1932

Abstract

Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012333
2016-06-29
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012333.html?itemId=/content/journals/10.1146/annurev-earth-060115-012333&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson EC, Arnold JR, Libby WF. 1951. Measurement of low level radiocarbon. Rev. Sci. Instrum. 22:225–30 [Google Scholar]
  2. Arnold JR, Libby WF. 1949. Age determinations by radiocarbon content: checks with samples of known age. Science 110:678–80The earliest paper that reports discrepancy of 14C ages of known-age marine samples. [Google Scholar]
  3. Ascough P, Cook G, Dugmore A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Prog. Phys. Geogr. 29:532–47 [Google Scholar]
  4. Bard E. 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochim. Cosmochim. Acta 62:2025–38 [Google Scholar]
  5. Bard E, Raisbeck GM, Yiou F, Jouzel J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 150:453–62 [Google Scholar]
  6. Blaauw M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5:512–18 [Google Scholar]
  7. Blaauw M, Christen JA. 2005. Radiocarbon peat chronologies and environmental change. J. R. Stat. Soc. C 54:805–16 [Google Scholar]
  8. Blaauw M, Heuvelink GBM, Mauquoy D, van der Plicht J, van Geel B. 2003. A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quat. Sci. Rev. 22:1485–500 [Google Scholar]
  9. Blaauw M, van Geel B, Kristen I, Plessen B, Lyaruu A. et al. 2011. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa. Quat. Sci. Rev. 30:3043–59 [Google Scholar]
  10. Boden TA, Marland G, Andres RJ. 2015. Global, regional, and national fossil-fuel CO2 emissions Tech. Rep., Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab., Oak Ridge, TN. doi: 10.3334/CDIAC/00001_V2015
  11. Bondevik S, Mangerud J, Birks HH, Gulliksen S, Reimer P. 2006. Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas. Science 312:1514–17 [Google Scholar]
  12. Bozhinova D, van der Molen MK, van der Velde IR, Krol MC, van der Laan S. et al. 2014. Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe. Atmos. Chem. Phys. 14:7273–90 [Google Scholar]
  13. Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM. 2009. A multiproxy index of the El Niño-Southern Oscillation, A.D. 1525–1982 J. Geophys. Res. Atmos. 114:D05106 [Google Scholar]
  14. Braziunas TF, Fung IY, Stuiver M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic and terrestrial reservoirs. Glob. Biogeochem. Cycles 9:565–84 [Google Scholar]
  15. Burr GS, Haynes CV, Shen C-C, Taylor F, Chang Y-W. et al. 2015. Temporal variations of radiocarbon reservoir ages in the South Pacific Ocean during the Holocene. Radiocarbon 57:507–15 [Google Scholar]
  16. Butzin M, Prange M, Lohmann G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet. Sci. Lett. 235:45–61 [Google Scholar]
  17. Cao L, Fairbanks RG, Mortlock RA, Risk MJ. 2007. Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial. Quat. Sci. Rev. 26:732–42 [Google Scholar]
  18. Cook GT, Ainscough LAN, Dunbar E. 2015. Radiocarbon analysis of modern skeletal remains to determine year of birth and death: a case study. Radiocarbon 57:327–36 [Google Scholar]
  19. Cook GT, Dunbar E, Black SM, Xu S. 2006. A preliminary assessment of age at death determination using the nuclear weapons testing 14C activity of dentine and enamel. Radiocarbon 48:305–13 [Google Scholar]
  20. Currie KI, Brailsford G, Nichol S, Gomez A, Sparks R. et al. 2011. Tropospheric 14CO2 at Wellington, New Zealand: the world's longest record. Biogeochemistry 104:5–22 [Google Scholar]
  21. Damon PE, Cheng SL, Linick TW. 1989. Fine and hyperfine-structure in the spectrum of secular variations of atmospheric 14C. Radiocarbon 31:704–18 [Google Scholar]
