1932

Abstract

Microfluidic systems are attracting increasing interest for the high-throughput measurement of cellular biophysical properties and for the creation of engineered cellular microenvironments. Here we review recent applications of microfluidic technologies to the mechanics of living cells and synthetic cell-mimetic systems. We begin by discussing the use of microfluidic devices to dissect the mechanics of cellular mimics, such as capsules and vesicles. We then explore applications to circulating cells, including erythrocytes and other normal blood cells, and rare populations with potential disease diagnostic value, such as circulating tumor cells. We conclude by discussing how microfluidic devices have been used to investigate the mechanics, chemotaxis, and invasive migration of adherent cells. In these ways, microfluidic technologies represent an increasingly important toolbox for investigating cellular mechanics and motility at high throughput and in a format that lends itself to clinical translation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061114-123407
2015-07-24
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123407.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123407&mimeType=html&fmt=ahah

Literature Cited

  1. Ulrich TA, de Juan Pardo EM, Kumar S. 1.  2009. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:104167–74 [Google Scholar]
  2. Rubashkin MG, Ou G, Weaver VM. 2.  2014. Deconstructing signaling in three dimensions. Biochemistry 53:132078–90 [Google Scholar]
  3. Engler AJ, Sen S, Sweeney HL, Discher DE. 3.  2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89 [Google Scholar]
  4. Hung W-C, Chen S-H, Paul CD, Stroka KM, Lo Y-C. 4.  et al. 2013. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202:5807–24 [Google Scholar]
  5. Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S. 5.  2011. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:111886–97 [Google Scholar]
  6. Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. 6.  1999. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nat. Cell Biol. 1:4200–6 [Google Scholar]
  7. Tamada M, Sheetz MP, Sawada Y. 7.  2004. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7:5709–18 [Google Scholar]
  8. Baneyx G, Baugh L, Vogel V. 8.  2002. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. PNAS 99:85139–43 [Google Scholar]
  9. Giannone G, Sheetz MP. 9.  2006. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16:4213–23 [Google Scholar]
  10. Vogel V, Sheetz M. 10.  2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:4265–75 [Google Scholar]
  11. Margadant F, Chew LL, Hu X, Yu H, Bate N. 11.  et al. 2011. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLOS Biol. 9:12e1001223 [Google Scholar]
  12. Lynch CD, Sheetz MP. 12.  2011. Cellular mechanotransduction: filamin A strains to regulate motility. Curr. Biol. 21:22R916–18 [Google Scholar]
  13. Schoen I, Pruitt BL, Vogel V. 13.  2013. The yin-yang of rigidity sensing: how forces and mechanical properties regulate the cellular response to materials. Annu. Rev. Mater. Res. 43:1589–618 [Google Scholar]
  14. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. 14.  2002. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:9–10537–46 [Google Scholar]
  15. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI. 15.  et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:3241–54 [Google Scholar]
  16. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M. 16.  et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:5891–906 [Google Scholar]
  17. Egeblad M, Rasch MG, Weaver VM. 17.  2010. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22:5697–706 [Google Scholar]
  18. Ulrich TA, Jain A, Tanner K, MacKay JL, Kumar S. 18.  2010. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31:71875–84 [Google Scholar]
  19. Lee GYH, Lim CT. 19.  2007. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25:3111–18 [Google Scholar]
  20. Huang H, Kamm RD, Lee RT. 20.  2004. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287:1C1–C11 [Google Scholar]
  21. Rodriguez ML, McGarry PJ, Sniadecki NJ. 21.  2013. Review on cell mechanics: experimental and modeling approaches. Appl. Mech. Rev. 65:6060801 [Google Scholar]
