1932

Abstract

Bottom-up effects are major ecological forces in crop–arthropod pest–natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms, and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-060121-060505
2022-01-07
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-060121-060505.html?itemId=/content/journals/10.1146/annurev-ento-060121-060505&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR et al. 2020. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23:1488–98
    [Google Scholar]
  2. 2. 
    Amichot M, Joly P, Martin-Laurent F, Siaussat D, Lavoir AV 2019. Biocontrol, new questions for ecotoxicology?. Environ. Sci. Pollut. Res. Int. 25:33895–900
    [Google Scholar]
  3. 3. 
    Andow DA. 1991. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36:581–86
    [Google Scholar]
  4. 4. 
    Asiimwe P, Naranjo SE, Ellsworth PC. 2013. Relative influence of plant quality and natural enemies on the seasonal dynamics of Bemisia tabaci (Hemiptera: Aleyrodidae) in cotton. J. Econ. Entomol. 106:1260–73
    [Google Scholar]
  5. 5. 
    Becker C, Han P, Campos MR, Bearez P, Thomine E et al. 2021. Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. Sci. Total Environ. 793:148544
    [Google Scholar]
  6. 6. 
    Behmer ST, Lloyd CM, Raubenheimer D, Stewart-Clark J, Knight J et al. 2005. Metal hyperaccumulation in plants: mechanisms of defense against insect herbivores. Funct. Ecol. 19:55–66
    [Google Scholar]
  7. 7. 
    Bi JL, Ballmer GR, Hendrix DL, Henneberry TJ, Toscano NC. 2001. Effect of cotton nitrogen fertilization on Bemisia argentifolii populations and honeydew production. Entomol. Exp. Appl. 99:25–36
    [Google Scholar]
  8. 8. 
    Bianchi FJ, Booij CJ, Tscharntke T. 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. Biol. Sci. 273:1715–27
    [Google Scholar]
  9. 9. 
    Biondi A, Desneux N, Siscaro G, Zappala L. 2012. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–12
    [Google Scholar]
  10. 10. 
    Biondi A, Guedes RNC, Wan FH, Desneux N 2018. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63:239–58
    [Google Scholar]
  11. 11. 
    Blaauw BR, Isaacs R. 2015. Wildflower plantings enhance the abundance of natural enemies and their services in adjacent blueberry fields. Biol. Control 91:94–103
    [Google Scholar]
  12. 12. 
    Blundell R, Schmidt JE, Igwe A, Cheung AL, Vannette RL et al. 2020. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 6:483–91
    [Google Scholar]
  13. 13. 
    Boiteau G, Picka JD, Watmough J. 2008. Potato field colonization by low-density populations of Colorado potato beetle as a function of crop rotation distance. J. Econ. Entomol. 101:1575–83
    [Google Scholar]
  14. 14. 
    Bommarco R, Kleijn D, Potts SG 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28:230–38
    [Google Scholar]
  15. 15. 
    Brewer MJ, Anderson DJ, Parajulee MN 2016. Cotton water-deficit stress, age, and cultivars as moderating factors of cotton fleahopper abundance and yield loss. Crop Prot 86:56–61
    [Google Scholar]
  16. 16. 
    Burkle LA, Irwin RE. 2010. Beyond biomass: measuring the effects of community-level nitrogen enrichment on floral traits, pollinator visitation and plant reproduction. J. Ecol. 98:705–17
    [Google Scholar]
  17. 17. 
    Butler CD, Trumble JT 2008. Effects of pollutants on bottom-up and top-down processes in insect-plant interactions. Environ. Pollut 156:1–10A comprehensive review of known effects of pollutants on bottom-up processes.
    [Google Scholar]
  18. 18. 
    Butler CD, Trumble JT. 2010. Predicting population dynamics of the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) resulting from novel interactions of temperature and selenium. Biocontrol Sci. Technol. 20:391–406
    [Google Scholar]
  19. 19. 
    Calatayud PA, Polania MA, Seligmann CD, Bellotti AC. 2002. Influence of water-stressed cassava on Phenacoccus herreni and three associated parasitoids. Entomol. Exp. Appl. 102:163–75
    [Google Scholar]
  20. 20. 
    Carrière Y, Brown Z, Aglasanb S, Dutilleul P, Carroll M et al. 2020. Crop rotation mitigates impacts of corn rootworm resistance to transgenic Bt corn. PNAS 117:18385–92
    [Google Scholar]
  21. 21. 
