1932

Abstract

Despite 5,000 years of metals in technology and 80 years since dislocations were postulated as the carriers of deformation, we still lack fundamental theories of dislocation substructure development and its relation to the stress-strain response in real materials. In this review, we focus on one type of tool being used to explore dislocation-based plasticity: the modeling and simulation of dislocation structures and properties. Before a discussion of the methods, we present a brief summary of aspects of dislocation theory that are critical to understanding plasticity. We then review three approaches to modeling and simulating dislocation properties at the mesoscale: discrete dislocation dynamics, phase-field dislocation methods, and continuous dislocation theory. We discuss the power and limitations of the methods when applied to real-world problems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133858
2014-03-10
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133858.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133858&mimeType=html&fmt=ahah

Literature Cited

  1. Hirth JP, Lothe J. 1992. Theory of Dislocations Malabar, FL: Kreiger Publ.
  2. Bacon DJ. 1992. In Materials Science and Technology: A Comprehensive Treatment, Vol. 1, ed. V Gerold, pp. 411–82. Weinheim, Ger.: Wiley
  3. Hull D, Bacon DJ. 2001. Introduction to Dislocations Oxford, UK: Butterworth Heinemann, 4th ed..
  4. Ashby MF. 1992. Mater. Sci. Technol. 8:102–11
  5. Ungár T, Mughrabi H, Ronnpagel D, Wilkens M. 1984. Acta Metall. 32:333–42
  6. Ungár T. 2001. Mater. Sci. Eng. A 309–10:14–22
  7. Szekely F, Groma I, Lendvai J. 2002. Mater. Sci. Eng. A 324:179–82
  8. Balogh L, Capolungo L, Tomé CN. 2012. Acta Mater. 60:1467–77
  9. Mughrabi H. 1971. Philos. Mag. 23:869–95
  10. Mughrabi H. 1971. Philos. Mag. 23:897–929
  11. Keller C, Hug E, Retoux R, Feaugas X. 2010. Mech. Mater. 42:44–54
  12. Wang Z, Ghoniem NM, McCabe RJ, LeSar R, Misra A. 2004. Acta Mater. 52:1535–42
  13. Barnard JS, Eggeman AS, Sharp J, White TA, Midgley PA. 2010. Philos. Mag. 90:4711–30
  14. Hata S, Miyazaki H, Miyazaki S, Mitsuhara M, Tanaka M et al. 2011. Ultramicroscopy 111:1168–75
  15. Kacher JP, Liu GS, Robertson IM. 2011. Scr. Mater. 64:677–80
  16. Pokharel R, Lind J, Kanjarala AK, Li SF, Lebensohn RA, et al. 2014. Annu. Rev. Condens. Matter Phys. 5:317–46
  17. Hofmann F, Keegan S, Korsunsky AM. 2012. Mater. Lett. 89:66–69
  18. Kocks UF, Mecking H. 2003. Prog. Mater. Sci. 48:171–273
  19. Sevillano JG. 1996. In Materials Science and Technology: Plastic Deformation and Fracture of Materials, Vol. 6, ed. H Mughrabi, pp.19–88. Weinheim, Ger.: Wiley