  22. Pathak A, Kumar S. 22.  2012. Independent regulation of tumor cell migration by matrix stiffness and confinement. PNAS 109:2610334–39 [Google Scholar]
  23. Balzer EM, Tong Z, Paul CD, Hung W-C, Stroka KM. 23.  et al. 2012. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26:104045–56 [Google Scholar]
  24. Irimia D, Toner M. 24.  2009. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. 1:8–9506–12 [Google Scholar]
  25. Pathak A, Kumar S. 25.  2011. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. 3:4267–78 [Google Scholar]
  26. Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY. 26.  2004. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 16:23–242133–37 [Google Scholar]
  27. Haessler U, Kalinin Y, Swartz MA, Wu M. 27.  2009. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11:4827–35 [Google Scholar]
  28. Moffitt JR, Lee JB, Cluzel P. 28.  2012. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 12:81487–94 [Google Scholar]
  29. Cheng S-Y, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M. 29.  2007. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:6763–69 [Google Scholar]
  30. Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M. 30.  et al. 2013. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5:212212ra163 [Google Scholar]
  31. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG. 31.  et al. 2012. Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109:207630–35 [Google Scholar]
  32. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J. 32.  2009. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69:51728–32 [Google Scholar]
  33. Lautenschlaeger F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J. 33.  2009. The regulatory role of cell mechanics for migration of differentiating myeloid cells. PNAS 106:3715696–701 [Google Scholar]
  34. Chalut KJ, Hoepfler M, Lautenschlaeger F, Boyde L, Chan CJ. 34.  et al. 2012. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. Biophys. J. 103:102060–70 [Google Scholar]
  35. Tong Z, Balzer EM, Dallas MR, Hung W-C, Stebe KJ, Konstantopoulos K. 35.  2012. Chemotaxis of cell populations through confined spaces at single-cell resolution. PLOS ONE 7:1e29211 [Google Scholar]
  36. Shamloo A, Ma N, Poo M-M, Sohn LL, Heilshorn SC. 36.  2008. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8:81292–99 [Google Scholar]
  37. Saadi W, Wang S-J, Lin F, Jeon NL. 37.  2006. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8:2109–18 [Google Scholar]
  38. Jeon NL, Baskaran H, Dertinger S, Whitesides GM, Van de Water L, Toner M. 38.  2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20:8826–30 [Google Scholar]
  39. Keenan TM, Folch A. 39.  2008. Biomolecular gradients in cell culture systems. Lab Chip 8:134–57 [Google Scholar]
  40. Jeon NL, Dertinger S, Chiu DT, Choi IS, Stroock AD, Whitesides GM. 40.  2000. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:228311–16 [Google Scholar]
  41. Fiddes LK, Chan HKC, Lau B, Kumacheva E, Wheeler AR. 41.  2010. Durable, region-specific protein patterning in microfluidic channels. Biomaterials 31:2315–20 [Google Scholar]
  42. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. 42.  2000. Molecular Cell Biology New York: W.H. Freeman., 4th ed..
  43. Tarbell JM, Weinbaum S, Kamm RD. 43.  2005. Cellular fluid mechanics and mechanotransduction. Ann. Biomed. Eng. 33:121719–23 [Google Scholar]
  44. Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK. 44.  et al. 2014. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:7509319–25 [Google Scholar]
  45. Fletcher DA, Mullins RD. 45.  2010. Cell mechanics and the cytoskeleton. Nature 463:7280485–92 [Google Scholar]
  46. Pullarkat P, Fernandez PA, Ott A. 46.  2007. Rheological properties of the eukaryotic cell cytoskeleton. Phys. Rep. 449:1–329–53 [Google Scholar]
  47. Tseng Y, Kole TP, Wirtz D. 47.  2002. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83:63162–76 [Google Scholar]
  48. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P. 48.  2008. The role of myosin ii in glioma invasion of the brain. Mol. Biol. Cell 19:83357–68 [Google Scholar]
  49. Friedl P, Wolf K, Lammerding J. 49.  2011. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:155–64 [Google Scholar]
  50. Davidson PM, Denais C, Bakshi MC, Lammerding J. 50.  2014. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell. Mol. Bioeng. 7:3293–306 [Google Scholar]
