JA. 2020. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell 183:71801–12.e13
    [Google Scholar]
  115. Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S. 2005. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res 33:61902–12
    [Google Scholar]
  116. Middleton SA, Eberwine J, Kim J. 2019. Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons. BMC Biol 17:15
    [Google Scholar]
  117. Misteli T, Cáceres JF, Spector DL. 1997. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387:6632523–27
    [Google Scholar]
  118. Mor A, Suliman S, Ben-Yishay R, Yunger S, Brody Y, Shav-Tal Y. 2010. Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nat. Cell Biol. 12:6543–52
    [Google Scholar]
  119. Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP et al. 2016. Real-time quantification of single RNA translation dynamics in living cells. Science 352:62921425–29
    [Google Scholar]
  120. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:2488–96
    [Google Scholar]
  121. Nojima T, Rebelo K, Gomes T, Grosso AR, Proudfoot NJ, Carmo-Fonseca M. 2018. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell 72:2369–79.e4
    [Google Scholar]
  122. O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:7530263–66
    [Google Scholar]
  123. Paige JS, Wu KY, Jaffrey SR. 2011. RNA mimics of green fluorescent protein. Science 333:6042642–46
    [Google Scholar]
  124. Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C et al. 2014. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:6169422–24
    [Google Scholar]
  125. Park SY, Moon HC, Park HY. 2020. Live-cell imaging of single mRNA dynamics using split superfolder green fluorescent proteins with minimal background. RNA 26:1101–9
    [Google Scholar]
  126. Pichon X, Bastide A, Safieddine A, Chouaib R, Samacoits A et al. 2016. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 214:6769–81
    [Google Scholar]
  127. Pimmett VL, Dejean M, Fernandez C, Trullo A, Bertrand E et al. 2021. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nat. Commun. 12:14504
    [Google Scholar]
  128. Politz JC, Tuft RA, Pederson T, Singer RH. 1999. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr. Biol. 9:6285–91
    [Google Scholar]
  129. Quinodoz SA, Bhat P, Chovanec P, Jachowicz JW, Ollikainen N et al. 2022. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding. Nat. Protoc. 17:136–75
    [Google Scholar]
  130. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol 4:10e309
    [Google Scholar]
  131. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:10877–79
    [Google Scholar]
  132. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:112281–308
    [Google Scholar]
  133. Richardson DS, Guan W, Matsumoto K, Pan C, Chung K et al. 2021. Tissue clearing. Nat. Rev. Methods Primers 1:184
    [Google Scholar]
  134. Rouhanifard SH, Mellis IA, Dunagin M, Bayatpour S, Jiang CL et al. 2018. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. 37:84–89
    [Google Scholar]
  135. Safieddine A, Coleno E, Lionneton F, Traboulsi A-M, Salloum S et al. 2023. HT-smFISH: a cost-effective and flexible workflow for high-throughput single-molecule RNA imaging. Nat. Protoc. 18:1157–87
    [Google Scholar]
  136. Shah S, Lubeck E, Schwarzkopf M, He T-F, Greenbaum A, Sohn CH et al. 2016. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143:152862–67
    [Google Scholar]
  137. Shah S, Takei Y, Zhou W, Lubeck E, Yun J et al. 2018. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174:2363–76.e16
    [Google Scholar]
  138. Shav-Tal Y, Darzacq X, Shenoy SM, Fusco D, Janicki SM, Spector DL, Singer RH. 2004. Dynamics of single mRNPs in nuclei of living cells. Science 304:56781797–800
    [Google Scholar]
  139. Spector DL, Lamond AI. 2011. Nuclear speckles. Cold Spring Harb. Perspect. Biol 3:2a000646
    [Google Scholar]
  140. Su J-H, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182:61641–59.e26
    [Google Scholar]
  141. Sunbul M, Lackner J, Martin A, Englert D, Hacene B et al. 2021. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics. Nat. Biotechnol. 39:6686–90
    [Google Scholar]
  142. Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N et al. 2021. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590:7845344–50
    [Google Scholar]
  143. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:3635–46
    [Google Scholar]
