1932

Abstract

Rocks in Earth's crust are formed, modified, and destroyed in response to myriad interactions between the solid Earth (tectonics, geodynamics), the fluid Earth (ocean-atmosphere, cryosphere), and the living Earth (evolution, biochemistry). As such, the geological record is an integrator of geological, biological, and climatological processes and their histories. Here we review contrasting perceptions of the processes that govern the formation and destruction of the geological record, beginning with the relationship between macroevolutionary patterns in the fossil and sedimentary rock records and culminating with contrasting models of rock cycling. Using the approach of macrostratigraphy, we present an integrated summary of the quantity-age properties of rocks in continental and oceanic crust. The predominant process signal in the rock quantity-age distribution in continental crust is one of episodic growth, whereas in oceanic crust it is one of continual destruction. Relatively abrupt shifts in the dominant locus of sediment deposition, from fast-cycling oceanic crust to long-term continental reservoirs, and attendant expansions and contractions in the area of crust that is emergent, are correlated in timing and magnitude with shifts in the concentration of oxygen in the atmosphere and major macroevolutionary transitions in the biosphere. The most recent of possibly two such first-ordertransitions occurred at the start of the Phanerozoic and is marked by a prominent preserved geomorphic surface known as the Great Unconformity.

  • ▪  Macrostratigraphy uses the bulk characteristics of the rock record to probe the evolution of the Earth system.
  • ▪  Quantifying the creation and destruction of rock units can illuminate the long-term evolution of continents and the life that inhabits them.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-081427
2022-05-31
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-081427.html?itemId=/content/journals/10.1146/annurev-earth-032320-081427&mimeType=html&fmt=ahah

Literature Cited

  1. Alroy J, Marshall C, Bambach R, Bezusko K, Foote M et al. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. PNAS 98:6261–66
    [Google Scholar]
  2. Aswasereelert W, Meyers SR, Carroll AR, Peters SE, Smith ME, Feigl KL. 2013. Basin-scale cyclostratigraphy of the Green River Formation, Wyoming. Geol. Soc. Am. Bull. 125:216–28
    [Google Scholar]
  3. Avigad D, Sandler A, Kolodner K, Stern R, McWilliams M et al. 2005. Mass-production of Cambro–Ordovician quartz-rich sandstone as a consequence of chemical weathering of pan-African terranes: environmental implications. Earth Planet. Sci. Lett. 240:818–26
    [Google Scholar]
  4. Badgley C. 2010. Tectonics, topography, and mammalian diversity. Ecography 33:220–31
    [Google Scholar]
  5. Bambach RK. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152–67
    [Google Scholar]
  6. Bambach RK. 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34:127–55
    [Google Scholar]
  7. Barrett PM, McGowan AJ, Page V. 2009. Dinosaur diversity and the rock record. Proc. R. Soc. B 276:2667–74
    [Google Scholar]
  8. Benton MJ. 2001. Biodiversity on land and in the sea. Geol. J. 36:211–30
    [Google Scholar]
  9. Benton MJ, Dunhill AM, Lloyd GT, Marx FG 2011. Assessing the quality of the fossil record: insights from vertebrates. Geol. Soc. Lond. Spec. Publ. 358:63–94
    [Google Scholar]
  10. Berner RA. 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291:339–76
    [Google Scholar]
  11. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64
    [Google Scholar]
  12. Berner RA, Canfield DE. 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289:333–61
    [Google Scholar]
  13. Berry JP, Wilkinson BH. 1994. Paleoclimatic and tectonic control on the accumulation of North American cratonic sediment. Geol. Soc. Am. Bull. 106:855–65
    [Google Scholar]
  14. Blatt H, Jones RL. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 86:1085–88
    [Google Scholar]
  15. Bluth GJS, Kump L. 1991. Phanerozoic paleogeology. Am. J. Sci. 291:284–308
    [Google Scholar]
  16. Bouma AH, Normark WR, Barnes NE. 2012. Submarine Fans and Related Turbidite Systems New York: Springer
  17. Bradley DC. 2008. Passive margins through earth history. Earth-Sci. Rev. 91:1–26
    [Google Scholar]