  51. Seifert U. 51.  1997. Configurations of fluid membranes and vesicles. Adv. Phys. 46:113–137 [Google Scholar]
  52. Fåhræus R. 52.  1929. The suspension stability of blood. Physiol. Rev. 9:2241–74 [Google Scholar]
  53. Fåhræus R, Lindqvist T. 53.  1931. The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96:562–68 [Google Scholar]
  54. Goldsmith HL, Cokelet GR, Gaehtgens P. 54.  1989. Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:3H1005–15 [Google Scholar]
  55. Segré G, Silberberg A. 55.  1962. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14:01115–35 [Google Scholar]
  56. Segré G, Silberberg A. 56.  1962. Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14:1136–57 [Google Scholar]
  57. Leighton D, Acrivos A. 57.  1987. Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177:109–31 [Google Scholar]
  58. Leighton D, Acrivos A. 58.  1987. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181:415–39 [Google Scholar]
  59. Nott PR, Brady JF. 59.  1994. Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275:157–99 [Google Scholar]
  60. Lyon MK, Leal LG. 60.  1998. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363:25–56 [Google Scholar]
  61. Lyon MK, Leal LG. 61.  1998. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 2. Bidisperse systems. J. Fluid Mech. 363:57–77 [Google Scholar]
  62. Saffman PG. 62.  1965. Lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:2385–400 [Google Scholar]
  63. Cox RG, Brenner H. 63.  1968. The lateral migration of solid particles in Poiseuille flow—I theory. Chem. Eng. Sci. 23:2147–73 [Google Scholar]
  64. Ho BP, Leal LG. 64.  1974. Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J. Fluid Mech. 65:Pt. 2365–400 [Google Scholar]
  65. Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M. 65.  2009. Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102:9094503 [Google Scholar]
  66. Goldsmith HL, Mason SG. 66.  1962. The flow of suspensions through tubes. I. Single spheres, rods, and discs. J. Colloid Sci. 17:5448–76 [Google Scholar]
  67. Goldsmith HL, Mason SG. 67.  1961. Axial migration of particles in Poiseuille flow. Nature 190:1095–96 [Google Scholar]
  68. Chan PCH, Leal LG. 68.  1979. The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92:01131–70 [Google Scholar]
  69. Chan PCH, Leal LG. 69.  1981. An experimental study of drop migration in shear flow between concentric cylinders. Int. J. Multiphase Flow 7:183–99 [Google Scholar]
  70. Zhou H, Pozrikidis C. 70.  1994. Pressure-driven flow of suspensions of liquid drops. Phys. Fluids 6:180–94 [Google Scholar]
  71. Zhou H, Pozrikidis C. 71.  1993. The flow of ordered and random suspensions of two-dimensional drops in a channel. J. Fluid Mech. 255:103–27 [Google Scholar]
  72. Karnis A, Mason SG. 72.  1967. Particle motions in sheared suspensions: XXIII. Wall migration of fluid drops. J. Colloid Interface Sci. 24:164–69 [Google Scholar]
  73. Hiller W, Kowalewski TA. 73.  1987. An experimental study of the lateral migration of a droplet in a creeping flow. Exp. Fluids 5:43–48 [Google Scholar]
  74. Zhou H, Pozrikidis C. 74.  1993. The flow of suspensions in channels: single files of drops. Phys. Fluids A Fluid Dyn. 5:2311–24 [Google Scholar]
  75. Rallison JM. 75.  1984. The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16:45–66 [Google Scholar]
  76. Stone HA. 76.  1994. Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26:65–102 [Google Scholar]
  77. Berndl K, Käs J, Lipowsky R, Sackmann E, Seifert U. 77.  1990. Shape transformations of giant vesicles: extreme sensitivity to bilayer asymmetry. EPL 13:7659–64 [Google Scholar]
  78. Yanagisawa M, Imai M, Taniguchi T. 78.  2008. Shape deformation of ternary vesicles coupled with phase separation. Phys. Rev. Lett. 100:14148102 [Google Scholar]
  79. Sackmann E. 79.  2006. Thermo-elasticity and adhesion as regulators of cell membrane architecture and function. J. Phys. Condens. Matter 18:45R785–R825 [Google Scholar]
  80. Deschamps J, Kantsler V, Steinberg V. 80.  2009. Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102:11118105 [Google Scholar]
  81. Deschamps J, Kantsler V, Segre E, Steinberg V. 81.  2009. Dynamics of a vesicle in general flow. PNAS 106:2811444–47 [Google Scholar]