  144. Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J-M et al. 2016. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7:12248
    [Google Scholar]
  145. Trcek T, Douglas TE, Grosch M, Yin Y, Eagle WVI et al. 2020. Sequence-independent self-assembly of germ granule mRNAs into homotypic clusters. Mol. Cell 78:5941–50.e12
    [Google Scholar]
  146. Trcek T, Grosch M, York A, Shroff H, Lionnet T, Lehmann R. 2015. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nat. Commun. 6:7962
    [Google Scholar]
  147. Tsanov N, Samacoits A, Chouaib R, Traboulsi A-M, Gostan T et al. 2016. smiFISH and FISH-quant—a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res 44:22e165
    [Google Scholar]
  148. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:4968505–10
    [Google Scholar]
  149. Tutucci E, Vera M, Biswas J, Garcia J, Parker R, Singer RH. 2018. An improved MS2 system for accurate reporting of the mRNA life cycle. Nat. Methods 15:181–89
    [Google Scholar]
  150. Vargas DY, Shah K, Batish M, Levandoski M, Sinha S et al. 2011. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 147:51054–65
    [Google Scholar]
  151. Viswanathan S, Williams ME, Bloss EB, Stasevich TJ, Speer CM et al. 2015. High-performance probes for light and electron microscopy. Nat. Methods 12:6568–76
    [Google Scholar]
  152. Wan Y, Anastasakis DG, Rodriguez J, Palangat M, Gudla P et al. 2021. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184:112878–95.e20
    [Google Scholar]
  153. Wang C, Han B, Zhou R, Zhuang X. 2016. Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165:4990–1001
    [Google Scholar]
  154. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:6400eaat5691
    [Google Scholar]
  155. Wang Y, Eddison M, Fleishman G, Weigert M, Xu S et al. 2021. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184:266361–77.e24
    [Google Scholar]
  156. Weil TT, Forrest KM, Gavis ER. 2006. Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev. Cell 11:2251–62
    [Google Scholar]
  157. Weiss KR, Voigt FF, Shepherd DP, Huisken J. 2021. Tutorial: practical considerations for tissue clearing and imaging. Nat. Protoc. 16:62732–48
    [Google Scholar]
  158. Wu B, Chen J, Singer RH. 2014. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 4:3615
    [Google Scholar]
  159. Wu B, Eliscovich C, Yoon YJ, Singer RH. 2016. Translation dynamics of single mRNAs in live cells and neurons. Science 352:62921430–35
    [Google Scholar]
  160. Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA et al. 2015. Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:8876–86
    [Google Scholar]
  161. Xia C, Babcock HP, Moffitt JR, Zhuang X. 2019. Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9:17721
    [Google Scholar]
  162. Yan X, Hoek TA, Vale RD, Tanenbaum ME. 2016. Dynamics of translation of single mRNA molecules in vivo. Cell 165:4976–89
    [Google Scholar]
  163. Yang L-Z, Gao B-Q, Huang Y, Wang Y, Yang L, Chen L-L. 2022. Multi-color RNA imaging with CRISPR-Cas13b systems in living cells. Cell Insight 1:4100044
    [Google Scholar]
  164. Yang L-Z, Wang Y, Li S-Q, Yao R-W, Luan P-F et al. 2019. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76:6981–97.e7
    [Google Scholar]
  165. Zenklusen D, Larson DR, Singer RH. 2008. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15:121263–71
    [Google Scholar]
  166. Zhang L, Zhang Y, Chen Y, Gholamalamdari O, Wang Y et al. 2020. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res 31:2251–64
    [Google Scholar]
  167. Zhang S, Aibara S, Vos SM, Agafonov DE, Lührmann R, Cramer P. 2021. Structure of a transcribing RNA polymerase II-U1 snRNP complex. Science 371:6526305–9
    [Google Scholar]
  168. Zhao N, Kamijo K, Fox PD, Oda H, Morisaki T et al. 2019. A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. Nat. Commun. 10:12947
    [Google Scholar]
  169. Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A et al. 2008. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:5843–53
    [Google Scholar]
  170. Zong W, Obenhaus HA, Skytøen ER, Eneqvist H, de Jong NL et al. 2022. Large-scale two-photon calcium imaging in freely moving mice. Cell 185:71240–56.e30
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-022723-024045
Loading
/content/journals/10.1146/annurev-cellbio-022723-024045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error