  18. Brasier M. 1980. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe. J. Geol. Soc. 137:695–703
    [Google Scholar]
  19. Budyko MI, Ronov AB, Yanshin AL. 1985. Changes in the chemical composition of the atmosphere during the Phanerozoic. Int. Geol. Rev. 27:423–33
    [Google Scholar]
  20. Budyko MI, Ronov AB, Yanshin AL. 1987. History of the Earth's Atmosphere Berlin: Springer-Verlag
  21. Butler RJ, Benson RB, Carrano MT, Mannion PD, Upchurch P. 2011. Sea level, dinosaur diversity and sampling biases: investigating the ‘common cause’ hypothesis in the terrestrial realm. Proc. R. Soc. B 278:1165–70
    [Google Scholar]
  22. Chafetz H, Reid A. 2000. Syndepositional shallow-water precipitation of glauconitic minerals. Sediment. Geol. 136:29–42
    [Google Scholar]
  23. Cherns L, Wheeley JR, Wright VP. 2011. Taphonomic bias in shelly faunas through time: early aragonitic dissolution and its implications for the fossil record. Taphonomy 32:79–105
    [Google Scholar]
  24. Chorlton L. 2007. Generalized geology of the world: bedrock domains and major faults in GIS format Open File 5529, Geol. Surv. Can., Ottawa
  25. Choudhury TR, Banerjee S, Khanolkar S, Saraswati PK, Meena SS. 2021. Glauconite authigenesis during the onset of the Paleocene-Eocene Thermal Maximum: a case study from the Khuiala Formation in Jaisalmer Basin, India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 571:110388
    [Google Scholar]
  26. Close RA, Benson RB, Alroy J, Carrano MT, Cleary TJ et al. 2020a. The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287:20200372
    [Google Scholar]
  27. Close RA, Benson RB, Saupe E, Clapham M, Butler R. 2020b. The spatial structure of Phanerozoic marine animal diversity. Science 368:420–24
    [Google Scholar]
  28. Close RA, Benson RB, Upchurch P, Butler RJ. 2017. Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification. Nat. Commun. 8:15381
    [Google Scholar]
  29. Colwyn DA, Sheldon ND, Maynard JB, Gaines R, Hofmann A et al. 2019. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology 17:579–93
    [Google Scholar]
  30. DeLucia M, Guenthner WR, Marshak S, Thomson S, Ault A. 2018. Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth. Geology 46:167–70
    [Google Scholar]
  31. Dott R Jr. 2003. The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes. J. Geol. 111:387–405
    [Google Scholar]
  32. Driese SG, Medaris LG Jr., Ren M, Runkel AC, Langford RP. 2007. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. J. Geol. 115:387–406
    [Google Scholar]
  33. Dunhill AM, Hannisdal B, Benton MJ. 2014. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nat. Commun. 5:4818
    [Google Scholar]
  34. Erwin DH. 2000. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2:78–84
    [Google Scholar]
  35. Farrell ÚC, Samawi R, Anjanappa S, Klykov R, Adeboye OO et al. 2021. The sedimentary geochemistry and paleoenvironments project. Geobiology 19:545–56
    [Google Scholar]
  36. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40
    [Google Scholar]
  37. Filippelli GM. 2008. The global phosphorus cycle: past, present, and future. Elements 4:89–95
    [Google Scholar]
  38. Finarelli JA, Badgley C. 2010. Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate. Proc. R. Soc. B 277:2721–26
    [Google Scholar]
  39. Finnegan S, Heim NA, Peters SE, Fischer WW. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. PNAS 109:6829–34
    [Google Scholar]
  40. Flowers RM, Macdonald FA, Siddoway CS, Havranek R. 2020. Diachronous development of great unconformities before Neoproterozoic snowball Earth. PNAS 117:10172–80
    [Google Scholar]
  41. Foote M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74–102
    [Google Scholar]
  42. Foote M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602–30
    [Google Scholar]
  43. Foote M. 2003. Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111:125–48
    [Google Scholar]
  44. Foote M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261–72
    [Google Scholar]
  45. Fraass AJ, Kelly DC, Peters SE 2015. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43:139–66
    [Google Scholar]
  46. Fraass AJ, LeVay L, Sessa J, Peters S. 2020. Extending Ocean Drilling Pursuits [eODP]: making scientific ocean drilling data accessible through searchable databases. EGU Gen. Assem. Conf. Abstr. 2020:8069 (Abstr.)