  20. Cottrell AH. 1953. Dislocations and Plastic Flow in Crystals Oxford: Oxford University Press
  21. Cottrell AH. 2002. In Dislocations in Solids, ed. FRN Nabarro, MS Duesbery, pp. vii–xvii. Amsterdam: North-Holland
  22. Kubin LP, Devincre B, Hoc T. 2009. J. Mater. Res. 100:1411–19
  23. Langer JS, Bouchbinder E, Lookman T. 2010. Acta Mater. 58:3718–32
  24. Laurson L, Rosti J, Koivisto J, Miksic A, Alava MJ. 2011. J. Stat. Mech. 2011:P07002
  25. Tsekenis G, Goldenfeld N, Dahmen KA. 2011. Phys. Rev. Lett. 106:105501
  26. Groma I, Ispánnuity PD. 2012. Phys. Rev. Lett. 108:269601
  27. Volterra V. 1907. Ann. Sci. de l’École Norm. Supér. Paris 24:401–517
  28. Taylor GI. 1934. Proc. R. Soc. Lond. A 145:362–87
  29. Orowan E. 1934. Z. Phys. 89:634–59
  30. Polanyi M. 1934. Z. Phys. 89:660–64
  31. Burgers JM. 1939. Proc. K. Ned. Akad. Wetenschappen 42:293–325
  32. Burgers JM. 1939. Proc. K. Ned. Akad. Wetenschappen 42:378–99
  33. Weertman J, Weertman JR. 1992. Elementary Dislocation Theory New York: Oxford University Press
  34. Mura T. 1987. Micromechanics of Defects in Solids Boston, MA: Martinus Nijhoff
  35. Püschl W. 2002. Prog. Mater. Sci. 47:415–61
  36. Peach M, Koehler JS. 1950. Phys. Rev. 80:436–39
  37. Arfken GB, Weber HJ, Harris FE. 2013. Mathematical Methods for Physicists Amsterdam: Acad. Press, 7th ed..
  38. Balluffi RW. 2012. Introduction to Elasticity Theory for Crystal Defects Cambridge, UK: Cambridge Univ. Press
  39. de Wit R. 1960. Solid State Phys. 10:249–92
  40. LeSar R. 2004. Phys. Status Solidi (b) 241:2875–80 [Google Scholar]
  41. Lothe J, Hirth JP. 2005. Phys. Status Solidi (b) 242:836–41 [Google Scholar]
  42. Wang ZQ, Beyerlein IJ, LeSar R. 2007. Philos. Mag. 87:2263–79
  43. Hirth JP, Zbib HM, Lothe J. 1998. Model. Simul. Mater. Sci. Eng. 6:165–69
  44. Nye JF. 1953. Acta Metall. 1:153–62
  45. Kröner E. 1958. Ergeb. Angew. Math. Vol. 5. English Translation: Continuum Theory of Dislocations and Self-Stresses, Transl. I Raasch, CS Hartley, 1970. Arlington, VA: US Off. Nav. Res.
  46. Kosevich AM. 1979. In Dislocations in Solids, ed. FRN Nabarro, pp. 1–141. New York: North-Holland
  47. Rickman JM, Viñals J. 1997. Philos. Mag. A 75:1251–62
  48. Limkumnerd S. 2007. Mesoscale theory of grains and cells: polycrystals and plasticity. PhD thesis, Cornell Univ., Ithaca, NY
  49. Lazar M, Maugin GA, Aifantis EC. 2010. Int. J. Solids Struct. 47:738–45
  50. Nelson DR, Toner J. 1981. Phys. Rev. B 24:363–87
  51. Rickman JM, LeSar R. 2001. Phys. Rev. B 64:094106
  52. Hunter A, Kavuri H, Koslowski M. 2010. Model. Simul. Mater. Sci. Eng. 18:045012
  53. Koslowski M, Lee DW, Lei L. 2011. J. Mech. Phys. Solids 59:1427–36
  54. Koslowski M, Cuitiño A, Ortiz M. 2002. J. Mech. Phys. Solids 50:2597–635
  55. Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG. 2001. Acta Mater. 49:1847–57
  56. Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG. 2001. Appl. Phys. Lett. 78:2324–26
  57. Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:385–93
