1932

Abstract

Since the discovery of high- cuprates, the quest for new superconductors has shifted toward more anisotropic, strongly correlated materials with lower carrier densities and competing magnetic and charge-density wave orders. Although these materials’ features enhance superconducting correlations, they also result in serious problems for applications at liquid nitrogen (and higher) temperatures and strong magnetic fields so that such conventional characteristics as the critical temperature and the upper critical field are no longer the main parameters of merit. This happens because of strong fluctuations of the order parameter, thermally activated hopping of pinned vortices, and electromagnetic granularity, as has been established after extensive investigations of cuprates and Fe-based superconductors (FBSs). In this paper, I give an overview of those mechanisms crucial for power and magnet applications and discuss the materials’ restrictions that must be satisfied to make superconductors useful at high temperatures and magnetic fields. These restrictions become more and more essential at higher temperatures and magnetic fields, particularly for the yet-to-be-discovered superconductors operating at room temperatures. In this case, the performance of superconductors is limited by destructive fluctuations of the order parameter so that higher superfluid density and weaker electronic anisotropy, which reduce these fluctuations, can become far more important than higher .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133822
2014-03-10
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133822.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133822&mimeType=html&fmt=ahah

Literature Cited

  1. Geballe TH, Hulm JK. 1996. Bernd Theodor Matthias Washington, DC: Natl. Acad. Press
  2. Berlincourt TG. 1987. IEEE Trans. Magn. 23:403–12
  3. Onnes HK. 1913. Comm. Physical Lab., Univ. of Leiden Suppl. 34b to 133-144:37
  4. Meissner W, Oschenfeld R. 1933. Naturwissenschaften 21:787–88
  5. Shubnikov LV, Khotkevich VI, Shepelev YuD, Ryabinin YuN. 1937. Zh. Exp. Teor. Fiz. 7:221–37
  6. London F, London H. 1935. Proc. R. Soc. A149:71–88
  7. Ginzburg VL, Landau LD. 1950. Zh. Eksp. Teor. Fiz 20:1064–81 Transl., LD Landau, 1985, in Collected Works, p. 546. Oxford: Pergamon