    [Google Scholar]
  47. Gaines RR. 2014. Burgess Shale-type preservation and its distribution in space and time. Paleontol. Soc. Pap. 20:123–46
    [Google Scholar]
  48. Gaines RR, Hammarlund EU, Hou X, Qi C, Gabbott SE et al. 2012. Mechanism for Burgess Shale-type preservation. PNAS 109:5180–84
    [Google Scholar]
  49. Gaines RR, Vorhies JS. 2016. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA). Sedimentology 63:662–98
    [Google Scholar]
  50. Garrels RM, Lerman A, Mackenzie FT 1976. Controls of atmospheric O2 and CO2: past, present, and future. Geochemical models of the Earth's surface environment, focusing on O2 and CO2 cycles, suggest that a dynamic steady-state system exists, maintained over time by effective feedback mechanisms. Am. Sci. 64:3306–15
    [Google Scholar]
  51. Garrels RM, Mackenzie FT. 1969. Sedimentary rock types: relative proportions as a function of geological time. Science 163:570–71
    [Google Scholar]
  52. Garrels RM, Mackenzie FT. 1971. Gregor's denudation of the continents. Nature 231:382–83
    [Google Scholar]
  53. Garrels RM, Mackenzie FT. 1972. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1:27–41
    [Google Scholar]
  54. Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB 2016. The global volume and distribution of modern groundwater. Nat. Geosci. 9:161–67
    [Google Scholar]
  55. Gregor B. 1970. Denudation of the continents. Nature 228:273–75
    [Google Scholar]
  56. Gregor B. 1992. Some ideas on the rock cycle: 1788–1988. Geochim. Cosmochim. Acta 56:2993–3000
    [Google Scholar]
  57. Hall AM, Stuart F, Kirsimae K, Somelar P 2021. Understanding 21Ne inventories in Precambrian basement below the Great Unconformity in Estonia. EGU Gen. Assemb. Conf. Abstr. 2021:EGU21–15013 (Abstr.)
    [Google Scholar]
  58. Hannisdal B, Peters SE. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science 334:1121–24
    [Google Scholar]
  59. Harris P, Macmillan-Lawler M, Rupp J, Baker E 2014. Geomorphology of the oceans. Mar. Geol. 352:4–24
    [Google Scholar]
  60. Hayes JM, Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361:931–50
    [Google Scholar]
  61. He T, Zhou Y, Vermeesch P, Rittner M, Miao L et al. 2017. Measuring the ‘Great Unconformity’ on the North China craton using new detrital zircon age data. Geol. Soc. Lond. Spec. Publ. 448:145–59
    [Google Scholar]
  62. Hearing TWW, Pohl A, Williams M, Donnadieu Y, Harvey TH et al. 2021. Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nat. Commun. 12:3868
    [Google Scholar]
  63. Heim NA, Peters SE. 2011. Covariation in macrostratigraphic and macroevolutionary patterns in the marine record of North America. Geol. Soc. Am. Bull. 123:620–30
    [Google Scholar]
  64. Holland SM. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92–109
    [Google Scholar]
  65. Holland SM. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26:148–68
    [Google Scholar]
  66. Husson JM, Peters SE. 2017. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460:68–75
    [Google Scholar]
  67. Husson JM, Peters SE. 2018. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg. Top. Life Sci. 2:125–36
    [Google Scholar]
  68. Jablonski D. 2007. Scale and hierarchy in macroevolution. Palaeontology 50:87–109
    [Google Scholar]
  69. Jablonski D. 2017. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44:427–50
