1932

Abstract

We discuss recent research on quantum transport in complex materials, from photosynthetic light-harvesting complexes to photonic circuits. We identify finite, disordered networks as the underlying backbone and as a versatile framework to gain insight into the specific potential of nontrivial quantum dynamical effects to characterize and control transport on complex structures. We discriminate authentic quantum properties from classical aspects of complexity and briefly address the impact of interactions, nonlinearities, and noise. We stress the relevance of what we call the nonasymptotic realm, physical situations in which neither the relevant time- and length-scales, the number of degrees of freedom, or constituents tend to very small or very large values, nor do global symmetries or disorder fully govern the dynamics. Although largely uncharted territory, we argue that novel, intriguing and nontrivial questions for experimental and theoretical work emerge, with the prospect of a unified understanding of complex quantum transport phenomena in diverse physical settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031115-011327
2016-03-10
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031115-011327.html?itemId=/content/journals/10.1146/annurev-conmatphys-031115-011327&mimeType=html&fmt=ahah

Literature Cited

  1. Imry Y. 1.  2009. Introduction to Mesoscopic Physics Oxford, UK: Oxford Univ. Press
  2. May V, Kühn O. 2.  2011. Charge and Energy Transfer Dynamics in Molecular Systems Weinheim, Ger: Wiley-VCH, 3rd ed..
  3. Nitzan A. 3.  2006. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford Graduate Texts. Oxford, UK/New York: Oxford Univ. Press
  4. d'Arcy MB, Godun RM, Summy GS, Guarneri I, Wimberger S. 4.  et al. 2004. Phys. Rev. E 69:027201
  5. Wimberger S, Guarneri I, Fishman S. 5.  2004. Phys. Rev. Lett. 92:084102
  6. Johnson TH, Clark SR, Jaksch D. 6.  2014. EPJ Quantum Technol. 1:1–12
  7. Schneider C, Porras D, Schaetz T. 7.  2012. Rep. Prog. Phys. 75:024401
  8. Feynman R, Leighton R, Sands M. 8.  2013. The Feynman Lectures on Physics III Quantum Mechanics Pasadena, CA: Calif. Inst. Technol.
  9. Englert BG. 9.  2013. Eur. Phys. J. D 67:1–16
  10. Albada MPV, Lagendijk A. 10.  1985. Phys. Rev. Lett. 55:2692–95
  11. Anderson PW. 11.  1958. Phys. Rev. 109:1492–505
  12. Casati G, Guarneri I, Shepelyansky D. 12.  1988. IEEE J. Quantum Electr. 24:1420–44
  13. Mishchenko MI. 13.  1993. Ap. J. 411:351–61
  14. Moore FL, Robinson JC, Bharucha C, Williams PE, Raizen MG. 14.  1994. Phys. Rev. Lett. 73:2974–77
  15. Schelle A, Delande D, Buchleitner A. 15.  2009. Phys. Rev. Lett. 102:183001
  16. Ringot J, Szriftgiser P, Garreau JC, Delande D. 16.  2000. Phys. Rev. Lett. 85:2741–44
  17. Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P, Garreau JC. 17.  2008. Phys. Rev. Lett. 101:255702
  18. Bayfield JE, Casati G, Guarneri I, Sokol DW. 18.  1989. Phys. Rev. Lett. 63:364–67
  19. Sirko L, Bauch S, Hlushchuk Y, Koch PM, Blümel R. 19.  et al. 2000. Phys. Lett. A 266:331–35