  8. Bardeen J, Cooper LN, Schrieffer JR. 1957. Phys. Rev. 108:1175–204
  9. Abrikosov AA. 1957. Zh. Exp. Teor. Fiz. 22:1442–52 Transl., 1957, in J. Exp. Theor. Phys. 5:1174–82
  10. Gorkov LP. 1959. Zh. Exp. Teor. Fiz. 37:1407–16 Transl., 1960, in J. Exp. Theor. Phys. 9:998–1004
  11. Helfand E, Werthamer NR. 1966. Phys. Rev. 147:288–94
  12. Larbalestier D, Gurevich A, Feldmann M, Polyanskii A. 2001. Nature 414:368–77
  13. Larbalestier DC. 2012. See Ref. 134, pp. 627–42
  14. Eliashberg GM. 1960. Zh. Exp. Teor. Fiz. 38:966–974 Transl., 1960, in J. Exp. Theor. Phys. 11:696–702
  15. Scalapino DJ, Schrieffer JR, Wilkins JW. 1966. Phys. Rev. 148:263–79
  16. Allen PB, Dynes RC. 1975. Phys. Rev. B 12:905–22
  17. Carbotte JP. 1990. Rev. Mod. Phys. 62:1027–57
  18. Campbell AM, Evetts JE. 1972. Adv. Phys. 21:194–428
  19. Wilson M. 1983. Superconducting Magnets Oxford: Clarendon
  20. Gurevich A, Patnaik S, Braccini V, Kim KH, Mielke C et al. 2004. Supercond. Sci. Technol. 17:278–86
  21. Wilke RTH, Bud’ko SL, Canfield PC, Finnemore DK, Suplinskas RJ, Hannahs ST. 2004. Phys. Rev. Lett. 92:217003
  22. Braccini V, Gurevich A, Giencke JE, Jewell MC, Eom C-B et al. 2005. Phys. Rev. B 71:012504
  23. Flükiger R, Kumakura H. 2012. See Ref. 134, pp. 702–10
  24. Larkin AI, Varlamov AA. 2007. Fluctuations in Superconductors Oxford: Clarendon Press
  25. Blatter G, Feigelman MV, Geshkenbein VB, Larkin AI, Vinokur VV. 1994. Rev. Mod. Phys. 66:1125–388
  26. Brandt EH. 1995. Rep. Prog. Phys. 58:1465–594
  27. Tinkham M. 2004. Introduction to Superconductivity New York: McGraw-Hill, 2nd ed..
  28. Fischer O. 1978. Appl. Phys. (Berl.) 16:1–28 [Google Scholar]
  29. Stewart GR. 1984. Rev. Mod. Phys. 56:755–87
  30. Steglich F. 2012. See Ref. 134, pp. 283–87
  31. Jerome D, Schulz HJ. 2002. Adv. Phys. 51:293–479
  32. Ishiguro T, Yamaji K, Saito G. 1998. Organic Superconductors. Springer Series in Solid State Physics Vol. 88 Berlin, Heidelberg: Springer-Verlag
  33. Bednortz JG, Muller P. 1986. Z. Phys. 64:189–93
  34. Kamihara Y, Watanabe T, Hirano M, Hosono H. 2008. J. Am. Chem. Soc. 130:3296–97
  35. Paglione J, Greene RL. 2010. Nat. Phys. 6:645–58
  36. Canfield PC, Bud’ko SL. 2010. Annu. Rev. Condens. Matter Phys. 1:27–50
  37. Johnston DC. 2010. Adv. Phys. 59:803–1061
  38. Putti M, Pallecchi I, Bellinger E, Tropeano M, Ferdeghini C et al. 2010. Supercond. Sci. Technol. 23:034003
  39. Tanabe K, Hosono H. 2012. Jpn. J. Appl. Phys. 51:010005
  40. Wen HH, Li S. 2011. Annu. Rev. Condens. Matter Phys. 2:121–40
  41. Hilgenkamp H, Mannhart J. 2002. Rev. Mod. Phys. 74:485–549
  42. Durrell JH, Eom C-B, Gurevich A, Hellstrom EE, Tarantini C et al. 2011. Rep. Prog. Phys. 74:124511
  43. Gurevich A. 2011. Rep. Prog. Phys. 74:124501
  44. Tarantini A, Gurevich A, Jaroszynski J, Balakirev F, Bellingeri E et al. 2011. Phys. Rev. B 84:184522
  45. Yeshurun Y, Malozemoff AP, Shaulov A. 1996. Rev. Mod. Phys. 68:911–49
  46. Haugan TJ, Barnes PN, Wheeler R, Meisenkothen F, Sumption MD. 2004. Nature 430:867–70
  47. MacManus-Driscoll JL, Foltyn SR, Jia QX, Wang H, Serquis A et al. 2004. Nat. Mater. 3:439–43
  48. Mele P, Matsumoto K, Horide T, Miura O, Ichinose A et al. 2006. Supercond. Sci. Technol. 19:44–50
  49. Kang S, Goyal A, Li J, Gapud AA, Martin PM et al. 2006. Science 311:1911–14
  50. Gutierrez J, Llordes A, Gazquez J, Gibert M, Roma N et al. 2007. Nat. Mater. 6:367–73