  58. Swaminarayan S, LeSar R, Lomdahl PS, Beazley D. 1998. J. Mater. Res. 13:3478–84
  59. Read WT. 1953. Dislocations in Crystals New York: McGraw Hill
  60. Weertman J, Weertman JR. 1983. In Physical Metallurgy, Vol. 2, ed. RW Cahn, P Haasen, pp 1309–40. Amsterdam: North-Holland
  61. Seeger A. 1957. In Dislocations and Mechanical Properties of Crystals, ed. JC Fisher, WG Johnson, R Thomson, T Vreeland, pp. 243–329. New York: Wiley
  62. Argon AS. 2002. Scr. Metall. 47:683–87
  63. Ashby MF. 1970. Philos. Mag. 21:399
  64. Kubin LP. 1996. In Materials Science and Technology: Plastic Deformation and Fracture of Materials, Vol. 6, ed. H Mughrabi, pp. 19–88. Weinheim, Ger.: Wiley
  65. Landon CD, Adams BL, Kacher J. 2008. J. Eng. Mater. Technol. 130:021004
  66. Amodeo RJ, Ghoniem NM. 1988. Int. J. Eng. Sci. 26:653–62
  67. Gulluoglu AN, Srolovitz DJ, LeSar R, Lomdahl PS. 1989. Scr. Metall. 23:1347–52
  68. Amodeo RJ, Ghoniem NM. 1990. Phys. Rev. B 41:6968–76
  69. von Blanckenhagen B, Gumbsch P, Arzt E. 2001. Model. Simul. Mater. Sci. Eng. 9:157–69
  70. Kubin LP, Canova G. 1992. Scr. Metall. Mater. 27:957–62
  71. Zbib HM, de la Rubia TD, Rhee M, Hirth JP. 2000. J. Nucl. Mater. 276:154–65
  72. Ghoniem N, Tong S, Sun L. 2000. Phys. Rev. B 61:913–27
  73. Schwarz KW. 1999. J. Appl. Phys. 85:108–19
  74. Bulatov VV, Tang MJ, Zbib HM. 2001. MRS Bull. 26:191–95
  75. Bulatov VV, Hsiung LL, Tang M, Arsenlis A, Bartelt MC et al. 2006. Nature 440:1174–78
  76. Kubin L. 2013. Dislocations, Mesoscale Simulations, and Plastic Flow. Oxford: Oxford Univ. Press
  77. Jin YM, Khachaturyan AG. 2001. Philos. Mag. Lett. 81:607–16
  78. Wang YU, Jin YM, Khachaturyan G. 2005. In Handbook of Materials Modeling, ed. S Yip, pp. 2287–305. Dordrecht: Springer
  79. Wang Y, Li J. 2010. Acta Mater. 58:1212–35
  80. Ginzburg VL, Landau LD. 1950 (1965). Zhurnal Eksp. Teor. Fiz. 20:1064. Transl. L. D. Landau, Collected Papers546 Oxford: Pergamon [Google Scholar]
  81. Foreman AJE, Makin MJ. 1966. Philos. Mag. 14:911
  82. Foreman AJE, Makin MJ. 1967. Can. J. Phys. 45:511
  83. Lépinoux J, Kubin LP. 1987. Scr. Metall. 21:833–38
  84. Hansen JP. 1986. In Molecular-Dynamics Simulations of Statistical-Mechanical Systems, ed. G. Ciccotti, WG Hoover, pp. 89–128. Amsterdam: North-Holland
  85. Barts DB, Carlsson AE. 1995. Phys. Rev. E 52:3195–204
  86. Wang HY, LeSar R. 1995. Philos. Mag. A 71:149–64
  87. van der Giessen E, Needleman A. 2002. Annu. Rev. Mater. Res. 32:141–62
  88. van der Giessen E, Needleman A. 1995. Model. Simul. Mater. Sci. Eng. 3:689–735
  89. Needleman A. 2000. Acta Mater. 48:105–24
  90. Needleman A, van der Giessen E. 2001. Mater. Sci. Eng. A 309–310:1–13
  91. Roos A, de Hosson JTM, van der Giessen E. 2001. Comput. Mater. Sci. 20:1–18
  92. Roos A, de Hosson JTM, van der Giessen E. 2001. Comput. Mater. Sci. 20:19–27
  93. van der Giessen E, Needleman A. 2003. Scr. Mater. 48:127–32
  94. Argaman N, Levy O, Makov G. 2001. Mater. Sci. Eng. A 309–310:386–92
  95. Laurson L, Miguel MC, Alava MJ. 2010. Phys. Rev. Lett. 105:015501