  22. Damon PE, Jirikowic JL. 1992. The sun as a low-frequency harmonic oscillator. Radiocarbon 34:199–205 [Google Scholar]
  23. Damon PE, Kaimei D, Kocharov GE, Mikheeva IB, Peristykh AN. 1995. Radiocarbon production by the gamma-ray component of supernova explosions. Radiocarbon 37:599–604 [Google Scholar]
  24. Damon PE, Lerman JC, Long A. 1978. Temporal fluctuations of atmospheric 14C: causal factors and implications. Annu. Rev. Earth Planet. Sci. 6:457–94 [Google Scholar]
  25. Damon PE, Linick TW. 1986. Geomagnetic-heliomagnetic modulation of atmospheric radiocarbon production. Radiocarbon 28:266–78 [Google Scholar]
  26. Damon PE, Long A, Wallick EI. 1973. Magnitude of 11-year radiocarbon cycle. Earth Planet. Sci. Lett. 20:300–6 [Google Scholar]
  27. Damon PE, Peristykh AN. 2000. Radiocarbon calibration and application to geophysics, solar physics, and astrophysics. Radiocarbon 42:137–50A detailed review on the development of radiocarbon calibration and spectrum of atmospheric 14C variations. [Google Scholar]
  28. Damon PE, Sonnett CP. 1991. Solar and terrestrial components of the atmospheric 14C variation spectrum. The Sun in Time CP Sonnet, MS Giampapa, MS Matthews 360–88 Tucson: Univ. Arizona Press [Google Scholar]
  29. Damon PE, Sternberg RE. 1989. Global production and decay of radiocarbon. Radiocarbon 31:697–703 [Google Scholar]
  30. de Jong AFM, Mook WG. 1980. Medium-term atmospheric 14C variations. Radiocarbon 22:267–72 [Google Scholar]
  31. de Jong AFM, Mook WG. 1982. An anomalous Suess effect above Europe. Nature 298:641–44 [Google Scholar]
  32. de Vries H. 1958a. Atomic bomb effect: variation of radio-carbon in plants, shells, and snails in the past four years. Science 128:250–51 [Google Scholar]
  33. de Vries H. 1958b. Variation in concentration of radiocarbon with time and location on earth. Proc. Konin. Ned. Akad. Wet. B 61:94–102 [Google Scholar]
  34. Djuricin S, Xu X, Pataki DE. 2012. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980–2008. J. Geophys. Res. Atmos. 117:D12302 [Google Scholar]
  35. Druffel ERM. 1981. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophys. Res. Lett. 8:59–62 [Google Scholar]
  36. Druffel ERM, Griffin S. 1999. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. J. Geophys. Res. Oceans 104:23607–13 [Google Scholar]
  37. Druffel ERM, Griffin S, Beaupre SR, Dunbar RB. 2007. Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals. Geophys. Res. Lett. 34:L09601 [Google Scholar]
  38. Druffel ERM, Griffin S, Vetter D, Dunbar RB, Mucciarone DM. 2015. Identification of frequent La Niña events during the early 1800s in the east equatorial Pacific. Geophys. Res. Lett. 42:1512–19 [Google Scholar]
  39. Druffel EM, Suess HE. 1981. On the radiocarbon record in the banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. J. Geophys. Res. 88:1271–80 [Google Scholar]
  40. Dutta K. 2002. Coherence of tropospheric 14CO2 with El Niño/Southern Oscillation. Geophys. Res. Lett. 29:1987 [Google Scholar]
  41. Dutta K. 2008. Marine 14C reservoir age and Suess effect in the Indian Ocean. Earth Sci. India 1:243–57 [Google Scholar]
  42. Dutta K, Bhushan R, Somayajulu B. 2001. ΔR correction values for the northern Indian Ocean. Radiocarbon 43:483–88 [Google Scholar]
  43. Dutta K, Bhushan R, Somayajulu B, Rastogi N. 2006. Inter-annual variation in atmospheric Δ14C over the northern Indian Ocean. Atmos. Environ. 40:4501–12 [Google Scholar]
  44. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT. 2013. Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J. Clim. 26:2329–52 [Google Scholar]
  45. Enting I. 1982. Nuclear weapons data for use in carbon cycle modelling. Tech. Pap. 44, Div. Atmos. Res., CSIRO, Melbourne, Aust.