  82. Abreu D, Levant M, Steinberg V, Seifert U. 82.  2014. Fluid vesicles in flow. Adv. Colloid Interface Sci. 208:129–41 [Google Scholar]
  83. Abkarian M, Faivre M, Viallat A. 83.  2007. Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98:18188302 [Google Scholar]
  84. Abkarian M, Viallat A. 84.  2008. Vesicles and red blood cells in shear flow. Soft Matter 4:4653–57 [Google Scholar]
  85. Vlahovska PM, Podgorski T, Misbah C. 85.  2009. Vesicles and red blood cells in flow: from individual dynamics to rheology. C.R. Phys. 10:8775–89 [Google Scholar]
  86. Walter A, Rehage H, Leonhard H. 86.  2001. Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloids Surf. A Physicochem. Eng. Asp. 183–85:123–32 [Google Scholar]
  87. Olla P. 87.  1997. The lift on a tank-treading ellipsoidal cell in a shear flow. J. Phys. II France 7:101533–40 [Google Scholar]
  88. Callens N, Minetti C, Coupier G, Mader MA, Dubois F. 88.  et al. 2008. Hydrodynamic lift of vesicles under shear flow in microgravity. EPL 83:224002 [Google Scholar]
  89. Abkarian M, Lartigue C, Viallat A. 89.  2002. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:6068103 [Google Scholar]
  90. Abkarian M, Viallat A. 90.  2005. Dynamics of vesicles in a wall-bounded shear flow. Biophys. J. 89:21055–66 [Google Scholar]
  91. Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W. 91.  2008. Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77:2021903 [Google Scholar]
  92. Coupier G, Kaoui B, Podgorski T, Misbah C. 92.  2008. Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20:11111702 [Google Scholar]
  93. Danker G, Vlahovska P, Misbah C. 93.  2009. Vesicles in Poiseuille flow. Phys. Rev. Lett. 102:14148102 [Google Scholar]
  94. Doddi SK, Bagchi P. 94.  2008. Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiph. Flow 34:10966–86 [Google Scholar]
  95. Pozrikidis C. 95.  2005. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33:2165–78 [Google Scholar]
  96. Geislinger TM, Franke T. 96.  2014. Hydrodynamic lift of vesicles and red blood cells in flow—from Fåhræus & Lindqvist to microfluidic cell sorting. Adv. Colloid Interface Sci. 208:161–76 [Google Scholar]
  97. Hou HW, Bhagat A, Chong A, Mao P, Tan K. 97.  2010. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:192605–13 [Google Scholar]
  98. Geislinger TM, Franke T. 98.  2013. Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift. Biomicrofluidics 7:044120 [Google Scholar]
  99. Yang S, Lee SS, Ahn SW, Kang K, Shim W. 99.  et al. 2012. Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matter 8:185011–19 [Google Scholar]
  100. Karimi A, Yazdi S, Ardekani AM. 100.  2013. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7:2021501 [Google Scholar]
  101. Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA. 101.  2006. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. PNAS 103:61762–67 [Google Scholar]
  102. Vogel SK, Schwille P. 102.  2012. Minimal systems to study membrane. Curr. Opin. Biotechnol. 23:5758–65 [Google Scholar]
  103. Murrell M, Pontani L-L, Guevorkian K, Cuvelier D, Nassoy P, Sykes C. 103.  2011. Spreading dynamics of biomimetic actin cortices. Biophys. J. 100:61400–9 [Google Scholar]
  104. Sackmann E, Smith AS. 104.  2014. Physics of cell adhesion: some lessons from cell-mimetic systems. Soft Matter 10:1644–59 [Google Scholar]
  105. Smith A-S, Lorz BG, Seifert U, Sackmann E. 105.  2006. Antagonist-induced deadhesion of specifically adhered vesicles. Biophys. J. 90:31064–80 [Google Scholar]
  106. Smith A-S, Lorz BG, Goennenwein S, Sackmann E. 106.  2006. Force-controlled equilibria of specific vesicle-substrate adhesion. Biophys. J. 90:7L52–L54 [Google Scholar]
  107. Lorz BG, Smith A-S, Gege C, Sackmann E. 107.  2007. Adhesion of giant vesicles mediated by weak binding of sialyl-LewisX to E-selectin in the presence of repelling poly(ethylene glycol) molecules. Langmuir 23:2412293–300 [Google Scholar]
  108. Vezy C, Massiera G, Viallat A. 108.  2007. Adhesion induced non-planar and asynchronous flow of a giant vesicle membrane in an external shear flow. Soft Matter 3:7844–51 [Google Scholar]
  109. Girard P, Pécréaux J, Lenoir G, Falson P, Rigaud J-L, Bassereau P. 109.  2004. A new method for the reconstitution of membrane proteins into giant unilamellar vesicles. Biophys. J. 87:1419–29 [Google Scholar]