    [Google Scholar]
  70. Karlstrom KE, Timmons JM. 2012. Many unconformities make one ‘Great Unconformity’.. Geol. Soc. Am. Spec. Pap. 489:73–79
    [Google Scholar]
  71. Keating-Bitonti CR, Peters SE. 2019. Influence of increasing carbonate saturation in Atlantic bottom water during the late Miocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 518:134–42
    [Google Scholar]
  72. Keller CB, Husson JM, Mitchell RN, Bottke WF, Gernon TM et al. 2019. Neoproterozoic glacial origin of the Great Unconformity. PNAS 116:1136–45
    [Google Scholar]
  73. Khain VY, Ronov AB, Balukhovskiy A. 1976. Cretaceous lithologic associations of the world. Int. Geol. Rev. 18:1269–95
    [Google Scholar]
  74. Khain VY, Ronov AB, Balukhovskiy A. 1981. Neogene lithologic associations of the continents. Int. Geol. Rev. 23:426–54
    [Google Scholar]
  75. Khain VY, Ronov AB, Seslavinskiy K. 1978. Silurian lithologic associations of the world. Int. Geol. Rev. 20:249–68
    [Google Scholar]
  76. Knoll AH. 2003. Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54:329–56
    [Google Scholar]
  77. Krissansen-Totton J, Buick R, Catling DC 2015. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315:275–316
    [Google Scholar]
  78. Laird M, Thomson M, Crame J 1991. Lower–mid-Paleozoic sedimentation and tectonic patterns on the paleo-Pacific margin of Antarctica. Geological Evolution of Antarctica MRA Thomson, JA Crame, JW Thomson 177–85 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  79. Lécuyer C, Ricard Y. 1999. Long-term fluxes and budget of ferric iron: implication for the redox states of the Earth's mantle and atmosphere. Earth Planet. Sci. Lett. 165:197–211
    [Google Scholar]
  80. Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U. 2000. A global geochemical database structure for rocks. Geochem. Geophys. Geosyst. 1:51012
    [Google Scholar]
  81. Li YH. 1972. Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. Am. J. Sci. 272:119–37
    [Google Scholar]
  82. Li ZX, Bogdanova S, Collins A, Davidson A, De Waele B et al. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160:179–210
    [Google Scholar]
  83. Liivamägi S, Somelar P, Vircava I, Mahaney WC, Kirs J, Kirsimäe K 2015. Petrology, mineralogy and geochemical climofunctions of the Neoproterozoic Baltic paleosol. Precambrian Res. 256:170–88
    [Google Scholar]
  84. Liu ZRR, Zhou MF, Wang W. 2021. Mercury anomalies across the Ediacaran–Cambrian boundary: evidence for a causal link between continental erosion and biological evolution. Geochim. Cosmochim. Acta 304:327–46
    [Google Scholar]
  85. Lloyd GT, Smith AB, Young JR 2011. Quantifying the deep-sea rock and fossil record bias using coccolithophores. Geol. Soc. Lond. Spec. Publ. 358:167–77
    [Google Scholar]
  86. Lyons TW, Reinhard CT, Planavsky NJ 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  87. Mackenzie F, Pigott J 1981. Tectonic controls of Phanerozoic sedimentary rock cycling. J. Geol. Soc. 138:183–96
    [Google Scholar]
  88. Mackenzie FT, Garrels R. 1971. Evolution of Sedimentary Rocks New York: Norton
  89. Mackenzie FT, Morse JW. 1992. Sedimentary carbonates through Phanerozoic time. Geochim. Cosmochim. Acta 56:3281–95
    [Google Scholar]
  90. Maloof AC, Porter SM, Moore JL, Dudás , Bowring SA et al. 2010a. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 122:1731–74