  46. Enting I, Pearman GI. 1982. Description of a one-dimensional global carbon cycle model Tech. Pap. 42, Div. Atmos. Res., CSIRO, Melbourne, Aust.
  47. Fairbanks RG, Mortlock RA, Chiu TC, Cao L, Kaplan A. et al. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat. Sci. Rev. 24:1781–96 [Google Scholar]
  48. Fergusson GJ. 1958. Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere. Proc. R. Soc. Lond. A 243:561–74 [Google Scholar]
  49. Franke J, Paul A, Schulz M. 2008. Modeling variations of marine reservoir ages during the last 45,000 years. Clim. Past 4:125–36 [Google Scholar]
  50. Galimberti M, Ramsey CB, Manning SW. 2004. Wiggle-match dating of tree-ring sequences. Radiocarbon 46:917–24 [Google Scholar]
  51. Gallet Y, Genevey A, Courtillot V. 2003. On the possible occurrence of ‘archaeomagnetic jerks’ in the geomagnetic field over the past three millennia. Earth Planet. Sci. Lett. 214:237–42 [Google Scholar]
  52. Galli I, Bartalini S, Borri S, Cancio P, Mazzotti D. et al. 2011. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107:270802 [Google Scholar]
  53. Georgiadou E, Stenström K. 2010. Bomb-pulse dating of human material: modeling the influence of diet. Radiocarbon 52:800–7 [Google Scholar]
  54. Godwin H. 1962. Radiocarbon dating: fifth international conference. Nature 195:943–45 [Google Scholar]
  55. Goodsite ME, Rom W, Heinemeier J, Lange T, Ooi S. et al. 2001. High-resolution AMS 14C dating of post-bomb peat archives of atmospheric pollutants. Radiocarbon 43:495–515 [Google Scholar]
  56. Graven HD. 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. PNAS 112:9542–45 [Google Scholar]
  57. Graven HD, Gruber N. 2011. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2. Atmos. Chem. Phys. 11:12339–49 [Google Scholar]
  58. Graven HD, Guilderson TP, Keeling RF. 2012a. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992–2007: analysis of the long-term trend. J. Geophys. Res. Atmos. 117:D02302 [Google Scholar]
  59. Graven HD, Guilderson TP, Keeling RF. 2012b. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. J. Geophys. Res. Atmos. 117:D02303 [Google Scholar]
  60. Guilderson TP, Cole JE, Southon JR. 2005a. Pre-bomb Δ14C variability and the Suess effect in Cariaco Basin surface waters as recorded in hermatypic corals. Radiocarbon 47:57–65 [Google Scholar]
  61. Guilderson TP, Reimer PJ, Brown TA. 2005b. The boon and bane of radiocarbon dating. Science 307:362–64 [Google Scholar]
  62. Güttler D, Adolphi F, Beer J, Bleicher N, Boswijk G. et al. 2015. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth Planet. Sci. Lett. 411:290–97 [Google Scholar]
  63. Güttler D, Wacker L, Kromer B, Friedrich M, Synal HA. 2013. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD: progress on high precision AMS measurements. Nuclear Instrum. Methods Phys. Res. B 294:459–63 [Google Scholar]
  64. Hambaryan VV, Neuhäuser R. 2013. A galactic short gamma-ray burst as cause for the 14C peak in AD 774/5. Mon. Notices R. Astron. Soc. 430:32–36 [Google Scholar]
  65. Hodge E, McDonald J, Treble PC, Levchenko VA, Drysdale RN. et al. 2007. Radiocarbon bomb pulse chronologies for young speleothems and implications for rainfall records in southeast Australia. Quat. Int. 167–68170
  66. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE. et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55:1889–903 [Google Scholar]
  67. Houterman JC, Suess HE. 1973. Reservoir models and production rate variations of natural radiocarbon. J. Geophys. Res. 78:1897–908 [Google Scholar]
