1932

Abstract

Palm weevils, spp., are destructive pests of native, ornamental, and agricultural palm species. Of the 10 recognized species, two of the most injurious species, and , both of which have spread beyond their native range, are the best studied. Due to its greater global spread and damage to edible date industries in the Middle East, has received more research interest. Integrated pest management programs utilize traps baited with aggregation pheromone, removal of infested palms, and insecticides. However, weevil control is costly, development of resistance to insecticides is problematic, and program efficacy can be impaired because early detection of infestations is difficult. The genome of has been sequenced, and omics research is providing insight into pheromone communication and changes in volatile and metabolism profiles of weevil-infested palms. We outline how such developments could lead to new control strategies and early detection tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-013023-121139
2024-01-29
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/ento/69/1/annurev-ento-013023-121139.html?itemId=/content/journals/10.1146/annurev-ento-013023-121139&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbas MK. 2019. The economic impact of red palm weevil Rhynchophorus ferrugineus Olivier in Egypt. Arab J. Plant Prot. 37:205
    [Google Scholar]
  2. 2.
    Abbas MST, Hanounik SB, Shahdad AS, Al-Bagham SA. 2006. Aggregation pheromone traps, a major component of IPM strategy for the red palm weevil, Rhynchophorus ferrugineus in date palms (Coleoptera: Curculionidae). J. Pest Sci. 79:69–73
    [Google Scholar]
  3. 3.
    Abolafia J, Ruiz-Cuenca AN. 2020. Phoretic invertebrates associated with Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Canarian date palm from southern Spain. J. Nat. Hist. 54:2265–84
    [Google Scholar]
  4. 4.
    Abo-Shnaf RIA, Allam SFM. 2019. A new species of Centrouropoda (Acari: Uropodidae: Uropodina), with a key to the world species of the genus. . Zootaxa 4706:501–16
    [Google Scholar]
  5. 5.
    Abraham V, Shuaibi MA, Faleiro J, Abozuhairah R, Vidyasagar PS. 1998. An integrated management approach for red palm weevil Rhynchophorus ferrugineus Oliv. a key pest of date palm in the Middle East. J. Agric. Mar. Sci. 3:77–83
    [Google Scholar]
  6. 6.
    Al-Ayedh H, Rizwan-ul-Haq M, Hussain A, Aljabr AM. 2016. Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Pest Manag. Sci. 72:2118–27
    [Google Scholar]
  7. 7.
    Al-Ayedh HY. 2011. Evaluating a semisynthetic diet for rearing the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 31:20–28
    [Google Scholar]
  8. 8.
    Al-Ayedh HY, Rasool KG. 2010. Determination of the optimum sterilizing radiation dose for control of the red date palm weevil Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae). Crop Prot. 29:1377–80
    [Google Scholar]
  9. 9.
    Al-Deeb MA, bin Muzaffar S, Abuagla AM, Sharif EM. 2011. Distribution and abundance of phoretic mites (Astigmata, Mesostigmata) on Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Fla. Entomol. 94:748–55
    [Google Scholar]
  10. 10.
    Al-Dobai S, Elkahky M, Faleiro R, eds. 2019. Proceedings of the Scientific Consultation and High-Level meeting on Red Palm Weevil Management, March 29–31 Rome: FAO https://www.fao.org/publications/card/en/c/CA1541EN/
  11. 11.
    Al-Dosary MM, Al-Bekairi AM, Moursy EB. 2010. Morphology of the egg shell and the developing embryo of the red palm weevil, Rhynchophorus ferrugineus (Oliver). Saudi J. Biol. Sci. 17:177–83
    [Google Scholar]
  12. 12.
    Al-Nujiban AA, Aldosari SA, Al Suhaiban AM, Abdel-Azim MM, Ibrahim SMM et al. 2015. Effect of date palm cultivar on fecundity and development of Rhynchophorus ferrugineus. Bull. Insectol. 68:199–206
    [Google Scholar]
  13. 13.
    Aldawood AS, Rasool KG, Surkino S, Husain M, Sutanto KD, Alduailij MA. 2022. Semi-artificial diet developed for successful rearing of red palm weevil: Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) in the laboratory. J. King Saud Univ. Sci. 34:102272
    [Google Scholar]
  14. 14.
    Aldhryhim YN, Al-Ayedh HY. 2015. Diel flight activity patterns of the red palm weevil (Coleoptera: Curculionidae) as monitored by smart traps. Fla. Entomol. 98:1019–24
    [Google Scholar]
  15. 15.
    Ali H-M, Hou Y. 2018. Absence of Wolbachia in red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae): a PCR-based approach. Appl. Ecol. Environ. Res. 16:1819–33
    [Google Scholar]
  16. 16.
    AlJabr AM, Hussain A, Rizwan-ul-Haq M, Al-Ayedh H. 2017. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 22:169
    [Google Scholar]
  17. 17.
    Amobi MI, Ebenebe CI. 2018. Performance of broiler chicks fed on two insect based-diets in South East Nigeria. J. Insect Food Feed 4:263–68
    [Google Scholar]
  18. 18.
    Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R et al. 2017. Small genome symbiont underlies cuticle hardness in beetles. PNAS 114:E8382–91
    [Google Scholar]
  19. 19.
    Anderson RS. 2002. The Dryophthoridae of Costa Rica and Panama: checklist with keys, new synonymy and descriptions of new species of Cactophagus, Mesocordylus, Metamasius and Rhodobaenus (Coleoptera; Curculionoidea). Zootaxa 80:1–94
    [Google Scholar]
  20. 20.
    Anderson WH. 1948. Larvae of some genera of Calendrinae (= Rhynchoporinae) and Stromboscerinae (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 51:413–37
    [Google Scholar]
  21. 21.
    Antony B, Johny J, Abdelazim MM, Jakše J, Al-Saleh MA, Pain A. 2019. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genom. 20:440
    [Google Scholar]
  22. 22.
    Antony B, Johny J, Aldosari SA. 2018. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9:252
    [Google Scholar]
  23. 23.
    Antony B, Johny J, Aldosari S, Abdelazim MM. 2017. Identification and expression profiling of novel plant cell wall degrading enzymes from a destructive pest of palm trees, Rhynchophorus ferrugineus. Insect Mol. Biol. 26:469–84
    [Google Scholar]
  24. 24.
    Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R et al. 2021. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol. Ecol. 30:2025–39
    [Google Scholar]
  25. 25.
    Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosar SA et al. 2016. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genom. 17:9
    [Google Scholar]
  26. 26.
    Ashry I, Mao Y, Al-Fehaid Y, Al-Shawaf A, Al-Bagshi M et al. 2020. Early detection of red palm weevil using distributed optical sensor. Sci. Rep. 10:31–55
    [Google Scholar]
  27. 27.