  96. Laurson L, Alava MJ. 2012. Phys. Rev. Lett. 109:155504
  97. Miguel MC, Laurson L, Alava MJ. 2008. Eur. Phys. J. B 64:443–50
  98. Zacharapolous N, Srolovitz DJ. Le Sar R. 1997. Acta Mater. 45:3745–63
  99. Zacharapolous N, Srolovitz DJ, LeSar R. 2003. J. Mech. Phys. Solids 51:695–713
  100. Bjerkén C, Melin S. 2009. Int. J. Solids Struct. 46:1196–204
  101. Devincre B, Kubin LP. 1997. Mater. Sci. Eng. A 234–236:8–14
  102. Wang Z, Ghoniem NM, Swaminarayan S, LeSar R. 2006. J. Comput. Phys. 219:608–21
  103. Fivel MC. 2008. Comptes Rendus Phys. 9:427–36
  104. Fivel M. 2008. In Multiscale Modeling of Heterogenous Materials: From Microstructure to Macro-Scale Properties Cazacu O. New York: Wiley [Google Scholar]
  105. Verdier M, Fivel M, Groma I. 1998. Model. Simul. Mater. Sci. Eng. 6:755–70
  106. Bonneville J, Escaig B. 1979. Acta Metall. 27:1477–86
  107. Rao S, Parthasarathy TA, Woodward C. 1999. Philos. Mag. A 79:1167–92
  108. Rao S, Dimiduk DM, Parthasarathy TA, El-Awady J, Woodward C, Uchic MD. 2011. Acta Mater. 59:7135–44
  109. Bakó B, Groma I, Györgyi G, Zimányi G. 2006. Comput. Mater. Sci. 38:22–28
  110. Mordehai D, Clouet E, Fivel M, Verdier M. 2008. Philos. Mag. 88:899–925
  111. Gao Y, Zhuang Z, Liu ZL, You XC, Zhao XC, Zhang ZH. 2011. Int. J. Plast. 27:1055–71
  112. El-Awady JA, Biner SB, Ghoniem NM. 2008. J. Mech. Phys. Solids 56:2019–35
  113. El-Awady JA, Wen M, Ghoniem NM. 2009. J. Mech. Phys. Solids 57:32–50
  114. Zhou CZ, Biner SB, LeSar R. 2010. Acta Mater. 58:1565–77
  115. Zhou CZ, Beyerlein IJ, LeSar R. 2011. Acta Mater. 59:7673–82
  116. Zhou CZ, Biner SB, LeSar R. 2010. Scr. Mater. 63:1096–99
  117. Zhou CZ, LeSar R. 2012. Comput. Mater. Sci. 54:350–55
  118. Zhou CZ, LeSar R. 2012. Int. J. Plast. 30–31:185–201
  119. Déprés C, Robertson CF, Fivel MC. 2004. Philos. Mag. 84:2257–75
  120. Déprés C, Robertson CF, Fivel MC. 2006. Philos. Mag. 86:79–97
  121. Bulatov VV, Rhee M, Cai W. 2001. Materials Research Society Symposium 653:Z1.3.1–Z1.3.6
  122. Madec R, Devincre B, Kubin L. 2004. Solid Mech. Appl. 115:35–44
  123. Rhee M, Zbib HM, Hirth JP, Huang H, de la Rubia TD. 1998. Model. Simul. Mater. Sci. Eng. 6:467–92
  124. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T et al. 2007. Model. Simul. Mater. Sci. Eng. 15:554–95
  125. Shehadeh MA. 2012. Philos. Mag. 92:1173–97
  126. Capolungo L, Beyerlein IJ, Wang ZQ. 2010. Model. Simul. Mater. Sci. Eng. 18:085002
  127. Monnet G, Devincre B, Kubin L. 2004. Acta Mater. 52:4317–28
  128. Durinck J, Devincre B, Kubin L, Cordier P. 2007. Am. Mineral. 92:1346–57
  129. Madec R, Veyssière P, Saada G. 2013. Philos. Mag. 93:222–34
  130. Martínez E, Marian J, Arsenlis A, Victoria M, Perlado JM. 2008. J. Mech. Phys. Solids 56:869–95
  131. Motz C, Weygand D, Senger J, Gumbsch P. 2009. Acta Mater. 57:1744–54
  132. Devincre B, Kubin LP, Hoc T. 2006. Scr. Mater. 54:741–46
  133. Rao SI, Dimiduk DM, Parthasarathy TA, Uchic MD, Tang M, Woodward C. 2008. Acta Mater. 56:3245–59