    Cassman KG. 1999. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. PNAS 96:5952–59
    [Google Scholar]
  22. 22. 
    Chailleux A, Mohl EK, Alves MT, Messelink GJ, Desneux N. 2014. Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 70:1769–79
    [Google Scholar]
  23. 23. 
    Chaplin-Kramer R, O'Rourke ME, Blitzer EJ, Kremen C 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14:922–32A meta-analysis of the relationship between landscape complexity and pests, natural enemies, and pest control.
    [Google Scholar]
  24. 24. 
    Chen Y, Olson DM, Ruberson JR. 2010. Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interact 4:81–94
    [Google Scholar]
  25. 25. 
    Chen Y, Ruberson JR, Olson DM. 2008. Nitrogen fertilization rate affects larval performance and feeding, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol. Exp. Appl. 126:244–55
    [Google Scholar]
  26. 26. 
    Chesnais Q, Couty A, Catterou M, Ameline A 2016. Cascading effects of N input on tritrophic (plant-aphid-parasitoid) interactions. Ecol. Evol. 6:7882–91
    [Google Scholar]
  27. 27. 
    Chow A, Chau A, Heinz KM 2012. Reducing fertilization: a management tactic against western flower thrips on roses. J. Appl. Entomol. 136:520–29
    [Google Scholar]
  28. 28. 
    Colella T, Candido V, Campanelli G, Camele I, Battaglia D 2014. Effect of irrigation regimes and artificial mycorrhization on insect pest infestations and yield in tomato crop. Phytoparasitica 42:235–46
    [Google Scholar]
  29. 29. 
    Cook SM, Khan ZR, Pickett JA. 2007. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52:375–400
    [Google Scholar]
  30. 30. 
    Coqueret V, Le Bot J, Larbat R, Desneux N, Robin C et al. 2017. Nitrogen nutrition of tomato plant alters leafminer dietary intake dynamics. J. Insect Physiol. 99:130–38
    [Google Scholar]
  31. 31. 
    Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv 5:eaax0121A general overview of biodiversity-mediated benefits for cropping systems.
    [Google Scholar]
  32. 32. 
    Damien M, Le Lann C, Desneux N, Alford L, Al Hassan D et al. 2017. Flowering crops in winter increases pest control but not trophic link diversity. Agric. Ecosyst. Environ. 247:418–25
    [Google Scholar]
  33. 33. 
    Damien M, Llopis S, Desneux N, Van Baaren J, Lann C. 2020. How does floral nectar quality affect life history strategies in parasitic wasps?. Entomol. Gen. 40:147–56
    [Google Scholar]
  34. 34. 
    De Lange ES, Kyryczenko-Roth V, Johnson-Cicalese J, Davenport J, Vorsa N, Rodriguez-Saona C. 2019. Increased nutrient availability decreases insect resistance in cranberry. Agric. For. Entomol. 21:326–35
    [Google Scholar]
  35. 35. 
    Desneux N, Decourtye A, Delpuech JM 2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol 52:81–106Provides a comprehensive review of possible sublethal effects on pesticide-contaminated arthropods.
    [Google Scholar]
  36. 36. 
    Dong YC, Han P, Niu CY, Zappala L, Amiens-Desneux E et al. 2018. Nitrogen and water inputs to tomato plant do not trigger bottom-up effects on a leafminer parasitoid through host and non-host exposures. Pest Manag. Sci. 74:516–22
    [Google Scholar]
  37. 37. 
    Dong YC, Wang ZJ, Bu RY, Dai HJ, Zhou LJ et al. 2020. Water and salt stresses do not trigger bottom-up effects on plant-mediated indirect interactions between a leaf chewer and a sap-feeder. J. Pest Sci. 93:1267–80
    [Google Scholar]
  38. 38. 
    Edwards CA, Arancon NQ, Vasko-Bennett M, Askar A, Keeney G. et al. 2010. Suppression of green peach aphid (Myzus persicae) (Sulz.), citrus mealybug (Planococcus citri) (Risso), and two spotted spider mite (Tetranychus urticae) (Koch.) attacks on tomatoes and cucumbers by aqueous extracts from vermicomposts. Crop Prot 29:80–93
    [Google Scholar]
  39. 39. 