  20. Galvez EJ, Sauer BE, Moorman L, Koch PM, Richards D. 20.  1988. Phys. Rev. Lett. 61:2011–14
  21. Jörder F, Zimmermann K, Rodriguez A, Buchleitner A. 21.  2014. Phys. Rev. Lett. 113:063004
  22. Krug A, Buchleitner A. 22.  2005. Phys. Rev. A 72:061402
  23. Maeda H, Gallagher TF. 23.  2004. Phys. Rev. Lett. 93:193002
  24. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV. 24.  1979. Phys. Rev. Lett. 42:673–76
  25. Hu H, Strybulevych A, Page JH, Skipetrov SE, van Tiggelen BA. 25.  2008. Nat. Phys. 4:945–48
  26. Sperling T, Bührer W, Aegerter CM, Maret G. 26.  2013. Nat. Photon. 7:48–52
  27. Wegner F. 27.  1979. Z. Phys. B 35:207–10
  28. Roati G, D'Errico C, Fallani L, Fattori M, Fort C. 28.  et al. 2008. Nature 453:895–98
  29. Fyodorov YV, Ossipov A, Rodriguez A. 29.  2009. J. Stat. Mech. 2009:L12001
  30. Rodriguez A, Vasquez LJ, Slevin K, Römer RA. 30.  2010. Phys. Rev. Lett. 105:046403
  31. Vollhardt D, Wölfle P. 31.  1980. Phys. Rev. B 22:4666–79
  32. Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B. 32.  et al. 2008. Nature 453:891–94
  33. Wolf PE, Maret G. 33.  1985. Phys. Rev. Lett. 55:2696–99
  34. Bergmann G. 34.  1984. Phys. Rep. 107:1–58
  35. Kuga Y, Ishimaru A. 35.  1984. J. Opt. Soc. Am. A 1:831–35
  36. Peruzzo A, Lobino M, Matthews JCF, Matsuda N, Politi A. 36.  et al. 2010. Science 329:1500–3
  37. Tichy MC, Lim HT, Ra YS, Mintert F, Kim YH, Buchleitner A. 37.  2011. Phys. Rev. A 83:062111
  38. Ra YS, Tichy MC, Lim HT, Kwon O, Mintert F. 38.  et al. 2013. PNAS 110:1227–31
  39. Meinert F, Mark M, Kirilov E, Lauber K, Weinmann P. 39.  et al. 2014. Phys. Rev. Lett. 112:193003
  40. Murmann S, Bergschneider A, Klinkhamer V, Zürn G, Lompe T, Jochim S. 40.  2015. Phys. Rev. Lett. 114:080402
  41. Labeyrie G, de Tomasi F, Bernard JC, Müller C, Miniatura C, Kaiser R. 41.  1999. Phys. Rev. Lett. 83:5266
  42. Modugno G. 42.  2010. Rep. Prog. Phys. 73:102401
  43. Tichy MC, Tiersch M, de Melo F, Mintert F, Buchleitner A. 43.  2010. Phys. Rev. Lett. 104:220405
  44. Shapiro B. 44.  2012. J. Phys. A: Math. Theor. 45:143001
  45. Mosk A, Lagendijk A, Lerosey G, Fink M. 45.  2012. Nat. Photon. 6:283
  46. Ahlbrecht A, Alberti A, Meschede D, Scholz V, Werner A, Werner R. 46.  2012. New J. Phys. 14:073050
  47. Kolovsky AR, Buchleitner A. 47.  2003. Phys. Rev. E 68:056213
  48. Ponomarev AV, Madroñero J, Kolovsky AR, Buchleitner A. 48.  2006. Phys. Rev. Lett. 96:050404
  49. Geiger T, Wellens T, Buchleitner A. 49.  2012. Phys. Rev. Lett. 109:030601
  50. Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A. 50.  2012. Phys. Rev. Lett. 109:235301
  51. Nelson J. 51.  2003. The Physics of Solar Cells London/River Edge, NJ: Imp. Coll. Press
  52. 52.  M.-J. Giannoni, A. Voros JZJ 1991. Chaos and Quantum Physics. Les Houches Summer School of Theoretical Physics. Amsterdam: North-Holland
  53. Arndt M, Hornberger K. 53.  2014. Nat. Phys. 10:271–77
  54. Kottos T, Smilansky U. 54.  1999. Ann. Phys. 274:76–124
  55. Smilansky U. 55.  2007. J. Phys. A: Math. Theor. 40:F621