  134. Senger J, Weygand D, Gumbsch P, Kraft O. 2008. Scr. Mater. 58:587–90
  135. Tang H, Schwarz KW, Espinosa HD. 2007. Acta Mater. 55:1607–16
  136. Weygand D, Poignant M, Gumbsch P, Kraft O. 2008. Mater. Sci. Eng. A 483:188–90
  137. Tang H, Schwarz KW, Espinosa HD. 2008. Phys. Rev. Lett. 100:185503
  138. Pant P, Schwarz KW, Baker SP. 2003. Acta Mater. 51:3243–58
  139. von Blanckenhagen B, Gumbsch P, Arzt E. 2003. Philos. Mag. Lett. 83:1–8
  140. von Blanckenhagen B, Arzt E, Gumbsch P. 2004. Acta Mater. 52:773–84
  141. Espinosa HD, Panico M, Berbenni S, Schwarz KW. 2006. Int. J. Plast. 22:2091–117
  142. Espinosa HD, Prorok BC, Peng B. 2004. J. Mech. Phys. Solids 52:667–89
  143. Fertig RS III, Baker SP. 2010. Acta Mater. 58:5206–18
  144. Parthasarathy TA, Rao SI, Dimiduk DM, Uchic MD, Trinkle DR. 2007. Scr. Mater. 56:313–16
  145. Weinberger CR, Cai W. 2010. J. Mech. Phys. Solids 58:1011–25
  146. Madec R, Devincre B, Kubin L. 2002. Scr. Mater. 47:689–95
  147. Shehadeh MA, Zbib HM, Diaz de la Rubia T. 2005. Philos. Mag. 85:1667–85
  148. Wang ZQ, Beyerlein IJ, LeSar R. 2009. Int. J. Plast. 25:26–48
  149. Dmitrieva O, Svirina JV, Demir E, Raabe D. 2010. Model. Simul. Mater. Sci. Eng. 18:085011
  150. Kröner E. 1970. In Inelastic Behavior of Solids, ed. MF Kanninen, WF Adler, AR Rosenfield, RI Jaffee, p. 137. New York: McGraw-Hill
  151. El-Azab A. 2006. Scr. Mater. 54:723–27
  152. Devincre B, Hoc T, Kubin L. 2008. Science 320:1745–48
  153. Kubin LP, Devincre B, Hoc T. 2008. Mater. Sci. Eng. A 483–84:19–24
  154. Helm D, Butz A, Raabe D, Gumbsch P. 2011. J. Miner. Met. Mater. Soc. 63:426–33
  155. Takahashi A, Ghoniem NM. 2008. J. Mech. Phys. Solids 56:1534–53
  156. Vattré A, Devincre B, Roos A. 2009. Intermetallics 17:988–94
  157. Vattré A, Devincre B, Roos A. 2010. Acta Mater. 58:1938–51
  158. Vattré A, Fedelich B. 2011. Mech. Mater. 43:930–51
  159. Shin CS, Robertson CF, Fivel M. 2007. Philos. Mag. 87:3657–69
  160. Déprés C, Fivel M, Tabourot L. 2008. Scr. Mater. 58:1086–89
  161. Wang ZQ, Beyerlein IJ, LeSar R. 2007. Model. Simul. Mater. Sci. Eng. 15:675–90
  162. Wang ZQ, Beyerlein IJ, LeSar R. 2008. Philos. Mag. 88:1321–43
  163. Gurrutxaga-Lerma B, Balint DS, Dini D, Eakins DE, Sutton AP. 2013. Proc. R. Soc. A 469:20130141
  164. Wang Y, Khachaturyan AG. 1997. Acta Mater. 45:759–73
  165. Haataja M, Müller J, Rutenberg AD, Grant M. 2002. Phys. Rev. B 65:165414
  166. Shen C, Wang Y. 2003. Acta Mater. 51:2595–610
  167. Rodney D, Le Bouar Y, Finel A. 2003. Acta Mater. 51:17–30
  168. Shen C, Wang Y. 2004. Acta Mater. 52:683–91
  169. Hu SY, Li YL, Zheng YX, Chen LQ. 2004. Int. J. Plast. 20:403–25
  170. Koslowski M, Thomson R, LeSar R. 2004. Phys. Rev. Lett. 93:265503
  171. Koslowski M, Thomson R, LeSar R. 2004. Phys. Rev. Lett. 93:125502
  172. Dimiduk DM, Woodward C, LeSar R, Uchic MD. 2006. Science 312:1188–90
  173. Zaiser M. 2006. Adv. Phys. 55:185–245
  174. Brown LM. 2012. Mater. Sci. Technol. 28:1209–32
  175. Papanikolaou S, Dimiduk DM, Choi W, Sethna JP, Uchic MD et al. 2012. Nature 490:517–21
