1932

Abstract

Pleiotropy refers to the phenomenon of one gene or one mutation affecting multiple phenotypic traits. While the concept of pleiotropy is as old as Mendelian genetics, functional genomics has finally allowed the first glimpses of the extent of pleiotropy for a large fraction of genes in a genome. After describing conceptual and operational difficulties in quantifying pleiotropy and the pros and cons of various methods for measuring pleiotropy, I review empirical data on pleiotropy, which generally show an L-shaped distribution of the degree of pleiotropy (i.e., the number of traits affected), with most genes having low pleiotropy. I then review the current understanding of the molecular basis of pleiotropy. In the rest of the review, I discuss evolutionary consequences of pleiotropy, focusing on advances in topics including the cost of complexity, regulatory versus coding evolution, environmental pleiotropy and adaptation, evolution of ageing and other seemingly harmful traits, and evolutionary resolution of pleiotropy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-022323-083451
2023-11-02
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-022323-083451.html?itemId=/content/journals/10.1146/annurev-ecolsys-022323-083451&mimeType=html&fmt=ahah

Literature Cited

  1. Albert AY, Sawaya S, Vines TH, Knecht AK, Miller CT et al. 2008. The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. Evolution 62:76–85
    [Google Scholar]
  2. Arce L, Yokoyama NN, Waterman ML. 2006. Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–504
    [Google Scholar]
  3. Bakerlee CW, Phillips AM, Nguyen Ba AN, Desai MM 2021. Dynamics and variability in the pleiotropic effects of adaptation in laboratory budding yeast populations. eLife 10:e70918
    [Google Scholar]
  4. Barton NH. 1990. Pleiotropic models of quantitative variation. Genetics 124:773–82
    [Google Scholar]
  5. Bentley MA, Yates CA, Hein J, Preston GM, Foster KR. 2022. Pleiotropic constraints promote the evolution of cooperation in cellular groups. PLOS Biol. 20:e3001626
    [Google Scholar]
  6. Bergthorsson U, Andersson DI, Roth JR. 2007. Ohno's dilemma: evolution of new genes under continuous selection. PNAS 104:17004–9
    [Google Scholar]
  7. Berlocher SH, Feder JL. 2002. Sympatric speciation in phytophagous insects: moving beyond controversy?. Annu. Rev. Entomol. 47:773–815
    [Google Scholar]
  8. Bien SA, Peters U. 2019. Moving from one to many: insights from the growing list of pleiotropic cancer risk genes. Br. J. Cancer 120:1087–89
    [Google Scholar]
  9. Bonduriansky R, Chenoweth SF. 2009. Intralocus sexual conflict. Trends Ecol. Evol. 24:280–88
    [Google Scholar]
  10. Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG et al. 2020. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. PNAS 117:11207–16
    [Google Scholar]
  11. Byars SG, Voskarides K. 2020. Antagonistic pleiotropy in human disease. J. Mol. Evol. 88:12–25
    [Google Scholar]
  12. Carroll J, Rossi EA, Porter J, Neitz J, Roorda A et al. 2010. Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic. Vision Res. 50:1989–99
    [Google Scholar]
  13. Carroll SB. 2005. Evolution at two levels: on genes and form. PLOS Biol. 3:e245
    [Google Scholar]
  14. Carter AJ, Nguyen AQ. 2011. Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles. BMC Med. Genet. 12:160
    [Google Scholar]
  15. Chen P, Zhang J. 2020. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4:461–69
    [Google Scholar]
  16. Chesmore K, Bartlett J, Williams SM. 2018. The ubiquity of pleiotropy in human disease. Hum. Genet. 137:39–44
    [Google Scholar]
  17. Cooper TF, Ostrowski EA, Travisano M. 2007. A negative relationship between mutation pleiotropy and fitness effect in yeast. Evolution 61:1495–99
    [Google Scholar]
  18. Dudley AM, Janse DM, Tanay A, Shamir R, Church GM. 2005. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. 1:2005.0001
    [Google Scholar]
  19. Ellegren H, Parsch J. 2007. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8:689–98
    [Google Scholar]
  20. Fisher RA. 1930. The Genetic Theory of Natural Selection Oxford, UK: Clarendon
  21. Flatt T, Partridge L. 2018. Horizons in the evolution of aging. BMC Biol. 16:93
    [Google Scholar]
  22. Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CR. 2004. Pleiotropy as a mechanism to stabilize cooperation. Nature 431:693–96
    [Google Scholar]
  23. Frachon L, Libourel C, Villoutreix R, Carrere S, Glorieux C et al. 2017. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat. Ecol. Evol. 1:1551–61
    [Google Scholar]
  24. Francino MP. 2005. An adaptive radiation model for the origin of new gene functions. Nat. Genet. 37:573–77
    [Google Scholar]
  25. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. 2002. Evolutionary rate in the protein interaction network. Science 296:750–52
    [Google Scholar]
  26. Geiler-Samerotte KA, Li S, Lazaris C, Taylor A, Ziv N et al. 2020. Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping. PLOS Biol. 18:e3000836
    [Google Scholar]
  27. Grieshop K, Arnqvist G. 2018. Sex-specific dominance reversal of genetic variation for fitness. PLOS Biol. 16:e2006810
    [Google Scholar]
  28. Grüneberg H. 1938. An analysis of the “pleiotropic” effects of a new lethal mutation in the rat (Mus norvegicus). Proc. R. Soc. B 125:123–44
    [Google Scholar]
  29. Guillaume F, Otto SP. 2012. Gene functional trade-offs and the evolution of pleiotropy. Genetics 192:1389–409
    [Google Scholar]
  30. Hackinger S, Zeggini E. 2017. Statistical methods to detect pleiotropy in human complex traits. Open Biol. 7:170125
    [Google Scholar]