  68. Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys. Res. Lett. 34:L02816 [Google Scholar]
  69. Hua Q. 2009. Radiocarbon: a chronological tool for the recent past. Quat. Geochronol. 4:378–90 [Google Scholar]
  70. Hua Q, Barbetti M. 2007. Influence of atmospheric circulation on regional 14CO2 differences. J. Geophys. Res. Atmos. 112:D19102 [Google Scholar]
  71. Hua Q, Barbetti M, Jacobsen GE, Zoppi U, Lawson EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instrum. Methods Phys. Res. B 172:359–65 [Google Scholar]
  72. Hua Q, Barbetti M, Levchenko VA, D'Arrigo RD, Buckley BM, Smith AM. 2012. Monsoonal influence on Southern Hemisphere 14CO2. Geophys. Res. Lett. 39:L19806 [Google Scholar]
  73. Hua Q, Barbetti M, Rakowski AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–72 [Google Scholar]
  74. Hua Q, Webb GE, Zhao J-x, Nothdurft LD, Lybolt M. et al. 2015. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes. Earth Planet. Sci. Lett. 422:33–44 [Google Scholar]
  75. Jackson RB, Canadell JG, Le Quéré C, Andrew RM, Korsbakken JI. et al. 2016. Reaching peak emissions. Nat. Clim. Change 6:7–10 [Google Scholar]
  76. Jirikowic JL, Kalin RM. 1993. A possible paleoclimatic ENSO indicator in the spatial variation of annual tree-ring 14C. Geophys. Res. Lett. 20:439–42 [Google Scholar]
  77. Jull AJT, Panyushkina IP, Lange TE, Kukarskih VV, Myglan VS. et al. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 41:3004–10 [Google Scholar]
  78. Keeling CD. 1979. The Suess effect: 13carbon-14carbon interrelations. Environ. Int. 2:229–300 [Google Scholar]
  79. Kitagawa H, Mukai H, Nojiri Y, Shibata Y, Kobayashi T, Nojiri T. 2004. Seasonal and secular variations of atmospheric 14CO2 over the western Pacific since 1994. Radiocarbon 46:901–10 [Google Scholar]
  80. Klein J, Lerman JC, Damon PE, Ralph EK. 1982. Calibration of radiocarbon dates: tables based on the consensus data of the Workshop on Calibrating the Radiocarbon Time Scale. Radiocarbon 24:103–50 [Google Scholar]
  81. Knudsen MF, Riisager P, Donadini F, Snowball I, Muscheler R. et al. 2008. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet. Sci. Lett. 272:319–29 [Google Scholar]
  82. Korff SA, Mendell RB. 1980. Variations in radiocarbon production in the earth's atmosphere. Radiocarbon 22:159–65 [Google Scholar]
  83. Kromer B. 2009. Radiocarbon and dendrochronology. Dendrochronologia 27:15–19 [Google Scholar]
  84. Lal D. 1974. Long term variations in the cosmic ray flux. Philos. Trans. R. Soc. A 277:395–411 [Google Scholar]
  85. Lal D, Jull AJT, Pollard D, Vacher L. 2005. Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland. Earth Planet. Sci. Lett. 234:335–49 [Google Scholar]
  86. Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S. et al. 2015. Global Carbon Budget 2015. Earth Syst. Sci. Data 7:349–96 [Google Scholar]
  87. Levin I, Hesshaimer V. 2000. Radiocarbon: a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80 [Google Scholar]
  88. Levin I, Kromer B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46:1261–72 [Google Scholar]
  89. Levin I, Kromer B, Hammer S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:20092 [Google Scholar]
  90. Levin I, Kromer B, Schmidt M, Sartorius H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys. Res. Lett. 30:2194 [Google Scholar]
  91. Levin I, Naegler T, Kromer B, Diehl M, Francey RJ. et al. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62:26–46 [Google Scholar]
  92. Levin I, Roedenbeck C. 2008. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?. Naturwissenschaften 95:203–8 [Google Scholar]