    Ávalos JA, Balasch S, Soto A. 2016. Flight behavior and dispersal of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using mark-recapture-recapture method. Bull. Entomol. Res. 106:606–14
    [Google Scholar]
  28. 28.
    Ávalos JA, Martí-Campoy A, Soto A. 2014. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill. Bull. Entomol. Res. 104:462–70
    [Google Scholar]
  29. 29.
    Awad M, Sharaf A, Elrahman TA, El-Saadany HM, ElKraly OA, Elnagdy SM. 2021. The first report for the presence of Spiroplasma and Rickettsia in red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Egypt. Acta Parasitol. 66:593–604
    [Google Scholar]
  30. 30.
    Baldwin IT, Halitschke R, Paschold A, Von Dahl CC, Preston CA. 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–15
    [Google Scholar]
  31. 31.
    Bandeira PT, Fávaro CF, Francke W, Bergmann J, Zarbin PHG. 2021. Aggregation pheromones of weevils (Coleoptera: Curculionidae): advances in the identification and potential uses in semiochemical-based pest management strategies. J. Chem. Ecol. 47:968–86
    [Google Scholar]
  32. 32.
    Barkan S, Hoffman A, Hezroni A, Soroker V. 2018. Flight performance and dispersal potential of red palm weevil estimated by repeat flights on flight mill. J. Insect Behav. 31:66–82
    [Google Scholar]
  33. 33.
    Bombi P. 2020. Potential conflict extent between two invasive alien pests, Rhynchophorus ferrugineus and Paysandisia archon, and the native populations of the Mediterranean fan palm. J. Nat. Conserv. 58:125927
    [Google Scholar]
  34. 34.
    Chamorro ML. 2019. An illustrated synoptic key and comparative morphology of the larvae of Dryophthorinae (Coleoptera, Curculionidae) genera with emphasis on the mouthparts. Diversity 11:4
    [Google Scholar]
  35. 35.
    Chamorro ML, de Medeiros BAS, Farrell BD. 2021. First phylogenetic analysis of Dryophthorinae (Coleoptera, Curculionidae) based on structural alignment of ribosomal DNA reveals Cenozoic diversification. Ecol. Evol. 11:1984–98
    [Google Scholar]
  36. 36.
    Chong J, H'Ng T, Azmi WA, Amansuria NH. 2015. Genetic variation and invasion history of the invasive red palm weevil (Rhynchophorus ferrugineus (Olivier)) in Terengganu. Int. J. Agric. For. Plant 1:34–43
    [Google Scholar]
  37. 37.
    Cotton RT. 1924. A contribution toward the classification of the weevil larvae of the subfamily Calendrinae, occuring in North America. Proc. U. S. Natl. Mus. 66:1–11
    [Google Scholar]
  38. 38.
    Cysne AQ, Cruz BA, da Cunha RNV, da Rocha RNC. 2013. Flutuação populacional de Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae) em palmeiras oleíferas no Amazonas. Acta Amaz. 43:197–202
    [Google Scholar]
  39. 39.
    Davis SR, Engel MS. 2006. Dryophthorine weevils in Dominican amber (Coleoptera: Curculionidae). Trans. Kans. Acad. Sci. 109:191–98
    [Google Scholar]
  40. 40.
    De Luca F, Fanelli E, Oreste M, Scarcia G, Troccoli A et al. 2019. Molecular profiling of nematode associates with Rhynchophorus ferrugineus in southern Italy. Ecol. Evol. 9:14286–94
    [Google Scholar]
  41. 41.
    Dembilio Ó, Jacas JA. 2011. Basic bioecological parameters of the invasive red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean climate. Bull. Entomol. Res. 101:153–63
    [Google Scholar]
  42. 42.
    Dembilio Ó, Jacas JA. 2012. Bio-ecology and integrated management of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in the region of Valencia (Spain). Hell. Plant Prot. J. 5:1–12
    [Google Scholar]
  43. 43.
    Dembilio Ó, Llacer E, del Mar Martínez de Altube M, Jacas JA. 2009. Field efficacy of imidacloprid and Steinernema carpocapsae in a chitosan formulation against red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Manag. Sci. 66:365–70
    [Google Scholar]
  44. 44.
    Dembilio Ó, Quesada-Moraga E, Santiago-Alvarez C, Jacas JA. 2010. Biocontrol potential of an indigenous strain of the entomopathogenic fungus Beauveria bassiana (Ascomycota; Hypocreales) against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). J. Invertebr. Pathol. 104:214–21
    [Google Scholar]
  45. 45.
    Dembilio Ó, Tapia GV, Téllez MM, Jacas JA. 2012. Lower temperature thresholds for oviposition and egg hatching of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in a Mediterranean climate. Bull. Entomol. Res. 102:97–102
    [Google Scholar]
  46. 46.
    Dias GB, Altammami MA, El-Shafie HA, Alhoshan FM, Al-Fageeh MB et al. 2021. Haplotype-resolved genome assembly enables gene discovery in the red palm weevil Rhynchophorus ferrugineus. Sci. Rep. 11:9987
    [Google Scholar]
  47. 47.
    Diboun I, Mathew S, Al-Rayyashi M, Elrayess M, Torres M et al. 2015. Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition. BMC Plant Biol. 15:291
    [Google Scholar]
  48. 48.
    Dilipkumar M, Ahadiyat A, Mašán P, Chuah TS. 2015. Mites (Acari) associated with Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Malaysia, with a revised list of mites found on this weevil. J. Asia-Pac. Entomol. 18:169–74
    [Google Scholar]
  49. 49.
    Dionisio LFS, Lima ACS, de Morais EGF, Faria PRS, Correia RG et al. 2020. Distribuição espacial de Rhynchophorus palmarum L. (Coleoptera: Curculionidae) em palma de óleo em Roraima, Brasil. Rev. Bras. Cienc. Agrar. 15:e5683
    [Google Scholar]
  50. 50.
    El-Faki MS, El-Shafie HAF, Al-Hajhoj MBR. 2016. Potentials for early detection of red palm weevil (Coleoptera: Curculionidae) infested date palm (Arecaceae) using temperature differentials. Can. Entomol. 148:239–45
    [Google Scholar]
  51. 51.
    El-Mergawy RAAM, Al Ajlan AM, Abdalla N, Nasr MI, Silvain J-F. 2011. Determination of different geographical populations of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using RAPD-PCR. Int. J. Agric. Biol. 13:227–32
    [Google Scholar]
  52. 52.
    El-Mergawy RAAM, Al Ajlan AM, Abdalla N, Nasr MI, Silvain JF. 2011. Genetic comparison among Rhynchophorus ferrugineus and four Rhynchophorus species. J. Agric. Sci. Technol. B1 2011:610–15
    [Google Scholar]
  53. 53.