    Elliott J, Deryng D, Müller C, Frieler K, Konzmann M et al. 2014. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS 111:3239–44
    [Google Scholar]
  40. 40. 
    English-Loeb G, Stout MJ, Duffey SS. 1997. Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79:456–68
    [Google Scholar]
  41. 41. 
    Fageria NK, Baligar VC. 2005. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88:97–185
    [Google Scholar]
  42. 42. 
    Fallahpour F, Ghorbani R, Nassiri‑Mahallati M, Hosseini N 2020. Plant fertilization helps plants to compensate for aphid damage, positively affects predator efficiency and improves canola yield. J. Pest Sci. 93:251–60
    [Google Scholar]
  43. 43. 
    Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS et al. 2011. Solutions for a cultivated planet. Nature 478:337–42
    [Google Scholar]
  44. 44. 
    Forieri I, Hildebrandt U, Rostás M. 2016. Salinity stress effects on direct and indirect defence metabolites in maize. Environ. Exp. Bot. 122:68–77
    [Google Scholar]
  45. 45. 
    Furlong MJ, Ang GCK, Silva R, Zalucki MP 2018. Bringing ecology back: How can the chemistry of indirect plant defenses against herbivory be manipulated to improve pest management?. Front. Plant Sci 9:1436A comprehensive review of the ways in which HIPVs could be used for enhancing IPM.
    [Google Scholar]
  46. 46. 
    Gange AC, Brown VK, Aplin DM. 2003. Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol. Lett. 6:1051–55
    [Google Scholar]
  47. 47. 
    Garratt MPD, Bommarco R, Kleijn D, Martin E, Mortimer SR et al. 2018. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21:1404–15
    [Google Scholar]
  48. 48. 
    Garratt MPD, Wright DJ, Leather SR 2011. The effects of farming system and fertilisers on pests and natural enemies: a synthesis of current research. Agric. Ecosyst. Environ 141:261–70A meta-analysis of the effects of organic and conventional farming on pests and their natural enemies.
    [Google Scholar]
  49. 49. 
    Gu SM, Zalucki M, Men XY, Li J, Hou RX et al. 2021. Organic fertilizer amendment promotes wheat resistance to herbivory and biocontrol services via bottom‑up effects in agroecosystems. J. Pest Sci. In press
    [Google Scholar]
  50. 50. 
    Gurr GM, Wratten SD, Landis DA, You M 2017. Habitat management to suppress pest populations: progress and prospects. Annu. Rev. Entomol. 62:91–109
    [Google Scholar]
  51. 51. 
    Gutbrodt B, Mody K, Dorn S. 2011. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120:1732–40
    [Google Scholar]
  52. 52. 
    Gutierrez AP, Ponti L, D'Oultremont T, Ellis CK 2008. Climate change effects on poikilotherm tritrophic interactions. Clim. Change 87:167–92
    [Google Scholar]
  53. 53. 
    Han P, Bearez P, Adamowicz S, Lavoir AV, Amiens-Desneux E et al. 2015. Nitrogen and water limitations in tomato plants trigger negative bottom-up effects on the omnivorous predator Macrolophus pygmaeus. . J. Pest Sci. 88:685–91
    [Google Scholar]
  54. 54. 
    Han P, Becker C, Le Bot J, Larbat R, Lavoir AV et al. 2020. Plant nutrient supply alters the magnitude of indirect interactions between insect herbivores: from foliar chemistry to community dynamics. J. Ecol 108:1497–510Demonstrated the impact of bottom-up forces on density- and trait-mediated indirect interactions among herbivorous insects.
    [Google Scholar]
  55. 55. 
    Han P, Becker C, Sentis A, Rostas M, Desneux N et al. 2019. Global change-driven modulation of bottom-up forces and cascading effects on biocontrol service. Curr. Opin. Insect Sci. 35:27–33
    [Google Scholar]
  56. 56. 
    Han P, Desneux N, Amiens-Desneux E, Le Bot J, Bearez P et al. 2016. Does plant cultivar difference modify the bottom-up effects of resource limitation on plant-insect herbivore interactions?. J. Chem. Ecol 42:1293–303Plant adaptive traits to resource limitation do not protect herbivorous insects from cascading bottom-up effects.
    [Google Scholar]
  57. 57. 