  51. Maiorov B, Baily SA, Zhou H, Ugurlu O, Kennison JA et al. 2009. Nat. Mater. 8:398–404
  52. Schilling A, Fisher RA, Phillips NE, Welp U, Kwok WK, Crabtree GW. 1997. Phys. Rev. Lett. 78:4833–36
  53. Malozemoff AP, Yamada Y. 2012. See Ref. 134, pp. 689–701
  54. Malozemoff AP. 2013. PhysicaC 494:1–4
  55. Ott HR. 2004. High-Tc Superconductivity. The Physics of Superconductors Vol. 1 Bennemann KH, Ketterson JD. 385–494 Berlin: Springer-Verlag [Google Scholar]
  56. Tsuei CC, Kirtley JR. 2000. Rev. Mod. Phys. 72:969–1016
  57. Norman MR, Pines D, Kallin C. 2005. Adv. Phys. 54:715–33
  58. Lee PA, Nagaosa N, Wen X-G. 2008. Rev. Mod. Phys. 78:17–85
  59. Zaanen J. 2012. See Ref. 134, pp. 92–114
  60. Varma CM. 2012. Rep. Prog. Phys. 75:052501
  61. Scalapino DJ. 2012. Rev. Mod. Phys. 84:1383–717
  62. Hirschfeld PJ, Korshunov MM, Mazin II. 2011. Rep. Prog. Phys. 74:124508
  63. Chubukov AV. 2012. Annu. Rev. Condens. Matter Phys. 3:57–92
  64. Dagoto E. 2005. Science 309:257–62
  65. Maple MB, Bauer ED, Zapf VS, Wosnitza J. 2008. In Superconductivity. Conventional and Unconventional superconductors, Vol. 1, ed. KH Bennemann, JD Ketterson, pp. 639–762. Berlin: Springer-Verlag
  66. Cohen ML. 1964. Rev. Mod. Phys. 36:240–43
  67. Blase X, Bustarret E, Chapelier C, Klein T, Marcenat C. 2009. Nat. Mater. 8:375–82
  68. Gunnarsson O. 1997. Rev. Mod. Phys. 69:575–606
  69. Beasley MR. 2011. Mater. Res. Bull. 36:597–600
  70. Gurevich A. 2011. Nat. Mater. 10:255–59
  71. Emery VJ, Kivelson SA. 1995. Nature 374:434–37
  72. Carson EW, Emery VJ, Kivelson SA, Orgad D. 2004. Physics of Conventional and Inconventional Superconductivity Vol. 2 Bennemann KH, Ketterson JD. 275–452 Berlin, Heidelberg, New York: Springer-Verlag
  73. Tallon JL, Storey JG, Makket B. 2012. Physica C 482:45–49
  74. Tinkham M. 1988. Phys. Rev. Lett. 66:1658–61
  75. Shiohara Y, Taneda T, Yoshizimi M. 2012. Jpn. J. Appl. Phys. 51:010007
  76. Kumakura H. 2012. Jpn. J. Appl. Phys. 51:010003
  77. Li B, Zhou D, Xu K, Hara S, Tsuzuki K et al. 2012. Physica C 482:50–57
  78. Sato K, Kobayashi S, Nakashima T. 2012. Jpn. J. Appl. Phys. 51:010006
  79. Rupich MW, Hellstrom EE. 2012. See Ref. 134, pp. 671–88
  80. Oomen M, Herkert W, Bayer D, Kummeth P, Nick W, Arndt T. 2012. Physica C 482:111–18
  81. Zhou D, Izumi M, Miki M, Felder F, Ida T, Kitano ML. 2012. Supercond. Sci. Technol. 25:103101
  82. Trociewitz UP, Dalban-Canassy M, Hannion M, Hilton DK, Jaroszynski J et al. 2011. Appl. Phys. Lett. 99:202506
  83. Ma Y. 2012. Supercond. Sci. Technol. 25:113001
  84. Tarantini C, Lee S, Kametani F, Jiang J, Weiss J et al. 2012. Phys. Rev. B 86:214504
  85. Lee S, Tarantini C, Gao P, Jiang J, Weiss JD et al. 2013. Nat. Mater. 12:392–96
  86. Yao C, Ma Y, Zhang X, Wang D, Wang C et al. 2013. Appl. Phys. Lett. 102:082602
  87. Ding Q-P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T. 2012. Supercond. Sci. Technol. 25:035019
  88. Ding Y, Li GZ, Yang Y, Kovacs CJ, Susner MA et al. 2012. Physica C 483:13–16
  89. Yao C, Wang C, Zhang X, Wang L, Gao Z et al. 2012. Supercond. Sci. Technol. 25:035020
  90. Gao Z, Ma Y, Yao C, Zhang X, Wang C et al. 2012. Sci. Reports 2:998
  91. Wang L, Ma Y, Wang Q, Li K, Zhang X et al. 2011. Appl. Phys. Lett. 98:222505
  92. Si W, Han SJ, Shi X, Ehrlich SN, Jaroszynski J et al. 2013. Nature Commun. 4:1347