    El-Mergawy RAAM, Al Ajlan AM, Abdalla N, Vassiliou V, Capdevielle-Dulac C et al. 2011. Preliminary study on geographical variation of cytochrome b gene and ITS2-rDNA among populations of Rhynchophorus ferrugineus. J. Agric. Sci. Technol. B1 2011:189–97
    [Google Scholar]
  54. 54.
    El-Mergawy RAAM, Faure N, Nasr MI, Avand-Faghih A, Rochat D et al. 2011. Mitochondrial genetic variation and invasion history of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Middle-East and Mediterranean Basin. Int. J. Agric. Biol. 13:631–37
    [Google Scholar]
  55. 55.
    El-Sabea AMR, Faleiro JR, Abo-El-Saad MM. 2009. The threat of the red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf Region in the Middle-East: an economic perspective. Outlooks Pest Manag. 20:131–34
    [Google Scholar]
  56. 56.
    El-Saeid MH, Al-Dosari SA. 2010. Monitoring of pesticide residues in Riyadh dates by SFE, MSE, SFC, and GC techniques. Arab. J. Chem. 3:179–86
    [Google Scholar]
  57. 57.
    El-Shafie HAF, Faleiro JR. 2017. Optimizing components of pheromone-baited trap for the management of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm agroecosystem. J. Plant Dis. Prot. 124:279–87
    [Google Scholar]
  58. 58.
    El-Shafie HAF, Faleiro JR, Abo-El-Saud MM, Aleid SM. 2013. A meridic diet for laboratory rearing of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Sci. Res. Essays 8:1924–32
    [Google Scholar]
  59. 59.
    El-Shafie HAF, Faleiro JR, Al-Abbad AH, Stoltman L, Mafra-Neto A. 2011. Bait-free attract and kill technology (Hook™ RPW) to suppress red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in date palm. Fla. Entomol. 94:774–78
    [Google Scholar]
  60. 60.
    El-Sharabasy HM. 2010. A survey of mite species associated with the red palm weevil, Rhynchophorus ferrugineus, in Egypt. J. Biol. Pest Control 20:67–70
    [Google Scholar]
  61. 61.
    Engsontia P, Satasook C. 2021. Genome-wide identification of the gustatory receptor gene family of the invasive pest, red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790). Insects 12:611
    [Google Scholar]
  62. 62.
    Fajardo M. 2019. The Canary Island success story in eradicating red palm weevil. See Reference 10 116–25
  63. 63.
    Faleiro JR. 2006. A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int. J. Trop. Insect Sci. 26:135–54
    [Google Scholar]
  64. 64.
    Faleiro JR. 2019. Advances in semiochemical mediated technologies against red palm weevil. See Reference 10 164–75
  65. 65.
    Faleiro JR, Ben Abdallah A, Ashok Kumar J, Shagagh A, Al-Abdan S. 2010. Sequential sampling plan for area-wide management of red palm weevil, Rhynchophorus ferrugineus (Olivier) in date plantations of Saudi Arabia. Int. J. Trop. Insect Sci. 30:145–53
    [Google Scholar]
  66. 66.
    Faleiro JR, El-Saad MA, Abdul Hadi AH. 2011. Pheromone trap density to mass trap Rhynchophorus ferrugineus (Coleoptera: Curculionidae/Rhynchophoridae/Dryophthoridae) in date plantations of Saudi Arabia. Int. J. Trop. Insect Sci. 31:75–77
    [Google Scholar]
  67. 67.
    Faleiro JR, El-Shafie HAF, Oehlschlager AC, Aleid SMA, Mahajan GR. 2022. Field evaluation of repellents against red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) through trap shutdown studies. J. Plant Dis. Prot. 129:791–804
    [Google Scholar]
  68. 68.
    Fanini L, Longo S, Cervo R, Roversi PF, Mazza G. 2014. Daily activity and non-random occurrence of captures in the Asian palm weevils. Ethol. Ecol. Evol. 26:195–203
    [Google Scholar]
  69. 69.
    FAO 2020.. Red Palm Weevil: Guidelines on Management Practices Rome: FAO https://www.fao.org/documents/card/en/c/ca7703en
  70. 70.
    Farag MA, Mohsen M, Heinke R, Wessjohann LA. 2014. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI-qTOF-MS and GC–MS analyzed by chemometrics. Food Res. Int. 64:218–26
    [Google Scholar]
  71. 71.
    Farahani VRF, Ahadiyat A, Mašan P, Dehvari MA. 2016. Phoretic uropodine mites (Acari: Mesostigmata) associated with the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Iran. J. Entomol. Acarol. Res. 48:5853
    [Google Scholar]
  72. 72.
    Ferry M. 2019. Recent advances in insecticide treatments against the red palm weevil. See Reference 10 127–41
  73. 73.
    Fiaboe KKM, Peterson AT, Kairo MTK, Roda AL. 2012. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Fla. Entomol. 95:659–73
    [Google Scholar]
  74. 74.
    Flowers JM, Hazzouri KM, Lemansour A, Capote T, Gros-Balthazard M et al. 2022. Patterns of volatile diversity yield insights into the genetics and biochemistry of the date palm fruit volatilome. Front. Plant Sci. 13:853651
    [Google Scholar]
  75. 75.
    Fouda M, Tufail M, Takeda M, Mahmoud SH. 2022. DNA barcoding and population genetic structure of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Egypt based on mtDNA sequencing. Biologia 77:1017–25
    [Google Scholar]
  76. 76.
    Francardi V, Benvenuti C. 2010. Artificial diets for the rearing of Rhynchophorus ferrugineus Olivier. Redia 93:83–88
    [Google Scholar]
  77. 77.
    García-Hernández JL, Beltrán-Morales LF, Loya-Ramírez JG, Morales-Cota JR, Troyo-Diéguez E, Beltrán-Morales FA. 2003. Primer informe del Rhynchophorus palmarum (Coleoptera: Dryophthoridae) en Baja California Sur. Fol. Entomol. Mex. 42:415–17
    [Google Scholar]
  78. 78.
    Ge X, He S, Wang T, Yan W, Zong S. 2015. Potential distribution predicted for Rhynchophorus ferrugineus in China under different warming scenarios. PLOS ONE 10:e0141111
    [Google Scholar]
  79. 79.
    Giblin-Davis RM, Faleiro JR, Jacas JA, Peña JE, Vidyasagar PSPV. 2013. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. Potential Invasive Pests of Agricultural Crops JE Peña 1–34. Wallingford, UK: CAB Int.
    [Google Scholar]
  80. 80.