    Han P, Desneux N, Becker C, Larbat R, Le Bot J et al. 2019. Bottom-up effects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for integrated pest management. J. Pest Sci. 92:1359–70
    [Google Scholar]
  58. 58. 
    Han P, Dong YC, Lavoir AV, Adamowicz S, Bearez P et al. 2015. Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Ecol. Evol 5:5468–77Plant water status modulates foraging behavior and fitness of omnivorous predators through bottom-up effects.
    [Google Scholar]
  59. 59. 
    Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N 2014. Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci. Rep. 4:4455
    [Google Scholar]
  60. 60. 
    Han P, Velasco-Hernández MC, Ramirez-Romero R, Desneux N. 2016. Behavioral effects of insect-resistant genetically modified crops on phytophagous and beneficial arthropods: a review. J. Pest Sci. 89:859–83
    [Google Scholar]
  61. 61. 
    Han P, Wang ZJ, Lavoir AV, Michel T, Seassau A et al. 2016. Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Sci. Rep. 6:32403
    [Google Scholar]
  62. 62. 
    Harmon JP, Daigh ALM. 2017. Attempting to predict the plant-mediated trophic effects of soil salinity: a mechanistic approach to supplementing insufficient information. Food Webs 13:67–79
    [Google Scholar]
  63. 63. 
    Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM. 2008. Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos. Trans. R. Soc. B 363:611–21
    [Google Scholar]
  64. 64. 
    Hempel S, Stein C, Unsicker SB, Renker C, Auge H et al. 2009. Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system. Oecologia 160:267–77
    [Google Scholar]
  65. 65. 
    Hladun KR, Parker DR, Tran KD, Trumble JT 2013. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus stativus L.). Environ. Pollut. 172:70–75
    [Google Scholar]
  66. 66. 
    Hocking PJ, Mason L. 1993. Accumulation, distribution and redistribution of dry matter and mineral nutrients in fruits of canola (oilseed rape), and the effects of nitrogen fertilizer and windrowing. Aust. J. Agric. Res. 44:1377–88
    [Google Scholar]
  67. 67. 
    Hoffmann D, Vierheilig H, Peneder S, Schausberger P 2011. Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecol. Entomol. 36:574–81
    [Google Scholar]
  68. 68. 
    Hogg BN, Nelson EH, Mills NJ, Daane KM. 2011. Floral resources enhance aphid suppression by a hoverfly. Entomol. Exp. Appl. 141:138–44
    [Google Scholar]
  69. 69. 
    Holzschuh A, Steffan-Dewenter I, Tscharntke T. 2010. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. J. Anim. Ecol. 79:491–500
    [Google Scholar]
  70. 70. 
    Hoover SER, Ladley JJ, Shchepetkina AA, Tisch M, Gieseg SP et al. 2012. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15:227–34
    [Google Scholar]
  71. 71. 
    Hosseini A, Hosseini M, Michaud JP, Modarres Awal M, Ghadamyari M 2018. Nitrogen fertilization increases the nutritional quality of Aphis gossypii (Hemiptera: Aphididae) as prey for Hippodamia variegata (Coleoptera: Coccinellidae) and alters predator foraging behavior. J. Econ. Entomol. 111:2059–68
    [Google Scholar]
  72. 72. 
    Howe GA, Jander G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66
    [Google Scholar]
  73. 73. 
    Huberty AF, Denno RF. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–98
    [Google Scholar]
  74. 74. 
    Hunter MD, Price PW. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–32
    [Google Scholar]
  75. 75. 
    Isbell F, Craven D, Connolly J, Loreau M, Schmid B et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–77Biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events.
    [Google Scholar]
  76. 76. 
    Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D et al. 2012. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18:267–76
    [Google Scholar]
  77. 77. 
    Ju Q, Ouyang F, Gu S, Qiao F, Yang Q et al. 2019. Strip intercropping peanut with maize for peanut aphid biological control and yield enhancement. Agric. Ecosyst. Environ. 286:106682
    [Google Scholar]
  78. 78. 
    Kansman J, Nalam V, Nachappa P, Finke D. 2020. Plant water stress intensity mediates aphid host choice and feeding behaviour. Ecol. Entomol. 45:1437–44
    [Google Scholar]
  79. 79. 
    Karp DS, Chaplin-Kramer R, Meehan TD, Marti EA, DeClerck F et al. 2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. PNAS 115:E7863–70
    [Google Scholar]
  80. 80. 