  110. Dao M, Lim CT, Suresh S. 110.  2003. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:11–122259–80 [Google Scholar]
  111. Suresh S. 111.  2006. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 21:81871–77 [Google Scholar]
  112. Cooke BM, Mohandas N, Coppell RL. 112.  2001. The malaria-infected red blood cell: structural and functional changes. Adv. Parasitol. 50:1–86 [Google Scholar]
  113. Hochmuth RM. 113.  2000. Micropipette aspiration of living cells. J. Biomech. 33:115–22 [Google Scholar]
  114. Zhang H, Liu K-K. 114.  2008. Optical tweezers for single cells. J. R. Soc. Interface 5:24671–90 [Google Scholar]
  115. Zheng Y, Nguyen J, Wei Y, Sun Y. 115.  2013. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13:132464–83 [Google Scholar]
  116. Shelby JP, White JM, Ganesan K, Rathod PK, Chiu DT. 116.  2003. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. PNAS 100:2514618–22 [Google Scholar]
  117. Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y. 117.  2012. High-throughput biophysical measurement of human red blood cells. Lab Chip 12:142560–67 [Google Scholar]
  118. Rosenbluth MJ, Lam WA, Fletcher DA. 118.  2006. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90:82994–3003 [Google Scholar]
  119. Rosenbluth MJ, Lam WA, Fletcher DA. 119.  2008. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:71062–70 [Google Scholar]
  120. Plaks V, Koopman CD, Werb Z. 120.  2013. Circulating tumor cells. Science 341:61511186–88 [Google Scholar]
  121. Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT. 121.  et al. 2010. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. PNAS 107:4318392–97 [Google Scholar]
  122. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. 122.  2008. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Lab Chip 8:111906–14 [Google Scholar]
  123. Zhou J, Giridhar PV, Kasper S, Papautsky I. 123.  2013. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13:101919–29 [Google Scholar]
  124. Zhou J, Kasper S, Papautsky I. 124.  2013. Enhanced size-dependent trapping of particles using microvortices. Microfluid. Nanofluid. 15:5611–23 [Google Scholar]
  125. Hur SC, Mach AJ, Di Carlo D. 125.  2011. High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:2022206 [Google Scholar]
  126. Sollier E, Go DE, Che J, Gossett DR, O'Byrne S. 126.  et al. 2014. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:163–77 [Google Scholar]
  127. Di Carlo D, Irimia D, Tompkins RG, Toner M. 127.  2007. Continuous inertial focusing, ordering, and separation of particles in microchannels. PNAS 104:4818892–97 [Google Scholar]
  128. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M. 128.  2008. Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80:62204–11 [Google Scholar]
  129. Gossett DR, Di Carlo D. 129.  2009. Particle focusing mechanisms in curving confined flows. Anal. Chem. 81:208459–65 [Google Scholar]
  130. Wu L, Guan G, Hou HW, Bhagat AAS, Han J. 130.  2012. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84:219324–31 [Google Scholar]
  131. Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS. 131.  et al. 2014. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:1128–37 [Google Scholar]
  132. Stroock AD, Dertinger S, Ajdari A, Mezic I, Stone HA, Whitesides GM. 132.  2002. Chaotic mixer for microchannels. Science 295:5555647–51 [Google Scholar]
  133. Tibbitt MW, Anseth KS. 133.  2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:4655–63 [Google Scholar]
  134. Even-Ram S, Yamada KM. 134.  2005. Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17:5524–32 [Google Scholar]
  135. Petrie RJ, Gavara N, Chadwick RS, Yamada KM. 135.  2012. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197:3439–55 [Google Scholar]
  136. Petrie RJ, Koo H, Yamada KM. 136.  2014. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345:62001062–65 [Google Scholar]
  137. Fraley SI, Feng Y, Krishnamurthy R, Kim D-H, Celedon A. 137.  et al. 2010. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12:6598–604 [Google Scholar]
  138. Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H. 138.  et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. PNAS 103:2910889–94 [Google Scholar]
  139. Yamazaki D, Kurisu S, Takenawa T. 139.  2009. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28:131570–83 [Google Scholar]