    [Google Scholar]
  91. Maloof AC, Ramezani J, Bowring SA, Fike DA, Porter SM, Mazouad M. 2010b. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian–Tommotian boundary δ13C shift, Morocco. Geology 38:623–26
    [Google Scholar]
  92. McKenzie NR, Horton BK, Loomis SE, Stockli DF, Planavsky NJ, Lee CTA. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352:444–47
    [Google Scholar]
  93. McKenzie NR, Hughes NC, Gill BC, Myrow PM. 2014. Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology 42:127–30
    [Google Scholar]
  94. Medaris LG Jr., Driese SG, Stinchcomb GE, Fournelle JH, Lee S et al. 2018. Anatomy of a sub-Cambrian paleosol in Wisconsin: mass fluxes of chemical weathering and climatic conditions in North America during formation of the Cambrian Great Unconformity. J. Geol. 126:261–83
    [Google Scholar]
  95. Meyers SR, Peters SE. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth Planet. Sci. Lett. 303:174–80
    [Google Scholar]
  96. Miller AI. 2000. Conversations about Phanerozoic global diversity. Paleobiology 26:53–73
    [Google Scholar]
  97. Millot R, Gaillardet J, Dupré B, Allègre CJ 2002. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196:83–98
    [Google Scholar]
  98. Moore T, Van Andel TH, Sancetta C, Pisias N. 1978. Cenozoic hiatuses in pelagic sediments. Micropaleontology 24:113–38
    [Google Scholar]
  99. Mortatti J, Probst JL. 2003. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem. Geol. 197:177–96
    [Google Scholar]
  100. Mouyen M, Longuevergne L, Steer P, Crave A, Lemoine JM et al. 2018. Assessing modern river sediment discharge to the ocean using satellite gravimetry. Nat. Commun. 9:3384
    [Google Scholar]
  101. Nelsen MP, DiMichele WA, Peters SE, Boyce CK. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. PNAS 113:2442–47
    [Google Scholar]
  102. Newell ND. 1952. Periodicity in invertebrate evolution. J. Paleontol. 26:3371–85
    [Google Scholar]
  103. Newell ND. 1959. The nature of the fossil record. Proc. Am. Philos. Soc. 103:264–85
    [Google Scholar]
  104. Newell ND. 1962. Paleontological gaps and geochronology. J. Paleontol. 36:3592–610
    [Google Scholar]
  105. Newell ND. 1963. Crises in the history of life. Sci. Am. 208:76–95
    [Google Scholar]
  106. Odin GS, Matter A. 1981. De glauconiarum origine. Sedimentology 28:611–41
    [Google Scholar]
  107. Park LE, Gierlowski-Kordesch EH. 2007. Paleozoic lake faunas: establishing aquatic life on land. Palaeogeogr. Palaeoclimatol. Palaeoecol. 249:160–79
    [Google Scholar]
  108. Patzkowsky ME, Holland SM. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space Chicago, IL: Univ. Chicago Press
  109. Peters SE. 2005. Geologic constraints on the macroevolutionary history of marine animals. PNAS 102:12326–31
    [Google Scholar]
  110. Peters SE. 2006a. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387–407
    [Google Scholar]
  111. Peters SE. 2006b. Macrostratigraphy of North America. J. Geol. 114:391–412
    [Google Scholar]
  112. Peters SE. 2008a. Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–29
    [Google Scholar]
  113. Peters SE 2008b. Macrostratigraphy and its promise for paleobiology. From Evolution to Geobiology: Research Questions Driving Paleontology at the Start of a New Century PH Kelley, RK Bambach 205–32 Boulder, CO: Paleontol. Soc.