  93. Lingenfelter RE, Ramaty R. 1970. Astrophysical and geophysical variation in C-14 production. Radiocarbon Variations and Absolute Chronology IU Olsson 513–37 New York: Wiley [Google Scholar]
  94. Libby WF, Anderson EC, Arnold JR. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109:227–28Earliest paper on radiocarbon dating. [Google Scholar]
  95. Litherland AE. 1980. Ultrasensitive mass spectrometry with accelerators. Annu. Rev. Nucl. Part. Sci. 30:437–73 [Google Scholar]
  96. Lockwood M. 2006. What do cosmogenic isotopes tell us about past solar forcing of climate?. Space Sci. Rev. 125:95–109 [Google Scholar]
  97. Marshall WA, Gehrels WR, Garnett MH, Freeman SPHT, Maden C, Xu S. 2007. The use of ‘bomb spike’ calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries. Quat. Res. 68:325–37 [Google Scholar]
  98. Mauquoy D, van Geel B, Blaauw M, Speranza A, van der Plicht J. 2004. Changes in solar activity and Holocene climatic shifts derived from 14C wiggle-match dated peat deposits. Holocene 14:45–52 [Google Scholar]
  99. McCormac FG, Hogg AG, Higham TFG, Lynch-Stieglitz J, Broecker WS. et al. 1998. Temporal variation in the interhemispheric 14C offset. Geophys. Res. Lett. 25:1321–24 [Google Scholar]
  100. McGregor HV, Gagan MK, McCulloch MT, Hodge E, Mortimer G. 2008. Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quat. Geochronol. 3:213–25 [Google Scholar]
  101. Meijer HAJ, van der Plicht J, Gislefoss JS, Nydal R. 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37:39–50 [Google Scholar]
  102. Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J. et al. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 6:8611 [Google Scholar]
  103. Mellström A, Muscheler R, Snowball I, Ning W, Haltia E. 2013. Radiocarbon wiggle-match dating of bulk sediments: How accurate can it be?. Radiocarbon 55:1173–86 [Google Scholar]
  104. Melott AL, Thomas BC. 2012. Causes of an AD 774–775 14C increase. Nature 491:E1–2 [Google Scholar]
  105. Middleton R, Klein J, Fink D. 1989. A CO2 negative ion source for 14C dating. Nuclear Instrum. Methods Phys. Res. B 43:231–39 [Google Scholar]
  106. Miller J, Lehman S, Wolak C, Turnbull J, Dunn G. et al. 2013. Initial results of an intercomparison of AMS-based atmospheric 14CO2 measurements. Radiocarbon 55:1475–83 [Google Scholar]
  107. Miyahara H, Nagaya K, Masuda K, Muraki Y, Kitagawa H, Nakamura T. 2008. Transition of solar cycle length in association with the occurrence of grand solar minima indicated by radiocarbon content in tree-rings. Quat. Geochronol. 3:208–12 [Google Scholar]
  108. Miyake F, Masuda K, Hakozaki M, Nakamura T, Tokanai F. et al. 2014. Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56:1189–94 [Google Scholar]
  109. Miyake F, Masuda K, Nakamura T. 2013. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4:1748 [Google Scholar]
  110. Miyake F, Nagaya K, Masuda K, Nakamura T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486:240–42 [Google Scholar]
  111. Muscheler R, Beer R, Kubik PW, Synal HA. 2005. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C. Quat. Sci. Rev. 24:1849–60 [Google Scholar]
  112. Muscheler R, Joos F, Beer J, Mueller SA, Vonmoos M, Snowball I. 2007. Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26:82–97 [Google Scholar]
  113. Neuhäuser R, Neuhäuser DL. 2015. Variations of 14C around AD 775 and AD 1795—due to solar activity. Astron. Nachr. 336:930–54 [Google Scholar]