  31. Hadorn E. 1961. Developmental Genetics and Lethal Factors London: Methuen and Co.
  32. Hanemian M, Vasseur F, Marchadier E, Gilbault E, Bresson J et al. 2020. Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat. Commun. 11:4140
    [Google Scholar]
  33. He X, Zhang J. 2006. Toward a molecular understanding of pleiotropy. Genetics 173:1885–91
    [Google Scholar]
  34. Hill MS, Vande Zande P, Wittkopp PJ. 2021. Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 22:203–15
    [Google Scholar]
  35. Hill WG, Zhang XS. 2012. Assessing pleiotropy and its evolutionary consequences: Pleiotropy is not necessarily limited, nor need it hinder the evolution of complexity. Nat. Rev. Genet. 13:296
    [Google Scholar]
  36. Hittinger CT, Carroll SB. 2007. Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–81
    [Google Scholar]
  37. Ho WC, Ohya Y, Zhang J. 2017. Testing the neutral hypothesis of phenotypic evolution. PNAS 114:12219–24
    [Google Scholar]
  38. Hodgkin J. 1998. Seven types of pleiotropy. Int. J. Dev. Biol. 42:501–5
    [Google Scholar]
  39. Hughes AL. 1994. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. B 256:119–24
    [Google Scholar]
  40. Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M et al. 2006. αB-crystallin mutation in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 342:379–86
    [Google Scholar]
  41. Innocenti P, Morrow EH. 2010. The sexually antagonistic genes of Drosophila melanogaster. PLOS Biol. 8:e1000335
    [Google Scholar]
  42. Jerison ER, Nguyen Ba AN, Desai MM, Kryazhimskiy S 2020. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4:601–11
    [Google Scholar]
  43. Jiang D, Zhang J. 2020. Fly wing evolution explained by a neutral model with mutational pleiotropy. Evolution 74:2158–67
    [Google Scholar]
  44. Jordan IK, Wolf YI, Koonin EV. 2003. No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3:1
    [Google Scholar]
  45. Kenney-Hunt JP, Wang B, Norgard EA, Fawcett G, Falk D et al. 2008. Pleiotropic patterns of quantitative trait loci for 70 murine skeletal traits. Genetics 178:2275–88
    [Google Scholar]
  46. Kim PM, Lu LJ, Xia Y, Gerstein MB. 2006. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–41
    [Google Scholar]
  47. Kirkpatrick M, Ravigne V. 2002. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159:Suppl. 3S22–35
    [Google Scholar]
  48. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. 2014. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344:1519–22
    [Google Scholar]
  49. Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM et al. 2013. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500:571–74
    [Google Scholar]
  50. Li C, Zhang J. 2018. Multi-environment fitness landscapes of a tRNA gene. Nat. Ecol. Evol. 2:1025–32
    [Google Scholar]
  51. Liao BY, Weng MP, Zhang J. 2010. Contrasting genetic paths to morphological and physiological evolution. PNAS 107:7353–58
    [Google Scholar]
  52. Liu M, Ke T, Wang Z, Yang Q, Chang W et al. 2006. Identification of a CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Investig. Ophthalmol. Vis. Sci. 47:3461–66
    [Google Scholar]
  53. Long E, Zhang J. 2021. Natural selection contributes to the myopia epidemic. Natl. Sci. Rev. 8:nwaa175
    [Google Scholar]
  54. Long E, Zhang J. 2023. Evidence for the role of selection for reproductively advantageous alleles in human aging. bioRxiv 2023.04.13.536806. https://www.biorxiv.org/content/10.1101/2023.04.13.536806v1
  55. Lynch M, Bobay LM, Catania F, Gout JF, Rho M. 2011. The repatterning of eukaryotic genomes by random genetic drift. Annu. Rev. Genom. Hum. Genet. 12:347–66
    [Google Scholar]
  56. Maclean CJ, Metzger BPH, Yang JR, Ho WC, Moyers B, Zhang J. 2017. Deciphering the genic basis of yeast fitness variation by simultaneous forward and reverse genetics. Mol. Biol. Evol. 34:2486–502
    [Google Scholar]
  57. Mank JE. 2009. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am. Nat. 173:141–50
    [Google Scholar]