    [Google Scholar]
  114. Peters SE, Foote M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583–601
    [Google Scholar]
  115. Peters SE, Foote M. 2002. Determinants of extinction in the fossil record. Nature 416:420–24
    [Google Scholar]
  116. Peters SE, Gaines RR. 2012. Formation of the ‘Great Unconformity' as a trigger for the Cambrian explosion. Nature 484:363–66
    [Google Scholar]
  117. Peters SE, Heim NA 2011. Macrostratigraphy and macroevolution in marine environments: testing the common-cause hypothesis. Geol. Soc. Lond. Spec. Publ. 358:95–104
    [Google Scholar]
  118. Peters SE, Husson JM 2017. Sediment cycling on continental and oceanic crust. Geology 45:323–26
    [Google Scholar]
  119. Peters SE, Husson JM, Czaplewski J. 2018. Macrostrat: a platform for geological data integration and deep-time Earth crust research. Geochem. Geophys. Geosyst. 19:1393–409
    [Google Scholar]
  120. Peters SE, Kelly DC, Fraass AJ 2013. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493:398–401
    [Google Scholar]
  121. Peters SE, Walton CR, Husson JM, Quinn DP, Shorttle O et al. 2021. Igneous rock area and age in continental crust. Geology 49:101235–39
    [Google Scholar]
  122. Pevehouse KJ, Sweet DE, Šegvić B, Monson CC, Zanoni G et al. 2020. Paleotopography controls weathering of Cambrian-age profiles beneath the Great Unconformity, St. Francois Mountains, SE Missouri, USA. J. Sediment. Res. 90:629–50
    [Google Scholar]
  123. Phillips J. 1860. Life on the Earth: Its Origin and Succession Cambridge, UK: Macmillan
  124. Porter S, Moore J, Riedman LA 2020. Evolutionary patterns in skeletal biomineralization. Bull. Am. Phys. Soc. 65:F22.00005 (Abstr.)
    [Google Scholar]
  125. Porter SM. 2007. Seawater chemistry and early carbonate biomineralization. Science 316:1302
    [Google Scholar]
  126. Pruss SB, Clemente H 2011. Assessing the role of skeletons in early Paleozoic carbonate production: insights from Cambro-Ordovician strata, western Newfoundland. Quantifying the Evolution of Early Life M Laflamme, J Schiffbauer, S Dornbos 161–83 Dordrecht, Neth: Springer
    [Google Scholar]
  127. Raiswell R, Fisher Q. 2000. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. J. Geol. Soc. 157:239–51
    [Google Scholar]
  128. Raup DM. 1972. Taxonomic diversity during the Phanerozoic. Science 177:1065–71
    [Google Scholar]
  129. Raup DM. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279–88
    [Google Scholar]
  130. Raup DM. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–97
    [Google Scholar]
  131. Raup DM, Sepkoski JJ. 1982. Mass extinctions in the marine fossil record. Science 215:1501–3
    [Google Scholar]
  132. Raymo ME, Ruddiman WF. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117–22
    [Google Scholar]
  133. Ricketts JW, Roiz J, Karlstrom KE, Heizler MT, Guenthner WR, Timmons JM. 2021. Tectonic controls on basement exhumation in the southern Rocky Mountains (United States): the power of combined zircon (U-Th)/He and K-feldspar 40Ar/39Ar thermochronology. Geology 49:101187–92
    [Google Scholar]
  134. Ronov AB. 1959. On the post-Precambrian geochemical history of the atmosphere and hydrosphere. Geochemistry 5:493–506
    [Google Scholar]
  135. Ronov AB, Khain VE, Balukhovsky AN, Seslavinsky KB. 1980. Quantitative analysis of Phanerozoic sedimentation. Sediment. Geol. 25:311–25
    [Google Scholar]
  136. Ronov AB, Khain VY. 1954. Deonvian lithologic associations of the world. Sov. Geol. 41:47–76
    [Google Scholar]
  137. Ronov AB, Khain VY, Balukhovskiy A. 1979. Paleogene lithologic associations of the continents.. Int. Geol. Rev. 21:415–46
    [Google Scholar]
  138. Ronov AB, Khain VY, Seslavinskiy K. 1976. Ordovician lithologic associations of the world. Int. Geol. Rev. 18:1395–412
    [Google Scholar]
  139. Ronov AB, Khain VY, Seslavinskiy K. 1982. Lower and Middle Riphean lithologic complexes of the world. Int. Geol. Rev. 24:509–25
    [Google Scholar]