  114. Niu M, Heaton TJ, Blackwell PG, Buck CE. 2013. The Bayesian approach to radiocarbon calibration curve estimation: the IntCal13, Marine13, and SHCal13 methodologies. Radiocarbon 55:1905–22 [Google Scholar]
  115. Nobel Media AB. 2014. The Nobel Prize in chemistry 1960 http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1960/
  116. Nydal R. 1962. Proportional counting technique for radiocarbon measurements. Rev. Sci. Instrum. 33:1313–20 [Google Scholar]
  117. Nydal R. 1963. Increase of radiocarbon from most recent series of thermonuclear tests. Nature 200:212–14 [Google Scholar]
  118. Nydal R, Gislefoss JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38:389–406 [Google Scholar]
  119. Nydal R, Lövseth K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. J. Geophys. Res. 88:3621–42 [Google Scholar]
  120. Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92 [Google Scholar]
  121. Olsson IU. 2009. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51:1–43 [Google Scholar]
  122. Ortlieb L, Vargas G, Saliège J-F. 2011. Marine radiocarbon reservoir effect along the northern Chile-southern Peru coast (14–24°S) throughout the Holocene. Quat. Res. 75:91–103 [Google Scholar]
  123. Paterne M, Ayliffe LK, Arnold M, Cabioch G, Tisnérat-Laborde N. et al. 2004. Paired 14C and 230Th/U dating of surface corals from the Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr interval. Radiocarbon 46:551–66 [Google Scholar]
  124. Pazdur A, Nakamura T, Pawelczyk S, Pawlyta J, Piotrowska N. et al. 2007. Carbon isotopes in tree rings: climate and the Suess effect interferences in the last 400 years. Radiocarbon 49:775–88 [Google Scholar]
  125. Rafter TA, Ferguson GJ. 1957. “Atomic bomb effect”—recent increase of carbon-14 content of the atmosphere and biosphere. Science 126:557–58 [Google Scholar]
  126. Rakowski AZ, Krapiec M, Huels M, Pawlyta J, Dreves A, Meadows J. 2015. Increase of radiocarbon concentration in tree rings from Kujawy (SE Poland) around AD 774–775. Nuclear Instrum. Methods Phys. Res. B 361:564–68 [Google Scholar]
  127. Ramsey CB. 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50:249–75 [Google Scholar]
  128. Ramsey CB. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–60 [Google Scholar]
  129. Ramsey CB, Higham T, Leach P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46:17–24 [Google Scholar]
  130. Ramsey CB, van der Flicht J, Weninger B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43:381–89 [Google Scholar]
  131. Randerson JT, Enting IG, Schuur EAG, Caldeira K, Fung IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Glob. Biogeochem. Cycles 16:1112 [Google Scholar]
  132. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG. et al. 2013. INTCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–87 [Google Scholar]
  133. Reimer PJ, Brown TA, Reimer RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–304 [Google Scholar]
  134. Reimer PJ, Hughen KA. 2008. Palaeoclimate: tree rings floating on ice cores. Nat. Geosci. 1:218–19 [Google Scholar]
  135. Reimer PJ, Reimer RW. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43:461–63 [Google Scholar]
  136. Ritz SP, Stocker TF, Mueller SA. 2008. Modeling the effect of abrupt ocean circulation change on marine reservoir age. Earth Planet. Sci. Lett. 268:202–11 [Google Scholar]
  137. Roth R, Joos F. 2013. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties. Clim. Past 9:1879–909 [Google Scholar]
  138. Rozanski K, Levin I, Stock J, Falcon REG, Rubio F. 1995. Atmospheric 14CO2 variations in the Equatorial region. Radiocarbon 37:509–15 [Google Scholar]