  93. Weiss JD, Tarantini C, Jiang J, Kametani F, Polyanskii AA et al. 2012. Nat. Mater. 11:682–85
  94. Fang L, Jia Y, Chaparro C, Sheet G, Claus H et al. 2012. Appl. Phys. Lett. 101:012601
  95. Orlando TP, McNiff EJ, Foner S, Beasley MR. 1979. Phys. Rev. B 19:4545–61
  96. Basov DN, Liang R, Bonn DA, Hardy WN, Dabrovsky B et al. 1995. Phys. Rev. Lett. 74:598–601
  97. Prozorov R, Giannetta RW, Carrington A, Fournier P, Green RL et al. 2000. Appl. Phys. Lett. 77:4202–4
  98. Leong KT, Booth JC, Claassen JH. 2007. J. Supercond. Nov. Magn. 19:637–48
  99. Bonn DA, Hardy WH. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 145–214 New York: Springer
  100. Gordon RT, Kim H, Salovich N, Giannetta RW, Fernandeset RM et al. 2010. Phys. Rev. B 82:054507
  101. Kim H, Martin C, Gordon RT, Tanatar MA, Hu J et al. 2010. Phys. Rev. B 81:180503
  102. Ofer O, Baglo JC, Hossain MD, Kiefl RF, Hardy WN et al. 2012. Phys. Rev. B 85:060506
  103. Maurer SM, Yeh N-C, Tombrello TA. 1998. J. Phys. Condens. Matter 10:7429–43
  104. Priour DJ, Fertig HA. 2003. Phys. Rev. B 67:054504
  105. Gurevich A, Cooley LD. 1994. Phys. Rev. B 50:13563–76
  106. Labusch R. 1969. Cryst. Lattice Defects 1:1–16
  107. Blatter G, Geshkenbein VB, Koopmann JAG. 2004. Phys. Rev. Lett. 92:067009
  108. Brandt EH. 1992. Phys. Rev. Lett. 69:1105–9
  109. Gurevich A. 2007. Supercond. Sci. Technol. 20:S128–35
  110. Koshelev AE, Kolton AB. 2011. Phys. Rev. B 84:104528
  111. Llordes A, Palau A, Gazquez J, Coll M, Vlad R et al. 2012. Nat. Mater. 11:329–36
  112. Civale L. 1997. Supercond. Sci. Technol. 10:A11–28
  113. Nelson DR, Vinokur VV. 1993. Phys. Rev. B 48:13060–97
  114. Hwa T, LeDoussal P, Nelson DR, Vinokur VM. 1993. Phys. Rev. Lett. 71:3545–48
  115. Gurevich A, Pashitskii EA. 1998. Phys. Rev. B 57:13878–93
  116. Graser S, Hirschfeld PJ, Kopp T, Gutser R, Andersen BM, Mannhart J. 2010. Nat. Phys. 6:609–12
  117. Song X, Daniels G, Feldmann MD, Gurevich A, Larbalestier D. 2005. Nat. Mater. 4:470–75
  118. Wolf FA, Graser S, Loder F, Kopp T. 2012.. Phys. Rev. Lett. 108::117002
  119. Little WA. 1964. Phys. Rev. 134:A1416–24
  120. Ginzburg VL. 1970. Usp. Fiziol. Nauk 101:185 [Sov. Phys. Uspekhi 13:335]
  121. Allender D, Bray J, Bardeen J. 1973. Phys. Rev. B 7:1020–29
  122. Pickett WE. 2006. J. Supercond. Novel Magn. 19:291–97
  123. Geballe TH, Kostner G. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 325–44 New York: Springer
  124. Chu CW. 2012. Physica C 482:33–44
  125. Nguyen AK, Sudbo A. 1999. Phys. Rev. B 60:15307–31
  126. Frantz M, Teszanovic Z. 2001. Phys. Rev. Lett. 87:257003
  127. Sachdev S. 2012. Annu. Rev. Condens. Matter Phys. 3:9–33
  128. Minnhagen P. 1987. Rev. Mod. Phys. 59:1001–66
  129. McCumber DE, Halperin BI. 1970. Phys. Rev. B 1:1054–69
  130. Binder K, Luijten E. 2001. Phys. Rep. 344:179–253
  131. Berg E, Orgad D, Kivelson SA. 2008. Phys. Rev. B 78:094509
  132. Kivelson SA, Fradkin E. 2007. Handbook of High Temperature Superconductivity Schrieffer JR, Brooks JS. 570–96 New York: Springer
  133. Taillefer L. 2010. Annu. Rev. Condens. Matter Phys. 1:51–70
  134. Balatsky AV, Vekhter I, Zhu J-X. 2006. Rev. Mod. Phys. 78:373–433
  135. Rogall H, Kes PH. 2012.. 100 Years of Superconductivity Boca Raton, FL: Taylor & Francis>
/content/journals/10.1146/annurev-conmatphys-031113-133822
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error