  176. Zhou N, Shen C, Mills MJ, Wang Y. 2007. Acta Mater. 55:5369–81
  177. Vorontsov VA, Shen C, Wang Y, Dye D, Rae CMF. 2010. Acta Mater. 58:4110–19
  178. Unocic RR, Zhou N, Kovarik L, Shen C, Wang Y, Mills MJ. 2011. Acta Mater. 59:7325–39
  179. Cahn JW, Hilliard JE. 1958. J. Chem. Phys. 28:258–67
  180. Allen SM, Cahn JW. 1979. Acta Metall. 27:1085–95
  181. Shen C, Zhou N, Wang Y. 2008. Metall. Mater. Trans. A 39:1630–37
  182. Boyne A, Shen C, Najafabadi R, Wang Y. 2013. J. Nucl. Mater. 438:209–17
  183. Hunter A, Saied F, Le C, Koslowski M. 2011. Int. J. High Perform. Comput. Appl. 25:223–35
  184. Hunter A, Beyerlein IJ, Germann TC, Koslowski M. 2011. Phys. Rev. B 84:144108
  185. Hunter A, Zhang RF, Beyerlein IJ, Germann TC, Koslowski M. 2013. Model. Simul. Mater. Sci. Eng. 21:025015
  186. Kröner E. 1981. In Physics of Defects, Les Houches Session XXXV, eds. R Balian, M Kléman, JP Poirier, pp. 283–315. Amsterdam: North Holland
  187. Kröner E. 2001. Int. J. Solids Struct. 38:1115–34
  188. Bilby BA, Bullough R, Smith E. 1955. Proc. R. Soc. Lond. A 231:263–73
  189. Acharya A. 2001. J. Mech. Phys. Solids 49:761–84
  190. Roy A, Acharya A. 2005. J. Mech. Phys. Solids 53:143–70
  191. Groma I, Csikor FF, Zaiser M. 2003. Acta Mater. 51:1271–81
  192. Rickman JM, LeSar R. 2006. Scr. Mater. 54:735–39
  193. Groma I, Balogh B. 1999. Acta Mater. 47:3647–54
  194. Groma I, Bakó B. 2000. Phys. Rev. Lett. 84:1487–90
  195. Bakó B, Hoffelner W. 2007. Phys. Rev. B 76:214108
  196. Bakó B, Groma I. 1999. Model. Simul. Mater. Sci. Eng. 7:181–88
  197. LeSar R, Rickman JM. 2004. Phys. Rev. B 69:172105
  198. Zaiser M, Hochrainer T. 2006. Scr. Mater. 54:717–21
  199. Hochrainer T, Zaiser M, Gumbsch P. 2007. Philos. Mag. 87:1261–82
  200. Sandfeld S, Hochrainer T, Zaiser M, Gumbsch P. 2010. Philos. Mag. 90:3697–728
  201. Sandfeld S, Hochrainer T, Zaiser M, Gumbsch P. 2011. J. Mater. Res. 26:623–32
  202. Acharya A, Roy A, Sawant A. 2006. Scr. Mater. 54:705–10
  203. Rickman JM, Viñals J, LeSar R. 2005. Philos. Mag. 85:917–29
  204. de Groot SR, Mazur P. 1984. Non-Equilibrium Thermodynamics New York: Dover
  205. Landau LD, Lifshitz EM. 1986. Theory of Elasticity New York: Pergamon Press
  206. Limkumnerd S, Sethna JP. 2006. Phys. Rev. Lett. 96:095503
  207. Limkumnerd S, Sethna JP. 2007. Phys. Rev. B 75:224121
  208. Limkumnerd S, Sethna JP. 2008. J. Mech. Phys. Solids 56:1450–59
  209. Chen YS, Choi W, Papanikolaou S, Bierbaum M, Sethna JP. 2013. Int. J. Plast. 46:94–129
  210. Chen YS, Choi W, Papanikolaou S, Sethna JP. 2010. Phys. Rev. Lett. 105:105501
  211. Bouchbinder E, Langer JS. 2009. Phys. Rev. E 80:031131
  212. Bouchbinder E, Langer JS. 2009. Phys. Rev. E 80:031132
  213. Bouchbinder E, Langer JS. 2009. Phys. Rev. E 80:031133
  214. Fish J. 2006. J. Nanopart. Res. 8:577–94
/content/journals/10.1146/annurev-conmatphys-031113-133858
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133858
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error