  139. Russell N, Cook GT, Ascough PL, Scott EM, Dugmore AJ. 2011. Examining the inherent variability in ΔR: new methods of presenting ΔR values and implications for MRE studies. Radiocarbon 53:277–88 [Google Scholar]
  140. Santos GM, De La Torre HAM, Boudin M, Bonafini M, Saverwyns S. 2015. Improved radiocarbon analyses of modern human hair to determine the year-of-death by cross-flow nanofiltered amino acids: common contaminants, implications for isotopic analysis, and recommendations. Rapid Commun. Mass Spectrom. 29:1765–73 [Google Scholar]
  141. Santos GM, Linares R, Lisi CS, Tomazello Filho M. 2015. Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): toward improving the 14C calibration curve for the Southern Hemisphere. Quat. Geochronol. 25:96–103 [Google Scholar]
  142. Southon J, Kashgarian M, Fontugne M, Metivier B, Yim WWS. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44:167–80 [Google Scholar]
  143. Spalding KL, Buchholz BA, Bergman LE, Druid H, Frisén J. 2005. Age written in teeth by nuclear tests. Nature 437:333–34 [Google Scholar]
  144. Staubwasser M, Sirocko F, Grootes PM, Erlenkeuser H. 2002. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography 17:1063 [Google Scholar]
  145. Steier P, Dellinger F, Kutschera W, Priller A, Rom W, Wild EM. 2004. Pushing the precision limit of 14C AMS. Radiocarbon 46:5–16 [Google Scholar]
  146. Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M. et al. 2012. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS 109:5967–71 [Google Scholar]
  147. Stern JV, Lisiecki LE. 2013. North Atlantic circulation and reservoir age changes over the past 41,000years. Geophys. Res. Lett. 40:3693–97 [Google Scholar]
  148. Stuiver M. 1993. A note on single-year calibration of the radiocarbon time scale, AD 1510–1954. Radiocarbon 35:67–72 [Google Scholar]
  149. Stuiver M, Braziunas TF. 1989. Atmospheric 14C and century-scale solar oscillations. Nature 338:405–8 [Google Scholar]
  150. Stuiver M, Braziunas TF. 1993a. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35:137–89 [Google Scholar]
  151. Stuiver M, Braziunas TF. 1993b. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3:289–305Detailed analysis of atmospheric 14C variability at century to subdecadal timescales. [Google Scholar]
  152. Stuiver M, Polach HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355–63Conventions of reporting 14C concentrations in various units. [Google Scholar]
  153. Stuiver M, Quay PD. 1980. Patterns of atmospheric 14C changes. Radiocarbon 22:166–76 [Google Scholar]
  154. Stuiver M, Quay PD. 1981. Atmospheric 14C changes resulting from fossil-fuel CO2 release and cosmic-ray flux variability. Earth Planet. Sci. Lett. 53:349–62 [Google Scholar]
  155. Stuiver M, Reimer PJ, Braziunas TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–51 [Google Scholar]
  156. Stuiver M, Suess H. 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8:534–40Systematic comparison of 14C dates of samples of known age. [Google Scholar]
  157. Suess HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–17 [Google Scholar]
  158. Tans P, de Jong AFM, Mook WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280:826–28 [Google Scholar]
  159. Tans PP, Zellweger C. 2014. 17th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2013). GAW Rep. 213, World Meteorol. Organ., Glob. Atmos. Watch, Geneva. http://www.wmo.int/pages/prog/arep/gaw/documents/Final_GAW_213_web.pdf
  160. Taylor RE, Bar-Yosef O. 2014. Radiocarbon Dating: An Archaeological Perspective Walnut Creek, CA: Left Coast, 2nd ed..