    Karp DS, Moses R, Gennet S, Jones MS, Joseph S et al. 2016. Agricultural practices for food safety threaten pest control services for fresh produce. J. Appl. Ecol. 53:1402–12
    [Google Scholar]
  81. 81. 
    Khan ZR, Ampong-Nyarko K, Chilishwa P, Hassanali A, Kiman S et al. 1997. Intercropping increases parasitism of pests. Nature 388:631–32
    [Google Scholar]
  82. 82. 
    Khan ZR, Midega CAO, Hooper A, Pickett J 2016. Push-pull: chemical ecology-based integrated pest management technology. J. Chem. Ecol 42:689–97A comprehensive review of the theoretical and applied aspects of push-pull strategies in IPM.
    [Google Scholar]
  83. 83. 
    Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA et al. 2014. Achieving food security for one million Sub-Saharan African poor through push-pull innovation by 2020. Philos. Trans. R. Soc. B 369:20120284
    [Google Scholar]
  84. 84. 
    Khan ZR, Midega CAO, Wadhams LJ, Pickett JA, Mumuni A. 2007. Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a “push-pull” strategy. Entomol. Exp. Appl. 124:201–11
    [Google Scholar]
  85. 85. 
    Khan ZR, Pickett JA, Wadhams LJ, Hassanali A, Midega CAO. 2006. Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Prot 25:989–95
    [Google Scholar]
  86. 86. 
    Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N et al. 2015. Robust cropping systems to tackle pests under climate change: a review. Agron. Sustain. Dev. 35:443–59
    [Google Scholar]
  87. 87. 
    Letourneau DK, Armbrecht I, Rivera BS, Lerma JM, Carmona EJ et al. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21:9–21
    [Google Scholar]
  88. 88. 
    Letourneau DK, Goldstein B. 2001. Pest management and arthropod community structure in organic vs. conventional tomato production in California. J. Appl. Ecol. 38:557–70
    [Google Scholar]
  89. 89. 
    Li S, Jaworski C, Hatt S, Zhang F, Desneux N et al. 2020. Flower strips adjacent to greenhouses help reduce pest populations and insecticide applications inside organic commercial greenhouses. J. Pest Sci. 94:679–89
    [Google Scholar]
  90. 90. 
    Li SC, Chang L, Zhang J 2021. Advancing organelle genome transformation and editing for crop improvement. Plant Commun 2:100141
    [Google Scholar]
  91. 91. 
    Li W, Lu YH, Jaworski CC, Wang L, Jiang Y et al. 2020. The outbreaks of non-target mirid bugs promote arthropod pest suppression in Bt cotton agroecosystems. Plant Biotechnol. J. 18:322–24
    [Google Scholar]
  92. 92. 
    Lindell C, Eaton RA, Howard PH, Roels SM, Shave ME. 2018. Enhancing agricultural landscapes to increase crop pest reduction by vertebrates. Agric. Ecosyst. Environ. 257:1–11
    [Google Scholar]
  93. 93. 
    Lou YG, Du MH, Turlings TCJ, Cheng JA, Shan WF. 2005. Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J. Chem. Ecol. 31:1985–2002
    [Google Scholar]
  94. 94. 
    Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–65Wide-scale adoption of a Bt cotton cultivar promoted both biocontrol services and decreases in the use of insecticides.
    [Google Scholar]
  95. 95. 
    MacLeod A, Wratten SD, Sotherton NW, Thomas MB. 2004.. “ Beetle banks” as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric. For. Entomol. 6:147–54
    [Google Scholar]
  96. 96. 
    Martin EA, Reineking B, Seo B, Stefan-Dewenter I. 2015. Pest control of aphids depends on landscape complexity and natural enemy interactions. Peer J 3:e1095
    [Google Scholar]
  97. 97. 
    Matson PA, Parton WJ, Power AG, Swift MJ. 1997. Agricultural intensification and ecosystem properties. Science 277:504–9
    [Google Scholar]
  98. 98. 
    Meehan TD, Werling BP, Landis DA, Gratton C. 2011. Agricultural landscape simplification and insecticide use in the Midwestern United States. PNAS 108:11500–5
    [Google Scholar]
  99. 99. 
    Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR. 2018. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot 105:10–15
    [Google Scholar]
  100. 100. 