  56. Mülken O, Blumen A. 56.  2011. Phys. Rep. 502:37–87
  57. Venegas-Andraca SE. 57.  2012. Quantum Inf. Process. 11:1015–106
  58. Scholak T, de Melo F, Wellens T, Mintert F, Buchleitner A. 58.  2011. Phys. Rev. E 83:021912
  59. Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M, Sirko S. 59.  2012. Phys. Rev. Lett. 109:040402
  60. Mostarda S, Levi F, Prada-Gracia D, Mintert F, Rao F. 60.  2013. Nat. Commun. 4:2296
  61. Walschaers M, Mulet R, Wellens T, Buchleitner A. 61.  2015. Phys. Rev. E 91:042137
  62. Barra F, Gaspard P. 62.  2001. Phys. Rev. E 65:016205
  63. Fyodorov YV, Savin DV. 63.  2012. Phys. Rev. Lett. 108:184101
  64. Gaspard P. 64.  2014. Scholarpedia 9:9806
  65. Breuer HP, Petruccione F. 65.  2002. The Theory of Open Quantum Systems Oxford, UK/New York: Oxford Univ. Press
  66. Tichy MC. 66.  2014. J. Phys. B: At. Mol. Opt. Phys. 47:103001
  67. Mandel O, Greiner M, Widera A, Rom T, Hänsch TW, Bloch I. 67.  2003. Phys. Rev. Lett. 91:010407
  68. Jaksch D, Zoller P. 68.  2005. Ann. Phys. 315:52–79
  69. Scholak T, Mintert F, Wellens T, Buchleitner A. 69.  2010. Semicond. Semimet. 83:1–38
  70. Rodriguez A, Chakrabarti A, Römer RA. 70.  2012. Phys. Rev. B 86:085119
  71. Plenio MB, Huelga SF. 71.  2008. New J. Phys. 10:113019
  72. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. 72.  2008. J. Chem. Phys. 129:174106
  73. Ishizaki A, Fleming GR. 73.  2009. PNAS 106:17255–60
  74. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F. 74.  et al. 2011. Nature 473:194–98
  75. Crespi A, Osellame R, Ramponi R, Brod DJ, Galvão EF. 75.  et al. 2013. Nat. Photon. 7:545–49
  76. Metcalf BJ, Thomas-Peter N, Spring JB, Kundys D, Broome MA. 76.  et al. 2013. Nat. Commun. 4:1356
  77. Günter G, Schempp H, Robert-de-Saint-Vincent M. 77.  Gavryusev V, Helmrich S et al. 2013. Science 342:954–56
  78. Scholak T, Wellens T, Buchleitner A. 78.  2014. Phys. Rev. A 90:063415
  79. Scholes GD, Mirkovic T, Turner DB, Fassioli F, Buchleitner A. 79.  2012. Energy Environ. Sci. 5:9374–93
  80. Ishizaki A, Fleming GR. 80.  2012. Annu. Rev. Condens. Matter Phys. 3:333–61
  81. Falke SM, Rozzi CA, Brida D, Maiuri M, Amato M. 81.  et al. 2014. Science 344:1001–5
  82. Tamura H, Burghardt I. 82.  2013. J. Am. Chem. Soc. 135:16364–67
  83. Amerongen Hv, Valkunas L, Grondelle Rv. 83.  2000. Photosynthetic Excitons Singapore: World Sci.
  84. Bardeen CJ. 84.  2014. Annu. Rev. Phys. Chem. 65:127–48
  85. Blankenship RE. 85.  2002. Molecular Mechanisms of Photosynthesis Oxford, UK/Malden, MA: Blackwell Sci.
  86. Krüger TPJ, Wientjes E, Croce R, Grondelle Rv. 86.  2011. PNAS 108:13516–21
  87. Mukamel S. 87.  2009. Principles of Nonlinear Optical Spectroscopy. No. 6 in Oxford Series in Optical and Imaging Sciences. New York: Oxford Univ. Press
  88. Winklhofer M, Dylda E, Thalau P, Wiltschko W, Wiltschko R. 88.  2013. Proc. R. Soc. B 280:20130853
/content/journals/10.1146/annurev-conmatphys-031115-011327
Loading
/content/journals/10.1146/annurev-conmatphys-031115-011327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error