  140. Chambers AF, Groom AC, MacDonald IC. 140.  2002. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2:8563–72 [Google Scholar]
  141. Yamaguchi H, Wyckoff J, Condeelis J. 141.  2005. Cell migration in tumors. Curr. Opin. Cell Biol. 17:5559–64 [Google Scholar]
  142. Fidler IJ. 142.  2003. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat. Rev. Cancer 3:6453–58 [Google Scholar]
  143. Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil A-M, Piel M. 143.  et al. 2010. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. Nat. Immunol. 11:10953–61 [Google Scholar]
  144. Mak M, Reinhart-King CA, Erickson D. 144.  2013. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13:340–48 [Google Scholar]
  145. Mak M, Reinhart-King CA, Erickson D. 145.  2011. Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics. PLOS ONE 6:6e20825 [Google Scholar]
  146. Rolli CG, Seufferlein T, Kemkemer R, Spatz JP. 146.  2010. Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLOS ONE 5:1e8726 [Google Scholar]
  147. Stroka KM, Jiang H, Chen S-H, Tong Z, Wirtz D. 147.  et al. 2014. Water permeation drives tumor cell migration in confined microenvironments. Cell 157:3611–23 [Google Scholar]
  148. Wu P-H, Giri A, Sun SX, Wirtz D. 148.  2014. Three-dimensional cell migration does not follow a random walk. PNAS 111:113949–54 [Google Scholar]
  149. Umesh V, Rape AD, Ulrich TA, Kumar S. 149.  2014. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling. PLOS ONE 9:7e101771 [Google Scholar]
  150. Pathak A, Kumar S. 150.  2013. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5:81067–75 [Google Scholar]
  151. Roussos ET, Condeelis JS, Patsialou A. 151.  2011. Chemotaxis in cancer. Nat. Rev. Cancer 11:8573–87 [Google Scholar]
  152. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE. 152.  2007. Cell motility and cytoskeletal regulation in invasion and metastasis. J. Mammary Gland Biol. Neoplasia 12:2–3143–52 [Google Scholar]
  153. Rape A, Ananthanarayanan B, Kumar S. 153.  2014. Engineering strategies to mimic the glioblastoma microenvironment. Adv. Drug Deliv. Rev. 79–80:172–83 [Google Scholar]
  154. Toetsch S, Olwell P, Prina-Mello A, Volkov Y. 154.  2009. The evolution of chemotaxis assays from static models to physiologically relevant platforms. Integr. Biol. 1:2170–81 [Google Scholar]
  155. Chung S, Sudo R, Mack PJ, Wan C-R, Vickerman V, Kamm RD. 155.  2009. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:2269–75 [Google Scholar]
  156. Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD. 156.  et al. 2011. Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal. Chem. 83:228454–59 [Google Scholar]
  157. Zervantonakis IK, Chung S, Sudo R, Zhang M, Charest JL, Kamm RD. 157.  2010. Concentration gradients in microfluidic 3D matrix cell culture systems. Int. J. Micro-Nano Scale Transport 1:127–36 [Google Scholar]
  158. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD. 158.  2010. Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Ann. Biomed. Eng. 38:31164–77 [Google Scholar]
  159. King KR, Wang S, Jayaraman A, Yarmush ML, Toner M. 159.  2008. Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments. Lab Chip 8:1107–16 [Google Scholar]
  160. Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T. 160.  et al. 2012. A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid. Nanofluid. 14:6969–81 [Google Scholar]
  161. Polacheck WJ, Charest JL, Kamm RD. 161.  2011. Interstitial flow influences direction of tumor cell migration through competing mechanisms. PNAS 108:2711115–20 [Google Scholar]
  162. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD. 162.  2014. Mechanotransduction of fluid stresses governs 3D cell migration. PNAS 111:72447–52 [Google Scholar]
  163. Kang C-C, Lin J-MG, Xu Z, Kumar S, Herr AE. 163.  2014. Single-cell western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal. Chem. 86:2010429–36 [Google Scholar]
  164. Faivre M, Abkarian M, Bickraj K, Stone HA. 164.  2006. Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma. Biorheology 43:2147–59 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061114-123407
Loading
/content/journals/10.1146/annurev-chembioeng-061114-123407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error