    Mody K, Eichenberger D, Dorn S. 2009. Stress magnitude matters: Different intensities of pulsed water stress produce non-monotonic resistance responses of host plants to insect herbivores. Ecol. Entomol. 34:133–43
    [Google Scholar]
  101. 101. 
    Morris WF. 1992. The effects of natural enemies, competition, and host plant water availability on an aphid population. Oecologia 90:359–65
    [Google Scholar]
  102. 102. 
    Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E, Desneux N. 2013. Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173:1379–86
    [Google Scholar]
  103. 103. 
    Murrell EG, Barton BT. 2017. Warming alters prey density and biological control in conventional and organic agricultural systems. Integr. Comp. Biol. 57:1–13
    [Google Scholar]
  104. 104. 
    Naranjo SE. 2011. Impacts of Bt transgenic cotton on integrated pest management. J. Agric. Food Chem. 59:5842–51
    [Google Scholar]
  105. 105. 
    Ndayisaba PC, Kuyah S, Midega CAO, Mwangi PN, Khan ZR. 2020. Push-pull technology improves maize grain yield and total aboveground biomass in maize-based systems in western Kenya. Field Crops Res 256:107911
    [Google Scholar]
  106. 106. 
    Nguyen LTH, Monticelli LS, Desneux N, Metay-Merrien C, Amiens-Desneux E et al. 2018. Bottom-up effect of water stress on the aphid parasitoid Aphidius ervi. Entomol. Gen. 38:15–27
    [Google Scholar]
  107. 107. 
    Olson DM, Wäckers FL. 2007. Management of field margins to maximize multiple ecological services. J. Appl. Ecol. 44:13–21
    [Google Scholar]
  108. 108. 
    Parolin P, Bresch C, Poncet C, Desneux N. 2012. Functional characteristics of secondary plants for increased pest management. Int. J. Pest Manag. 58:369–77
    [Google Scholar]
  109. 109. 
    Parsons CK, Dixon PL, Colbo M. 2007. Relay cropping cauliflower with lettuce as a means to manage first-generation cabbage maggot (Diptera: Anthomyiidae) and minimize cauliflower yield loss. J. Econ. Entomol. 100:838–46
    [Google Scholar]
  110. 110. 
    Pearsons KA, Tooker JF. 2017. In-field habitat management to optimize pest control of novel soil communities in agroecosystems. Insects 8:82
    [Google Scholar]
  111. 111. 
    Pennington MJ, Rothman JA, Dudley SL, Jones MB, McFrederick QS et al. 2017. Contaminants of emerging concern affect Trichoplusia ni growth and development on artificial diets and a key host plant. PNAS 114:E9923–31
    [Google Scholar]
  112. 112. 
    Price PW. 1991. Plant vigor and herbivore attack. Oikos 62:244–51
    [Google Scholar]
  113. 113. 
    Raven PH, Wagner DL. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS 118:e2002548117
    [Google Scholar]
  114. 114. 
    Redlich S, Martin EA, Steffan-Dewenter I. 2018. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55:2419–28
    [Google Scholar]
  115. 115. 
    Reich PB, Knops J, Tilman D, Craine J, Ellsworth D et al. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410:809–12
    [Google Scholar]
  116. 116. 
    Ren LL, Hardy G, Liu ZD, Wei W, Dai HG 2013. Corn defense responses to nitrogen availability and subsequent performance and feeding preferences of beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 106:1240–49
    [Google Scholar]
  117. 117. 
    Rodriguez-Saona C, Blaauw BR, Isaacs R 2012. Manipulation of natural enemies in agroecosystems: habitat and semiochemicals for sustainable insect pest control. Integrated Pest Management and Pest Control—Current and Future Tactics S Soloneski 89–126 London: InTech
    [Google Scholar]
  118. 118. 
    Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95–124
    [Google Scholar]
  119. 119. 
    Rosenblatt AE, Schmitz OJ. 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31:965–75
    [Google Scholar]
  120. 120. 
    Rosenheim JA, Gratton C. 2017. Ecoinformatics (big data) for agricultural entomology: pitfalls, progress, and promise. Annu. Rev. Entomol. 62:399–417
    [Google Scholar]
  121. 121. 
    Rousselin A, Sauge MH, Jordan MO, Vercambre G, Lescourret F et al. 2016. Nitrogen and water supplies affect peach tree-green peach aphid interactions: the key role played by vegetative growth. Agric. For. Entomol. 18:367–75
    [Google Scholar]
  122. 122. 
