1932

Abstract

We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-071715-102737
2016-03-10
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-071715-102737.html?itemId=/content/journals/10.1146/annurev-conmatphys-071715-102737&mimeType=html&fmt=ahah

Literature Cited

  1. Zakharov VE, Lvov VS, Falkovich GG. 1.  1992. Kolmogorov Spectra of Turbulence Berlin: Springer-Verlag
  2. Nazarenko S. 2.  2011. Wave Turbulence. Heidelberg: Springer
  3. Zakharov VE. 3.  1968. J. Appl. Mech. Tech. Phys. 9:2190–94
  4. Krasitskii VP. 4.  1994. J. Fluid Mech. 272:1–20
  5. Zakharov V. 5.  1999. Eur. J. Mech. B 18:327–44
  6. Eyink GL, Shi YK. 6.  2012. Phys. D: Nonlinear Phenom. 241:1487–511
  7. Choi Y, Lvov YV, Nazarenko S. 7.  2005. Phys. D: Nonlinear Phenom. 201:121–49
  8. Hasselmann K. 8.  1962. J. Fluid Mech. 12:481–500
  9. Zakharov VE. 9.  1965. J. Appl. Mech. Tech. Phys. 6:422–24
  10. Zakharov VE, Zaslavskii M. 10.  1982. Izv. Acad. Nauk SSSR, Atmos. Ocean Phys. 18:970
  11. Goldreich P, Sridhar S. 11.  1995. Astrophys. J. 438:763–75
  12. Nazarenko SV, Schekochihin AA. 12.  2011. J. Fluid Mech. 677:134–53
  13. Phillips OM. 13.  1958. J. Fluid Mech. 4:426–34
  14. Kadomtsev BB. 14.  1965. Plasma Turbulence New York: Academic
  15. Kuznetsov EA. 15.  2004. J. Exp. Theor. Phys. Lett. 80:83–89
  16. Nazarenko S, Lukaschuk S, McLelland S, Denissenko P. 16.  2010. J. Fluid Mech. 642:395–420
  17. Onorato M, Osborne A, Serio M, Resio D, Pushkarev A. 17.  et al. 2002. Phys. Rev. Lett. 89:144501
  18. Yokoyama N. 18.  2004. J. Fluid Mech. 501:169–78
  19. Lvov YV, Nazarenko S, Pokorni B. 19.  2006. Phys. D: Nonlinear Phenom. 218:24–35
  20. Zakharov VE, Korotkevich AO, Pushkarev A, Dyachenko A. 20.  2005. J. Exp. Theor. Phys. Lett. 82:487–91
  21. Nazarenko S. 21.  2006. J. Stat. Mech.: Theory Exp. 2006:L02002
  22. Kartashova E, Nazarenko S, Rudenko O. 22.  2008. Phys. Rev. E 78:016304
  23. Denissenko P, Lukaschuk S, Nazarenko S. 23.  2007. Phys. Rev. Lett. 99:014501
  24. L'vov V, Nazarenko S. 24.  2010. Phys. Rev. E 82:056322
  25. Dyachenko A, Korotkevich A, Zakharov V. 25.  2003. J. Exp. Theor. Phys. Lett. 77:546–50
  26. Choi Y, Lvov YV, Nazarenko S, Pokorni B. 26.  2005. Phys. Lett. A 339:361–69
  27. Dyachenko AI, Korotkevich AO, Zakharov VE. 27.  2004. Phys. Rev. Lett. 92:134501
  28. Korotkevich AO. 28.  2008. Phys. Rev. Lett. 101:074504
  29. Annenkov SY, Shrira VI. 29.  2006. Phys. Rev. Lett. 96:204501
  30. Shrira VI, Annenkov SY. 30.  2013. World Sci. Ser. Nonlinear Sci 83:239–81
  31. Badulin SI, Pushkarev AN, Resio D, Zakharov VE. 31.  2005. Nonlinear Process. Geophys. 12:891–945
  32. Badulin SI, Babanin AV, Zakharov VE, Resio D. 32.  2007. J. Fluid Mech. 591:339–78
  33. Gagnaire-Renou E, Benoit M, Badulin SI. 33.  2011. J. Fluid Mech. 669:178–213
  34. Miles JW. 34.  1957. J. Fluid Mech. 3:185–204
  35. Donelan MA, Hamilton J, Hui WH. 35.  1985. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 315:509–62
  36. Hwang PA, Wang DW, Walsh EJ, Krabill WB, Swift RN. 36.  2000. J. Phys. Oceanogr. 30:2753–67
  37. Romero L, Melville WK. 37.  2010. J. Phys. Oceanogr. 40:441–65
  38. Toba Y. 38.  1973. J. Oceanogr. Soc. Jpn. 29:209–20
  39. Falcón C, Falcon E, Bortolozzo U, Fauve S. 39.  2009. Europhys. Lett. 86:14002
  40. Lukaschuk S, Nazarenko S, McLelland S, Denissenko P. 40.  2009. Phys. Rev. Lett. 103:044501
  41. Mukto MA, Atmane MA, Loewen MR. 41.  2007. Exp. Fluids 42:131–42
  42. Falcon E, Laroche C, Fauve S. 42.  2007. Phys. Rev. Lett. 98:094503
  43. Herbert E, Mordant N, Falcon E. 43.  2010. Phys. Rev. Lett. 105:144502
  44. Falcon E. 44.  2010. Discret. Contin. Dyn. Syst. Ser. B 13:819–40
  45. Deike L, Miquel B, Gutiérrez-Matus P, Jamin T, Semin B. 45.  et al. 2015. J. Fluid Mech. 781:196–225
  46. Issenmann B, Falcon E. 46.  2013. Phys. Rev. E 87:011001
  47. Deike L, Laroche C, Falcon E. 47.  2011. Europhys. Lett. 96:34004
  48. Cobelli P, Maurel A, Pagneux V, Petitjeans P. 48.  2009. Exp. Fluids 46:1037–47
  49. Faraday M. 49.  1831. Philos. Trans. R. Soc. Lond. 121:299–318
  50. Gallagher I, Saint-Raymond L, Texier B. 50.  2013. From Newton to Boltzmann: Hard spheres and short-range potentials Zurich Lect. Adv. Math., Eur. Math. Soc.
/content/journals/10.1146/annurev-conmatphys-071715-102737
Loading
/content/journals/10.1146/annurev-conmatphys-071715-102737
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error