    Giblin-Davis RM, Gerber K, Griffith R. 1989. Laboratory rearing of Rhynchophorus cruentatus and R. palmarum (Coleoptera: Curculionidae). Fla. Entomol. 72:480–88
    [Google Scholar]
  81. 81.
    Giblin-Davis RM, Kanzaki N, Davies KA. 2013. Nematodes that ride insects: unforeseen consequences of arriving species. Fla. Entomol. 96:770–80
    [Google Scholar]
  82. 82.
    Giblin-Davis RM, Oehlschlager AC, Perez A, Gries G, Gries R et al. 1996. Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Fla. Entomol. 79:153–67
    [Google Scholar]
  83. 83.
    Giovino A, Bertolini E, Fileccia V, Al Hassan M, Labra M et al. 2015. Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks. Front. Plant Sci. 6:817
    [Google Scholar]
  84. 84.
    Giovino A, Martinelli F, Saia S. 2016. Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways. J. Integr. Plant Biol. 58:388–96
    [Google Scholar]
  85. 85.
    Goldshtein E, Cohen Y, Hetzroni A, Cohen Y, Soroker V. 2020. The spatiotemporal dynamics and range expansion of the red palm weevil in Israel. J. Pest Sci. 93:691–702
    [Google Scholar]
  86. 86.
    Gómez-Marco F, Klompen H, Hoddle MS. 2021. Phoretic mite infestations associated with Rhynchophorus palmarum (Coleoptera: Curculionidae) in southern California. Syst. Appl. Acarol. 26:1913–26
    [Google Scholar]
  87. 87.
    Griffith R. 1968. The mechanism of transmission of the red ring nematode. J. Agric. Soc. Trinidad Tobago 67:436–57
    [Google Scholar]
  88. 88.
    Griffith R. 1987. Red ring disease of coconut palm. Plant Dis. 71:193–96
    [Google Scholar]
  89. 89.
    Guarino S, Peri E, Bue PL, Germanà MP, Colazza S et al. 2013. Assessment of synthetic chemicals for disruption of Rhynchophorus ferrugineus response to attractant baited traps in an urban environment. Phytoparasitica 41:79–88
    [Google Scholar]
  90. 90.
    Güerri-Agulló B, López-Follana R, Asensio L, Barranco P, Lopez-Llorca LV. 2011. Use of a solid formulation of Beauveria bassiana for biocontrol of the red palm weevil (Rhynchophorus ferrugineus) (Coleoptera: Dryophthoridae) under field conditions in SE Spain. Fla. Entomol. 94:737–47
    [Google Scholar]
  91. 91.
    Gunter NL, Oberprieler RG, Cameron SL. 2016. Molecular phylogenetics of Australian weevils (Coleoptera: Curculionoidea): exploring relationships in a hyperdiverse lineage through comparison of independent analyses. Austral Entomol. 55:217–33
    [Google Scholar]
  92. 92.
    Habineza P, Muhammad A, Ji T, Xiao R, Yin X et al. 2019. The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism. Front. Microbiol. 10:1212
    [Google Scholar]
  93. 93.
    Hagley EAC. 1965. On the life history and habits of the palm weevil, Rhynchophorus palmarum. Ann. Entomol. Soc. Am. 58:22–28
    [Google Scholar]
  94. 94.
    Hallett RH, Crespi BJ, Borden JH. 2004. Synonymy of Rhynchophorus ferrugineus (Olivier), 1790 and R. vulneratus (Panzer), 1798 (Coleoptera, Curculionidae, Rhynchophorinae). J. Nat. Hist. 38:2863–82
    [Google Scholar]
  95. 95.
    Hallett RH, Gries G, Gries R, Borden JH, Czyzewska E et al. 1993. Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften 80:328–31
    [Google Scholar]
  96. 96.
    Hallett RH, Oehlschlager AC, Borden JH. 1999. Pheromone trapping protocols for the Asian palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Int. J. Pest Manag. 45:231–37
    [Google Scholar]
  97. 97.
    Harith-Fadzilah N, Lam SD, Haris-Hussain M, Ghani IA, Zainal Z et al. 2021. Proteomics and interspecies interaction analysis revealed abscisic acid signaling to be the primary driver for oil palm's response against red palm weevil infestation. Plants 10:2574
    [Google Scholar]
  98. 98.
    Hassan MF, Nasr AK, Allam SF, Taha HA, Mahmoud RA. 2011. Biodiversity and seasonal fluctuation of mite families associated with the red palm weevil. Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae) in Egypt. Egypt. J. Biol. Pest Cont. 21:317–23
    [Google Scholar]
  99. 99.
    Hazzouri KM, Sudalaimuthuasari N, Kundu B, Nelson D, Al-Deeb MA et al. 2020. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Commun. Biol. 3:323
    [Google Scholar]
  100. 100.
    Herbst JFW. 1795. Natursystem aller bekannten in- und auslandischen Insekten, als eine Fortsetzung der von Búffonschen Naturgeschichte Berlin: J. Pauli
  101. 101.
    Hoddle MS. 2015. Red palm weevils—food or foe?. Palms 59:21–30
    [Google Scholar]
  102. 102.
    Hoddle MS, Al-Abbad AH, El-Shafie HAF, Faleiro JR, Sallam AA et al. 2013. Assessing the impact of area-wide pheromone trapping, pesticide applications, and eradication of infested date palms for Rhynchophorus ferrugineus (Coleoptera: Curculionidae) management in Al Ghowaybah, Saudi Arabia. Crop Prot. 53:152–60
    [Google Scholar]
  103. 103.
    Hoddle MS, Hoddle CD. 2016. How far can the palm weevil, Rhynchophorus vulneratus (Coleoptera: Curculionidae), fly?. J. Econ. Entomol. 109:629–36
    [Google Scholar]
  104. 104.
    Hoddle MS, Hoddle CD. 2017. Palmageddon: The invasion of California by the South American palm weevil is underway. . CAPCA Advis. 20:40–44
    [Google Scholar]
  105. 105.
    Hoddle MS, Hoddle CD, Alzubaidy M, Kabashima J, Nisson JN et al. 2016. The palm weevil Rhynchophorus vulneratus is eradicated from Laguna Beach. Cal. Agric. 71:23–29
    [Google Scholar]
  106. 106.
    Hoddle MS, Hoddle CD, Faleiro JR, El-Shafie HAF, Jeske DR, Sallam AA. 2015. How far can the red palm weevil (Coleoptera: Curculionidae) fly? Computerized flight mill studies with field-captured weevils. J. Econ. Entomol. 108:2599–609
    [Google Scholar]
  107. 107.
    Hoddle MS, Hoddle CD, Milosavljević I. 2020. How far can Rhynchophorus palmarum (Coleoptera: Curculionidae) fly?. J. Econ. Entomol. 113:1786–95
    [Google Scholar]
  108. 108.