  58. Mauro AA, Ghalambor CK. 2020. Trade-offs, pleiotropy, and shared molecular pathways: a unified view of constraints on adaptation. Integr. Comp. Biol. 60:332–47
    [Google Scholar]
  59. Mendel JG. 1866. Experiments in plant hybridization. Verh. naturforschenden Ver. Brünn 4:3–47
    [Google Scholar]
  60. Moore T, Haig D. 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7:45–49
    [Google Scholar]
  61. Näsvall J, Sun L, Roth JR, Andersson DI. 2012. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338:384–87
    [Google Scholar]
  62. Ohya Y, Sese J, Yukawa M, Sano F, Nakatani Y et al. 2005. High-dimensional and large-scale phenotyping of yeast mutants. PNAS 102:19015–20
    [Google Scholar]
  63. Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13–20
    [Google Scholar]
  64. Otto SP. 2004. Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc. Biol. Sci. 271:705–14
    [Google Scholar]
  65. Otto SP, Whitlock MC. 2013. Fixation probabilities and times. eLS Chichester, UK: John Wiley & Sons https://doi.org/10.1002/9780470015902.a0005464.pub3
    [Google Scholar]
  66. Paaby AB, Rockman MV. 2013a. The many faces of pleiotropy. Trends Genet. 29:66–73
    [Google Scholar]
  67. Paaby AB, Rockman MV. 2013b. Pleiotropy: What do you mean? Reply to Zhang and Wagner. Trends Genet. 29:384
    [Google Scholar]
  68. Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. 2008. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62:199–213
    [Google Scholar]
  69. Pingault JB, O'Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. 2018. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19:566–80
    [Google Scholar]
  70. Plate L. 1910. Vererbungslehre und Deszendenztheorie [Genetics and evolution]. Festschrift zum sechzigsten Geburtstag Richard Hertwigs [Festschrift for the sixtieth birthday of Richard Hertwig]536–610. Jena, Ger: Fischer
    [Google Scholar]
  71. Promislow DE. 2004. Protein networks, pleiotropy and the evolution of senescence. Proc. Biol. Sci. 271:1225–34
    [Google Scholar]
  72. Pyeritz RE. 1989. Pleiotropy revisited: molecular explanations of a classic concept. Am. J. Med. Genet. 34:124–34
    [Google Scholar]
  73. Qian W, Ma D, Xiao C, Wang Z, Zhang J. 2012. The genomic landscape and evolutionary resolution of antagonistic pleiotropy in yeast. Cell Rep. 2:1399–410
    [Google Scholar]
  74. Rafikova O, Rafikov R, Nudler E. 2002. Catalysis of S-nitrosothiols formation by serum albumin: the mechanism and implication in vascular control. PNAS 99:5913–18
    [Google Scholar]
  75. Reichard M. 2017. Evolutionary perspectives on ageing. Semin. Cell Dev. Biol. 70:99–107
    [Google Scholar]
  76. Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–42
    [Google Scholar]
  77. Rice WR. 1992. Sexually antagonistic genes: experimental evidence. Science 256:1436–39
    [Google Scholar]
  78. Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE et al. 2006. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239:226–35
    [Google Scholar]
  79. Rodier F, Campisi J, Bhaumik D. 2007. Two faces of p53: aging and tumor suppression. Nucleic Acids Res. 35:7475–84
    [Google Scholar]
  80. Rundle HD, Nosil P. 2002. Ecological speciation. Ecol. Lett. 8:336–52
    [Google Scholar]
  81. Ruzicka F, Connallon T. 2020. Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory. Proc. Biol. Sci. 287:20201869
    [Google Scholar]
  82. Ruzicka F, Connallon T. 2022. An unbiased test reveals no enrichment of sexually antagonistic polymorphisms on the human X chromosome. Proc. Biol. Sci. 289:20212314
    [Google Scholar]
  83. Sokol RZ. 2001. Infertility in men with cystic fibrosis. Curr. Opin. Pulm. Med. 7:421–26
    [Google Scholar]
  84. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B et al. 2005. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–69
    [Google Scholar]
  85. Stearns FW. 2010. One hundred years of pleiotropy: a retrospective. Genetics 186:767–73
    [Google Scholar]