  140. Ronov AB, Migdisov AA. 1971. Geochemical history of the crystalline basement and the sedimentary cover of the Russian and North American platforms. Sedimentology 16:137–85
    [Google Scholar]
  141. Ronov AB, Seslavinskiy KB, Khain VY. 1977. Cambrian lithologic associations of the world. Int. Geol. Rev. 19:373–94
    [Google Scholar]
  142. Ronov AB, Yaroshevskiy A, Migdisov A 1991a. Chemical constitution of the Earth's crust and geochemical balance of the major elements. Int. Geol. Rev. 33:941–1048
    [Google Scholar]
  143. Ronov AB, Yaroshevskiy AA, Migdisov A. 1991b. Chemical constitution of the Earth's crust and geochemical balance of the major elements (part II). Int. Geol. Rev. 33:1049–97
    [Google Scholar]
  144. Rook DL, Heim NA, Marcot J. 2013. Contrasting patterns and connections of rock and biotic diversity in the marine and non-marine fossil records of North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 372:123–29
    [Google Scholar]
  145. Rowley DB. 2002. Rate of plate creation and destruction: 180 ma to present. Geol. Soc. Am. Bull. 114:927–33
    [Google Scholar]
  146. Satkoski AM, Beukes NJ, Li W, Beard BL, Johnson CM. 2015. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430:43–53
    [Google Scholar]
  147. Schopf TJ. 1974. Permo-Triassic extinctions: relation to sea-floor spreading. J. Geol. 82:129–43
    [Google Scholar]
  148. Sears JW, Price RA. 2003. Tightening the Siberian connection to western Laurentia. Geol. Soc. Am. Bull. 115:943–53
    [Google Scholar]
  149. Segessenman D, Peters SE In press. Macrostratigraphy of the Ediacaran system in North America. GSA Mem.
    [Google Scholar]
  150. Sepkoski JJ. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:4298–303
    [Google Scholar]
  151. Sepkoski JJ. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4:3223–51
    [Google Scholar]
  152. Sepkoski JJ. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:3222–51
    [Google Scholar]
  153. Sepkoski JJ. 1984. A kinetic model of Phanerozoic taxonomic diversity III. Post-Paleozoic families and mass extinctions. Paleobiology 10:2246–67
    [Google Scholar]
  154. Sepkoski JJ. 1992. A compendium of fossil marine animal families. Contrib. Biol. Geol. 83:1–156
    [Google Scholar]
  155. Sepkoski JJ. 1997. Biodiversity: past, present, and future. J. Paleontol. 71:533–39
    [Google Scholar]
  156. Sepkoski JJ, Bambach RK, Raup DM, Valentine JW. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435–37
    [Google Scholar]
  157. Sessa JA, Patzkowsky ME, Bralower TJ. 2009. The impact of lithification on the diversity, size distribution, and recovery dynamics of marine invertebrate assemblages. Geology 37:115–18
    [Google Scholar]
  158. Shahkarami S, Buatois LA, Mángano MG, Hagadorn JW, Almond J. 2020. The Ediacaran–Cambrian boundary: evaluating stratigraphic completeness and the Great Unconformity. Precambrian Res. 345:105721
    [Google Scholar]
  159. Shubin NH, Daeschler EB, Jenkins FA. 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440:764–71
    [Google Scholar]
  160. Simberloff DS. 1974a. Equilibrium theory of island biogeography and ecology. Annu. Rev. Ecol. Syst. 5:161–82
    [Google Scholar]
  161. Simberloff DS. 1974b. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267–74
    [Google Scholar]
  162. Simpson GG. 1944. Tempo and Mode in Evolution New York: Columbia Univ. Press
  163. Sloss L. 1963. Sequences in the cratonic interior of North America. Geol. Soc. Am. Bull. 74:93–114
    [Google Scholar]
  164. Sloss L, Merriam D. 1964. Tectonic cycles of the North America craton. Kans. Geol. Surv. Bull. 169:449–60
    [Google Scholar]
  165. Sloss L, Speed RC. 1974. Relationships of cratonic and continental-margin tectonic episodes. SEPM Spec. Publ. SP22:98–120
    [Google Scholar]
  166. Smith AB. 2001. Large–scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos. Trans. R. Soc. Lond. B 356:351–67
    [Google Scholar]