    Hoddle MS, Hoddle CD, Milosavljević I. 2021. Quantification of the life time flight capabilities of the South American palm weevil, Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Insects 12:126
    [Google Scholar]
  109. 109.
    Hoddle MS, Johansen G, Kast E, Lopez AM, Shaw MM. 2021. Four new palm species records for Rhynchophorus palmarum (Coleoptera: Curculionidae) in California. Fla. Entomol. 104:143–44
    [Google Scholar]
  110. 110.
    Hunsberger AGB, Giblin-Davis RM, Weissling TJ. 2000. Symptoms and population dynamics of Rhynchophorus cruentatus (Coleoptera: Curculionidae) in Canary Island date palms. Fla. Entomol. 83:290–303
    [Google Scholar]
  111. 111.
    Inghilesi AF, Mazza G, Cervo R, Cini A. 2015. A network of sex and competition: the promiscuous mating system of an invasive weevil. Curr. Zool. 61:85–97
    [Google Scholar]
  112. 112.
    Ji T, Xu Z, Jia Q, Wang G, Hou Y. 2021. Non-palm plant volatile alpha-pinene is detected by antenna-biased expressed odorant receptor 6 in the Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Front. Physiol. 12:701545
    [Google Scholar]
  113. 113.
    Jia S, Zhang X, Zhang G, Yin A, Zhang S et al. 2013. Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus). Environ. Microbiol. 15:3020–29
    [Google Scholar]
  114. 114.
    Ju R-T, Wang F, Wan F-H, Li B. 2011. Effects of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). J. Pest Sci. 84:33–39
    [Google Scholar]
  115. 115.
    Kaakeh W. 2005. Longevity, fecundity, and fertility of the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emir. . J. Agric. Sci. 17:23–33
    [Google Scholar]
  116. 116.
    Kanzaki N. 2016. Pine wilt and red ring, lethal plant diseases caused by insect-mediated Bursaphelenchus nematodes. Vector Mediated Transmission of Plant Pathogens JK Brown 87–107. St. Paul, MN: Am. Phytopathol. Soc.
    [Google Scholar]
  117. 117.
    Kontschán J, Mazza G, Nannelli R, Roversi PF. 2014. The true identity of the red palm weevil associated Uropodina mite, Centrouropoda almerodai Hiramatsu and Hirschmann, 1992. Redia 97:83–88
    [Google Scholar]
  118. 118.
    Kontschán J, Tambe JT, Riolo P. 2012. Uroobovella phoenicicola sp. n. a new Uropodina mite (Acari: Megostigmata) associated with the African palm weevil (Rhynchophorus phoenicis Fabricius, 1801) from Cameroon. Afr. Invertebr. 53:593–600
    [Google Scholar]
  119. 119.
    Krishnakumar R, Maheshwari P. 2007. Assessment of the sterile insect technique to manage red palm weevil Rhynchophorus ferrugineus in coconut. Area-Wide Control of Insect Pests from Research to Field Implementation MJB Vreysen, AS Robinson, J Hendrichs 475–85. Berlin: Springer
    [Google Scholar]
  120. 120.
    Kuschel G. 1995. A phylogenetic classification of the Curculionoidea to Families and Subfamilies. Mem. Entomol. Soc. Wash. 14:5–33
    [Google Scholar]
  121. 121.
    León-Qunito T, Serna A. 2022. Cryoprotective response as part of the adaptive strategy of the red palm weevil, Rhynchophorus ferrugineus, against low temperatures. Insects 13:134
    [Google Scholar]
  122. 122.
    Li L, Qin W-Q, Ma Z-L, Yan W, Huang S-C et al. 2010. Effect of temperature on the population growth of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) on sugarcane. Environ. Entomol. 39:999–1003
    [Google Scholar]
  123. 123.
    Linnaeus C. 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum caracteribus, differentiis, synonymis. Tomus I. Edition decima, reformata Stockholm: Laurentii Salvii
  124. 124.
    Llácer E, Dembilio Ó, Jacas JA. 2010. Evaluation of the efficacy of an insecticidal paint based on chlorpyrifos and pyriproxyfen in a micro encapsulated formulation against Rhynchophorus ferrugineus (Coleoptera: Curculionidae). J. Econ. Entomol. 103:402–8
    [Google Scholar]
  125. 125.
    Llácer E, Santiago-Álvarez C, Jacas JA. 2013. Could sterile males be used to vector a microbiological control agent? The case of Rhynchophorus ferrugineus and Beauveria bassiana. Bull. Entomol. Res. 103:241–50
    [Google Scholar]
  126. 126.
    Lo Verde G, Fileccia V, Lo Bue P, Peri E, Colazza S, Martinelli F. 2019. Members of the WRKY gene family are upregulated in canary palms attacked by red palm weevil. Arthropod-Plant Interact. 13:109–16
    [Google Scholar]
  127. 127.
    Löhr B, Negrisoli A, Molina JP. 2019. Billaea rhynchophorae, a palm weevil parasitoid with global potential. Arab. J. Plant Prot. 37:101–8
    [Google Scholar]
  128. 128.
    Löhr B, Vásquez-Ordoñez AA, Becerra Lopez-Lavalle LA. 2015. Rhynchophorus palmarum in disguise: undescribed polymorphism in the “black” palm weevil. PLOS ONE 10:e0143210
    [Google Scholar]
  129. 129.
    Lokela JCM, Le Gof GJ, Kayisu K, Hance T. 2021. Phoretic mites associated with Rhynchophorus phoenicis Fabricius (1880) (Coleoptera: Curculionidae) in the Kisangani region, D.R. Congo. Acarologia 61:291–96
    [Google Scholar]
  130. 130.
    Mankin RW. 2011. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red palm weevil in agricultural environments. Fla. Entomol. 94:761–65
    [Google Scholar]
  131. 131.
    Manzoor M, Ahmad JN, Ahmad SJN, Naqvi SA, ud-din Umar U et al. 2020. Population dynamics, abundance, and infestation of the red palm weevil, Rhynchophorus ferrugineus (Olivier) in different geographical regions of date palm in Pakistan. Pak. J. Agric. Sci. 57:381–91
    [Google Scholar]
  132. 132.
    Manzoor M, Yang L, Wu S, El-Shafie H, Haider MS et al. 2022. Feeding preference of Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae) on different date palm cultivars and host biochemical responses to its infestation. Bull. Entomol. Res. 112:494–501
    [Google Scholar]
  133. 133.
    Marvaldi AE. 1997. Higher level phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on larval characters, with special reference to broad-nosed weevils. Cladistics 13:285–312
    [Google Scholar]
  134. 134.