  86. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL et al. 2016. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–70
    [Google Scholar]
  87. Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF et al. 2012. The molecular diversity of adaptive convergence. Science 335:457–61
    [Google Scholar]
  88. Tyler AL, Asselbergs FW, Williams SM, Moore JH. 2009. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy. Bioessays 31:220–27
    [Google Scholar]
  89. Vande Zande P, Hill MS, Wittkopp PJ. 2022. Pleiotropic effects of trans-regulatory mutations on fitness and gene expression. Science 377:105–9
    [Google Scholar]
  90. VanKuren NW, Long M. 2018. Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat. Ecol. Evol. 2:705–12
    [Google Scholar]
  91. Verbanck M, Chen CY, Neale B, Do R 2018. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50:693–98
    [Google Scholar]
  92. Wagner GP, Kenney-Hunt JP, Pavlicev M, Peck JR, Waxman D, Cheverud JM. 2008. Pleiotropic scaling of gene effects and the ‘cost of complexity. ’. Nature 452:470–72
    [Google Scholar]
  93. Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat. Rev. Genet. 8:921–31
    [Google Scholar]
  94. Wagner GP, Zhang J. 2011. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12:204–13
    [Google Scholar]
  95. Wagner GP, Zhang J. 2012. Universal pleiotropy is not a valid null hypothesis: reply to Hill and Zhang. Nat. Rev. Genet. 13:296
    [Google Scholar]
  96. Wang Z, Liao BY, Zhang J. 2010. Genomic patterns of pleiotropy and the evolution of complexity. PNAS 107:18034–39
    [Google Scholar]
  97. Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C et al. 2019. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51:1339–48
    [Google Scholar]
  98. Waxman D, Peck JR. 1998. Pleiotropy and the preservation of perfection. Science 279:1210–13
    [Google Scholar]
  99. Wei X, Zhang J. 2017. The genomic architecture of interactions between natural genetic polymorphisms and environments in yeast growth. Genetics 205:925–37
    [Google Scholar]
  100. Wei X, Zhang J. 2019. Environment-dependent pleiotropic effects of mutations on the maximum growth rate r and carrying capacity K of population growth. PLOS Biol. 17:e3000121
    [Google Scholar]
  101. Welter D, MacArthur J, Morales J, Burdett T, Hall P et al. 2014. The NHGRI GWAS Catalog, a curated resource of SNP–trait associations. Nucleic Acids Res. 42:D1001–6
    [Google Scholar]
  102. Wilkins JF, Haig D. 2003. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4:359–68
    [Google Scholar]
  103. Williams GC. 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411
    [Google Scholar]
  104. Wolf JB, Kunstner A, Nam K, Jakobsson M, Ellegren H. 2009. Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome Biol. Evol. 1:308–19
    [Google Scholar]
  105. Wright BW, Molloy MP, Jaschke PR. 2022. Overlapping genes in natural and engineered genomes. Nat. Rev. Genet. 23:154–68
    [Google Scholar]
  106. Yang JR, Chen X, Zhang J. 2014. Codon-by-codon modulation of translational speed and accuracy via mRNA folding. PLOS Biol. 12:e1001910
    [Google Scholar]
  107. Zhang J. 2006. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat. Genet. 38:819–23
    [Google Scholar]
  108. Zhang J. 2017. Epistasis analysis goes genome-wide. PLOS Genet. 13:e1006558
    [Google Scholar]
  109. Zhang J, Wagner GP. 2013. On the definition and measurement of pleiotropy. Trends Genet. 29:383–84
    [Google Scholar]
  110. Zhang J, Xu C. 2022. Gene product diversity: adaptive or not?. Trends Genet. 38:1112–22
    [Google Scholar]
  111. Zhang J, Yang JR. 2015. Determinants of the rate of protein sequence evolution. Nat. Rev. Genet. 16:409–20
    [Google Scholar]
  112. Zhang J, Zhang YP, Rosenberg HF. 2002. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat. Genet. 30:411–15
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-022323-083451
Loading
/content/journals/10.1146/annurev-ecolsys-022323-083451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error