  161. Turnbull J, Lehman SJ, Miller JB, Sparks RJ, Southon JR, Tans PP. 2007. A new high precision 14CO2 time series for North American continental air. J. Geophys. Res. Atmos. 112:D11310 [Google Scholar]
  162. Turnbull JC, Rayner P, Miller J, Naegler T, Ciais P, Cozic A. 2009. On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. J. Geophys. Res. Atmos. 114:D22302 [Google Scholar]
  163. Turnbull JC, Zondervan A, Kaiser J, Norris M, Dahl J, Baisden T, Lehman S. 2015. High-precision atmospheric 14CO2 measurement at the Rafter Radiocarbon Laboratory. Radiocarbon 57:377–88 [Google Scholar]
  164. Turney CSM, Palmer JG. 2007. Does the El Niño-Southern Oscillation control the interhemispheric radiocarbon offset?. Quat. Res. 67:174–80 [Google Scholar]
  165. Turney CSM, Palmer J, Hogg A, Fogwill CJ, Jones RT. et al. 2016. Multidecadal variations in Southern Hemisphere atmospheric 14C: evidence against a Southern Ocean sink at the end of the Little Ice Age CO2 anomaly. Glob. Biogeochem. Cycles 30211–18
  166. UNSCEAR 2000. Sources and Effects of Ionizing Radiation: 2000 Report to the General Assembly, with Scientific Annexes I Sources. New York: United Nations
  167. Usoskin IG, Horiuchi K, Solanki S, Kovaltsov GA, Bard E. 2009. On the common solar signal in different cosmogenic isotope data sets. J. Geophys. Res. Space Phys. 114:A03112 [Google Scholar]
  168. Usoskin IG, Kromer B, Ludlow F, Beer J, Friedrich M. et al. 2013. The AD 775 cosmic event revisited: The Sun is to blame. Astron. Astrophys. 552:L3 [Google Scholar]
  169. Usoskin IG, Solanki SK, Kovaltsov GA. 2007. Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471:301–9 [Google Scholar]
  170. van der Plicht J, Jansma E, Kars H. 1995. The “Amsterdam Castle”: a case study of wiggle matching and the proper calibration curve. Radiocarbon 37:965–68 [Google Scholar]
  171. van Geel B, Mook WG. 1989. High-resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon 31:151–55 [Google Scholar]
  172. Vasiliev SS, Dergachev VA. 2002. The ∼2400-year cycle in atmospheric radiocarbon concentration: bispectrum of 14C data over the last 8000 years. Ann. Geophys. 20:115–20 [Google Scholar]
  173. Wacker L, Bonani G, Friedrich M, Hajdas I, Kromer B. et al. 2010. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52:252–62 [Google Scholar]
  174. Wacker L, Guttler D, Goll J, Hurni JP, Synal HA, Walti N. 2014. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56:573–79 [Google Scholar]
  175. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C. et al. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:aad2622 [Google Scholar]
  176. Wood R. 2015. From revolution to convention: the past, present and future of radiocarbon dating. J. Archaeol. Sci. 56:61–72 [Google Scholar]
  177. Worbes M, Junk WJ. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–7 [Google Scholar]
  178. Zaunbrecher LK, Cobb KM, Beck JW, Charles CD, Druffel ERM. et al. 2010. Coral records of central tropical Pacific radiocarbon variability during the last millennium. Paleoceanography 25:PA4212 [Google Scholar]
  179. Zoppi U, Skopec Z, Skopec J, Jones G, Fink D. et al. 2004. Forensic applications of 14C bomb-pulse dating. Nuclear Instrum. Methods Phys. Res. B 223–24:770–75 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012333
Loading
/content/journals/10.1146/annurev-earth-060115-012333
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error