    Marvaldi AE, Duckett CN, Kjer KM, Gillespie JJ. 2009. Structural alignment of 18S and 28S rDNA sequences provides insights into phylogeny of Phytophaga (Coleoptera: Curculionoidea and Chrysomeloidea). Zool. Scr. 38:63–77
    [Google Scholar]
  135. 135.
    Marvaldi AE, Morrone JJ. 2000. Phylogenetic systematics of weevils (Coleoptera: Curculionoidea): a reappraisal based on larval and adult morphology. Insect Syst. Evol. 31:43–58
    [Google Scholar]
  136. 136.
    Marvaldi AE, Sequeira AS, O'Brien CW, Farrell BD. 2002. Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): Do niche shifts accompany diversification?. Syst. Biol. 51:761–85
    [Google Scholar]
  137. 137.
    May BM. 1993. Larvae of Curculionoidea (Insecta: Coleoptera): A Systematic Overview Fauna N. Z.—Ko te Aitanga Pepeke o Aotearoa 28 Lincoln/Canterbury, N. Z.: Manaaki Whenua
  138. 138.
    Mazza G, Cini A, Cervo R, Longo S. 2011. Just phoresy? Reduced lifespan in red palm weevils Rhynchophorus ferrugineus (Coleoptera: Curculionidae) infested by the mite Centrouropoda almerodai (Uroactiniinae: Uropodina). Ital. J. Zool. 78:101–5
    [Google Scholar]
  139. 139.
    Mazza G, Francardi V, Simoni S, Benvenuti C, Cervo R et al. 2014. An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus. Biol. Control 77:83–92
    [Google Scholar]
  140. 140.
    Mazza G, Inghilesi AF, Stasolla G, Cini A, Cervo R et al. 2016. Sterile Rhynchophorus ferrugineus males efficiently impair reproduction while maintaining their sexual competitiveness in a social context. J. Pest Sci. 89:459–68
    [Google Scholar]
  141. 141.
    McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. 2009. Temporal lags and overlap in the diversification of weevils and flowering plants. PNAS 106:7083–88
    [Google Scholar]
  142. 142.
    Milosavljević I, El-Shafie HAF, Faleiro JR, Hoddle CD, Lewis M, Hoddle MS. 2018. Palmageddon: the wasting of ornamental palms by invasive palm weevils, Rhynchophorus spp. J. Pest Sci. 92:143–56
    [Google Scholar]
  143. 143.
    Milosavljević I, Hoddle CD, Mafra-Neto A, Gómez-Marco F, Hoddle MS. 2020. Effects of food bait and trap type on captures of Rhynchophorus palmarum (Coleoptera: Curculionidae) and trap bycatch in southern California. J. Econ. Entomol. 113:2407–17
    [Google Scholar]
  144. 144.
    Milosavljević I, Hoddle CD, Mafra-Neto A, Gómez-Marco F, Hoddle MS. 2020. Use of digital video cameras to determine the efficacy of two trap types for capturing Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 113:3028–31
    [Google Scholar]
  145. 145.
    Montagna M, Chouaia B, Mazza G, Prosdocimi EM, Crotti E et al. 2015. Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae). PLOS ONE 10:e0117439
    [Google Scholar]
  146. 146.
    Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P. 2022. Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most diverse among insects. Front. Ecol. Evol. 10:826808
    [Google Scholar]
  147. 147.
    Morera-Margarit P, Pope TW, Mitchell C, Karley AJ. 2021. Could bacterial associations determine the success of weevil species?. Ann. Appl. Biol. 178:51–61
    [Google Scholar]
  148. 148.
    Moura JIL, Mauriau D, Delabie JHC 1993. Eficiência de Paratheresia menezesi Townsend (Díptera: Tachidae) no controle biológico natural de Rhynchophorus palmarum (L.) (Coleóptera: Curculionidae). Oléagineux 48:219–23
    [Google Scholar]
  149. 149.
    Moura JIL, Toma R, Sgrillo RB, Delabie JHC. 2006. Natural efficiency of parasitism by Billaea rhynchophorae (Blanchard) (Diptera: Tachinidae) for the control of Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae). Neotrop. Entomol. 35:273–74
    [Google Scholar]
  150. 150.
    Muafor FJ, Gnetegha AA, Le Gall P, Levang P. 2015. Exploitation, trade and farming of palm weevil grubs in Cameroon Work. Pap 178 Cent. Int. For. Res. Bogor, Indones: http://www.jstor.org/stable/resrep02387.1
  151. 151.
    Mugu S, Pistone D, Jordal BH. 2018. New molecular markers resolve the phylogenetic position of the enigmatic wood-boring weevils Platypodinae (Coleoptera: Curculionidae). Arthropod Syst. Phylogeny 76:45–58
    [Google Scholar]
  152. 152.
    Muhammad A, Fang Y, Hou Y, Shi Z. 2017. The gut entomotype of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front. Microbiol. 8:2291
    [Google Scholar]
  153. 153.
    Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. 2019. Intestinal microbiota confer protection by priming the immune system of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front. Physiol. 10:1303
    [Google Scholar]
  154. 154.
    Muhammad A, Habineza P, Wang X, Xiao R, Ji T et al. 2020. Spätzle homolog-mediated toll-like pathway regulates innate immune responses to maintain the homeostasis of gut microbiota in the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front. Microbiol. 11:846
    [Google Scholar]
  155. 155.
    Murphy ST, Briscoe BR. 1999. The red palm weevil as an alien invasive: biology and prospects for biological control as a component of IPM. Biocontrol News Inf. 20:35N–46N
    [Google Scholar]
  156. 156.
    Nakash J, Osam Y, Kehat M. 2000. A suggestion to use dogs for detecting red palm weevil (Rhynchophorus ferrugineus) infestation in date palm in Israel. Phytoparasitica 28:153–54
    [Google Scholar]
  157. 157.
    Oberprieler RG, Jennings D. 2016. Specialist diagnostic guide to pest weevils—Rhynchophorus palm weevils Rep. CSIRO Natl. Res. Coll. Aust. Canberra:
    [Google Scholar]
  158. 158.
    Oehlschlager AC. 2005. Current status of trapping palm weevils and beetles. Planter 81:123–43
    [Google Scholar]
  159. 159.
    Oehlschlager AC. 2016. Palm weevil pheromones—discovery and use. J. Chem. Ecol. 42:617–30
    [Google Scholar]
  160. 160.
    O'Meara B. 2001. Bacterial symbiosis and plant host use evolution in Dryophthorinae (Coleoptera, Curculionidae): a phylogenetic study using parsimony and Bayesian analysis. Honors thesis Harvard Univ. Cambridge, MA:
    [Google Scholar]
  161. 161.