  167. Smith AB, Gale AS, Monks NE. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241–53
    [Google Scholar]
  168. Stucki JW, Goodman BA, Schwertmann U. 2012. Iron in Soils and Clay Minerals Dordrect, Neth: Springer
  169. Sturrock C, Flowers R, Macdonald F. 2021. The late Great Unconformity of the central Canadian Shield. Geochem. Geophys. Geosyst. 22:e2020GC009567
    [Google Scholar]
  170. Swanson-Hysell NL, Rose CV, Calmet CC, Halverson GP, Hurtgen MT, Maloof AC. 2010. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328:608–11
    [Google Scholar]
  171. Tauxe L, Shaar R, Jonestrask L, Swanson-Hysell N, Minnett R et al. 2016. PmagPy: software package for paleomagnetic data analysis and a bridge to the magnetics information consortium (magic) database. Geochem. Geophys. Geosyst. 17:2450–63
    [Google Scholar]
  172. Tucker ME. 1992. The Precambrian–Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization. J. Geol. Soc. 149:655–68
    [Google Scholar]
  173. Valentine JW. 1970. How many marine invertebrate fossil species? A new approximation. J. Paleontol. 44:410–15
    [Google Scholar]
  174. Valentine JW. 1971. Plate tetonics and shallow marine diversity and endemism, an actualistic model. Syst. Zool. 20:253–64
    [Google Scholar]
  175. Valentine JW, Moores M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657–59
    [Google Scholar]
  176. Valentine JW, Moores EM. 1972. Global tectonics and the fossil record. J. Geol. 80:167–84
    [Google Scholar]
  177. Van Andel TH. 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26:187–94
    [Google Scholar]
  178. Van Houten FB. 1990. Palaeozoic oolitic ironstones on the North American craton. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80:245–54
    [Google Scholar]
  179. Veizer J 1984. Recycling on the evolving Earth: geochemical record in sediments. Proceedings of 27th International Geological Congress, Vol. 11: Geochemistry and Cosmochemistry NA Bogdanov 325–45 Utrecht, Neth: VNU Sci. Press
    [Google Scholar]
  180. Veizer J. 1988. The evolving exogenic cycle. Chem. Cycles Evol. Earth 1988:175–220
    [Google Scholar]
  181. Veizer J, Jansen SL. 1985. Basement and sedimentary recycling—2: time dimension to global tectonics. J. Geol. 93:625–43
    [Google Scholar]
  182. Vilhena DA, Smith AB. 2013. Spatial bias in the marine fossil record. PLOS ONE 8:e74470
    [Google Scholar]
  183. Wan B, Tang Q, Pang K, Wang X, Bao Z et al. 2019. Repositioning the Great Unconformity at the southeastern margin of the North China craton. Precambrian Res. 324:1–17
    [Google Scholar]
  184. Wilkinson BH, Walker JC. 1989. Phanerozoic cycling of sedimentary carbonate. Am. J. Sci. 289:525–48
    [Google Scholar]
  185. Wood R. 2018. Exploring the drivers of early biomineralization. Emerg. Top. Life Sci. 2:201–12
    [Google Scholar]
  186. Wood R, Ivantsov AY, Zhuravlev AY. 2017. First macrobiota biomineralization was environmentally triggered. Proc. R. Soc. B 284:20170059
    [Google Scholar]
  187. Wood RA. 2011. Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth-Sci. Rev. 106:184–90
    [Google Scholar]
  188. Zaffos A, Finnegan S, Peters SE. 2017. Plate tectonic regulation of global marine animal diversity. PNAS 114:5653–58
    [Google Scholar]
  189. Zhang G, Chen D, Huang KJ, Liu M, Huang T et al. 2021. Dramatic attenuation of continental weathering during the Ediacaran-Cambrian transition: implications for the climatic-oceanic-biological co-evolution. Glob. Planet. Change 203:103518
    [Google Scholar]
  190. Zhuravlev AY, Wood RA. 2008. Eve of biomineralization: controls on skeletal mineralogy. Geology 36:923–26
    [Google Scholar]
  191. Ziegler AM, Scotese C, McKerrow W, Johnson M, Bambach R 1979. Paleozoic paleogeography.. Annu. Rev. Earth Planet. Sci. 7:473–502
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-081427
Loading
/content/journals/10.1146/annurev-earth-032320-081427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error