    Ovando-Cruz ME, Serrano-Altamirano V, Gálvez-Marroquin LA, Ariza-Flores R, Martínez-Bolaños M et al. 2019. Evaluación de trampas para Rhynchophorus palmarum L. (Coleoptera: Curculionidae) en la costa de Oaxaca, México. Agro Prod. 12:3–8
    [Google Scholar]
  162. 162.
    Ponce-Méndez M, García-Martínez MA, Serna-Lagunes R, Lasa-Covarrubias R, Presa-Para E et al. 2022. Local agricultural management filters morphological traits of the South American palm weevil (Rhynchophorus palmarum L.; Coleoptera: Curculionidae) in ornamental palm plantations. Agronomy 12:2371
    [Google Scholar]
  163. 163.
    Porcelli F, Ragusa E, D'Onghia AM, Mizzi S, Mifsud D. 2009. Occurrence of Centrouropoda almerodai and Uroobovella marginata (Acari: Uropodina) phoretic on the red palm weevil in Malta. Bull. Entomol. Soc. Malta 2:61–66
    [Google Scholar]
  164. 164.
    Potamitis I, Eliopoulos P, Rigakis I. 2017. Automated remote insect surveillance at a global scale and the internet of things. Robotics 6:19
    [Google Scholar]
  165. 165.
    Pugliese M, Rettori AA, Martinis R, Al-Rohily K, Al-Maashi A. 2018. Devices to detect red palm weevil infestation on palm species. Precis. Agric. 19:1049–61
    [Google Scholar]
  166. 166.
    Rasool KG, Khan MA, Aldawood AS, Tufail M, Mukhtar M et al. 2015. Identification of proteins modulated in the date palm stem infested with red palm weevil (Rhynchophorus ferrugineus Oliv.) using two dimensional differential gel electrophoresis and mass spectrometry. Int. J. Mol. Sci. 16:19326–46
    [Google Scholar]
  167. 167.
    Rasool KG, Khan MA, Tufail M, Husain M, Mehmood K et al. 2018. Differential proteomic analysis of date palm leaves infested with the red palm weevil (Coleoptera: Curculionidae). Fla. Entomol. 101:290–98
    [Google Scholar]
  168. 168.
    Rasool KG, Mehmood K, Husain M, Tufail M, Alwaneen WS et al. 2021. De novo transcriptome analysis and identification of reproduction control genes from the red palm weevil Rhynchophorus ferrugineus. PLOS ONE 16:e0251278
    [Google Scholar]
  169. 169.
    Rasool KG, Mehmood K, Tufail M, Husain M, Alwaneen WS et al. 2021. Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci. Rep. 11:21695
    [Google Scholar]
  170. 170.
    Rigakis I, Potamitis I, Tatlas N-A, Potirakis SM, Ntalampiras S. 2021. TreeVibes: modern tools for global monitoring of trees for borers. Smart Cities 4:271–85
    [Google Scholar]
  171. 171.
    Rochat D, Gonzalez AV, Mariau D, Villanueva AG, Zagatti P. 1991. Evidence for male-produced aggregation pheromone in American palm weevil, Rhynchophorus palmarum (L) (Coleoptera: Curculionidae). J. Chem. Ecol. 17:1221–30
    [Google Scholar]
  172. 172.
    Rodríguez-Morell H, Quirós-Mc Intire EI, Domingo-Quirós AE, Chico-Morejón R, Porcelli F. 2012. Presencia de Centrouropoda almerodai y Glyptholaspis sp. (Acari: Uropodina, Macrochelidae) sobre el picudo negro del cocotero (Rhynchophorus palmarum) (Coleoptera: Curculionidae) en Panamá. Métod. Ecol. Sist. 7:1–7
    [Google Scholar]
  173. 173.
    Rugman-Jones PF, Hoddle CD, Hoddle MS, Stouthamer R. 2013. The lesser of two weevils: Molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLOS ONE 8:e78379
    [Google Scholar]
  174. 174.
    Sadder MT, Vidyasagar PSPV, Aldosari SA, Abde-Azim MM, Al-Doss A. 2015. Phylogeny of red palm weevil (Rhynchophorus ferrugineus) based on ITS1 and ITS2. Orient. Insects 49:198–211
    [Google Scholar]
  175. 175.
    Saïd I, Renou M, Morin J-P, Ferreira JMS, Rochat D. 2005. Interactions between acetoin, a plant volatile and pheromone in Rhynchophorus palmarum: behavioral and olfactory neuron responses. J. Chem. Ecol. 31:1789–805
    [Google Scholar]
  176. 176.
    Saïd I, Tauban D, Renou M, Mori K, Rochat D. 2003. Structure and function of the antennal sensilla of the palm weevil Rhynchophorus palmarum (Coleoptera, Curculionidae). J. Insect Physiol. 49:857–72
    [Google Scholar]
  177. 177.
    Salama HS, Abdel-Razek AS. 2002. Development of the red palm weevil, Rhynchophorus ferrugineus (Olivier), (Coleoptera: Curculionidae) on natural and artificial diets. J. Pest Sci. 75:137–39
    [Google Scholar]
  178. 178.
    Salama HS, Saker MM. 2002. DNA fingerprints of three different forms of the red palm weevil collected from Egyptian date palm orchards. Arch. Phytopathol. Plant Prot. 35:299–306
    [Google Scholar]
  179. 179.
    Sallam AA, El-Shafie HAF, Al-Abdan S. 2012. Influence of farming practices on infestation by red palm weevil Rhynchophorus ferrugineus (Olivier) in date palm: a case study. Int. Res. J. Agric. Sci. Soil Sci. 2:370–76
    [Google Scholar]
  180. 180.
    Salman TAA, Abbas MK, Mandour NSA, Osman MAM, El-Kady GA. 2020. Fluctuations in the population density of red palm weevil Rhynchophorus ferrugineus (Curculionidae: Coleoptera) in Ismailia Governorate, Egypt. Egypt. J. Plant Prot. Res. Inst. 3:977–85
    [Google Scholar]
  181. 181.
    Sancho D, de Jesus Alvarez M, del Rocio L, Sáchez F. 2015. Insectos y alimentación. Larvas de Rhynchophorus palmarum L, un alimento de los pobladores de la Amazonía Ecuatoriana. Entomotropica 30:135–49
    [Google Scholar]
  182. 182.
    Sazali SN, Hazmi IR, Abang F, Rahim F, Jemain AA. 2018. Morphometric study of the palm weevils, Rhynchophorus vulneratus and R. ferrugineus (Coleoptera: Curculionidae) in view of insular and mainland populations of Malaysia. Trop. Agric. Sci. 41:1329–40
    [Google Scholar]
  183. 183.
    Sazali SN, Hazmi IR, Abang F, Rahim F, Jemain AA. 2019. Population variation of the red stripe weevils, Rhynchophorus vulneratus (Coleoptera: Curculionidae) isolated by geographical limit. Raffles Bull. Zool. 67:378–84
    [Google Scholar]
  184. 184.
    Schönherr CJ. 1826. Curculionidum dispositio methodica cum generum characteribus, descriptionibus atque observationibus variis, seu Prodromus ad Synonymiae Insectorum, partem IV Leipzig: Fridericum Fleischer
  185. 185.
    Shin S, Clarke DJ, Lemmon AR, Lemmon EM, Aitken AL et al. 2017. Phylogenomic data yield new and robust insights into the phylogeny and evolution of weevils. Mol. Biol. Evol. 35:823–36
    [Google Scholar]
  186. 186.
    Slimane-Kharrat S, Ouali O. 2019. Mites associated with the red palm weevil (Rhynchophorus ferrugineus) in Tunisia. Tunis. J. Plant Prot. 14:29–38
    [Google Scholar]
  187. 187.
    Soffan A, Antony B, Abdelazim M, Shukla P, Witjaksono W et al. 2016. Silencing the olfactory co-receptor RferOrco reduces the response to pheromones in the red palm weevil, Rhynchophorus ferrugineus. PLOS ONE 11:e0162203
    [Google Scholar]
  188. 188.
    Stephan N, Halama A, Mathew S, Hayat S, Bhagwat A et al. 2018. A comprehensive metabolomic data set of date palm fruit. Data Brief 18:1313–21
    [Google Scholar]
  189. 189.
    Stern VM. 1973. Economic thresholds. Annu. Rev. Entomol. 18:259–80
    [Google Scholar]
  190. 190.
    Sukirno S, Tufail M, Rasool KG, Husain M, Aldawood AS. 2020. Diversity of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) in the Kingdom of Saudi Arabia: studies on the phenotypic and DNA barcodes. Int. J. Trop. Insect Sci. 40:899–908
    [Google Scholar]
  191. 191.
    Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. 2014. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 14:136
    [Google Scholar]
  192. 192.
    Vacas S, Abad-Paya M, Primo J, Navarro-Llopis V. 2014. Identification of pheromone synergists for Rhynchophorus ferrugineus trapping systems from Phoenix canariensis palm volatiles. J. Agric. Food Chem. 62:6053–64
    [Google Scholar]
  193. 193.
    Vacas S, Melita O, Michaelakis A, Milonas P, Minuz R et al. 2017. Lures for red palm weevil trapping systems: aggregation pheromone and synthetic kairomone. Pest Manag. 73:223–31
    [Google Scholar]
  194. 194.
    Vanderbilt CF, Giblin-Davis RM, Weissling TJ. 1998. Mating behavior and sexual response to aggregation pheromone of Rhynchophorus cruentatus (Coleoptera: Curculionidae). Fla. Entomol. 81:351–60
    [Google Scholar]
  195. 195.
    Vásquez-Ordoñez AA, Löhr BL, Marvaldi AE. 2020. Comparative morphology of the larvae of the palm weevils Dynamis borassi (Fabricius) and Rhynchophorus palmarum (Linnaeus) (Curculionidae: Dryophthorinae): two major pests of peach palms in the Neotropics. Pap. Avulsos Zool. 60:e202060(s.i.).27
    [Google Scholar]
  196. 196.
    Vidyasagar PSPV, Hagi M, Abozuhairah RA, Al-Mohanna OE, Al-Saihati AA. 2000. Impact of mass pheromone trapping on red palm weevil adult population and infestation level in date palm gardens of Saudi Arabia. Planter 76:347–55
    [Google Scholar]
  197. 197.
    Wakil W, Yasin M, Qayyum MA, Ghazanfar MU, Al-Sadi AM et al. 2018. Resistance to commonly used insecticides and phosphine fumigant in red palm weevil, Rhynchophorus ferrugineus (Olivier) in Pakistan. PLOS ONE 13:e0192628
    [Google Scholar]
  198. 198.
    Wang G, Hou Y, Zhang X, Zhang J, Li J et al. 2017. Strong population genetic structure of an invasive species, Rhynchophorus ferrugineus (Olivier), in southern China. Ecol. Evol. 7:10770–81
    [Google Scholar]
  199. 199.
    Wang L, Zhang X-W, Pan L-L, Liu W-F, Wang D-P et al. 2013. A large-scale gene discovery for the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insect Sci. 20:689–702
    [Google Scholar]
  200. 200.
    Wattanapongsiri A. 1966. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae) Bull., Dept. Agric. Sci. Bangkok, Thail:.
    [Google Scholar]
  201. 201.
    Weissling TJ, Giblin-Davis RM. 1993. Water loss dynamics and humidity preferences of Rhynchophorus cruentatus (Coleoptera: Curculionidae) adults. Environ. Entomol. 22:93–98
    [Google Scholar]
  202. 202.
    Weissling TJ, Giblin-Davis RM, Center BJ, Hiyakawa T. 1994. Flight behavior and seasonal trapping of Rhynchophorus cruentatus (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 87:641–47
    [Google Scholar]
  203. 203.
    Witt A, Hula V, Suleiman AS, Van Damme K. 2020. First record of the red palm weevil Rhynchophorus ferrugineus (Olivier) on Socotra Island (Yemen), an exotic pest with high potential for adverse economic impacts. Rend. Lincei Sci. Fis. Nat. 31:645–54
    [Google Scholar]
  204. 204.
    Yamamura K, Kishita M, Arakaki N, Kawamura F, Sadoyama Y. 2003. Estimation of dispersal distance by mark-recapture experiments using traps: correction of bias caused by the artificial removal by traps. Popul. Ecol. 45:149–55
    [Google Scholar]
  205. 205.
    Yan W, Liu L, Qin W, Li C, Peng Z. 2015. Transcriptomic identification of chemoreceptor genes in the red palm weevil Rhynchophorus ferrugineus. Genet. Mol. Res. 14:7469–80
    [Google Scholar]
  206. 206.
    Yin A, Pan L, Zhang X, Wang L, Yin Y et al. 2015. Transcriptomic study of the red palm weevil Rhynchophorus ferrugineus embryogenesis. Insect Sci. 22:65–82
    [Google Scholar]
  207. 207.
    Zhang H, Bai J, Huang S, Liu H, Lin J et al. 2020. Neuropeptides and G-protein coupled receptors (GPCRs) in the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front. Physiol. 11:159
    [Google Scholar]
/content/journals/10.1146/annurev-ento-013023-121139
Loading
/content/journals/10.1146/annurev-ento-013023-121139
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error