    Rozema J, Flowers T. 2008. Crops for a salinized world. Science 322:1478–80
    [Google Scholar]
  123. 123. 
    Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Hollan J et al. 2016. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221:198–204
    [Google Scholar]
  124. 124. 
    Russell EP. 1989. Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol. 18:590–99
    [Google Scholar]
  125. 125. 
    Sarfraz M, Dosdall LM, Keddie BA. 2009. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol. Control 51:34–41
    [Google Scholar]
  126. 126. 
    Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W et al. 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–56
    [Google Scholar]
  127. 127. 
    Sentis A, Hemptinne JL, Brodeur J. 2013. Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Glob. Change Biol. 19:833–42
    [Google Scholar]
  128. 128. 
    Smith CM, Clement SL. 2012. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57:309–28
    [Google Scholar]
  129. 129. 
    Staley JT, Stafford DB, Green ER, Leather SR, Rossiter JT et al. 2011. Plant nutrient supply determines competition between phytophagous insects. Proc. R. Soc. B 278:718–24
    [Google Scholar]
  130. 130. 
    Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L. 2016. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53:233–41
    [Google Scholar]
  131. 131. 
    Tamburini G, De Simone S, Sigura M, Boscutti F, Marini L. 2016. Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes. P. R. Soc. B 283:20161369
    [Google Scholar]
  132. 132. 
    Thaler JS. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–88
    [Google Scholar]
  133. 133. 
    Thies C, Haenke S, Scherber C, Bengtsson J, Bommarco R et al. 2011. The relationship between agricultural intensification and biological control: experimental tests across Europe. Ecol. Appl. 21:2187–96
    [Google Scholar]
  134. 134. 
    Thimmegowda GG, Mullen S, Sottilare K, Sharma A, Mohanta SS et al. 2020. A field-based quantitative analysis of sublethal effects of air pollution on pollinators. PNAS 117:20653–61
    [Google Scholar]
  135. 135. 
    Thomine E, Rusch A, Supplisson C, Monticelli LS, Amiens-Desneux E et al. 2020. Highly diversified crop systems can promote the dispersal and foraging activity of the generalist predator Harmonia axyridis. Entomol. Gen. 40:133–45
    [Google Scholar]
  136. 136. 
    Thomson LJ, Macfadyen S, Hoffmann AA 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 52:296–306
    [Google Scholar]
  137. 137. 
    Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–64
    [Google Scholar]
  138. 138. 
    Tittonell P. 2014. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8:53–61
    [Google Scholar]
  139. 139. 
    Tolosa TA, Tamiru A, Midega CAO, Van Den Berg J et al. 2019. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 45:982–92
    [Google Scholar]
  140. 140. 
    Tooker JF, O'Neal ME, Rodriguez-Saona C. 2020. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu. Rev. Entomol. 65:81–100
    [Google Scholar]
  141. 141. 
    Treonis AM, Austin EE, Buyer JS, Maul JE, Spicer L et al. 2010. Effects of organic amendment and tillage on soil microorganisms and microfauna. Appl. Soil Ecol. 46:103–10
    [Google Scholar]
  142. 142. 
    Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F et al. 2016. When natural habitat fails to enhance biological pest control—five hypotheses. Biol. Conserv. 204:449–58
    [Google Scholar]
  143. 143. 
    Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8:857–74
    [Google Scholar]
  144. 144. 
    Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87:661–85
    [Google Scholar]
  145. 145. 
    Turlings TCJ, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  146. 146. 
    Tylianakis JM, Binzer A. 2014. Effects of global environmental changes on parasitoid-host food webs and biological control. Biol. Control 75:77–86
    [Google Scholar]
  147. 147. 
    Tylianakis JM, Tscharntke T, Lewis OT 2007. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–5
    [Google Scholar]
  148. 148. 
    Veres A, Petit S, Conord C, Lavigne C. 2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric. Ecosyst. Environ. 166:110–17
    [Google Scholar]
  149. 149. 
    Von Merey GE, Veyrat N, de Lange E, Degen T, Mahuku G et al. 2012. Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biol. Control 60:7–15
    [Google Scholar]
  150. 150. 
    Wang YS, Yao FL, Soares MA, Basiri SE, Amiens-Desneux E et al. 2020. Effects of four non-crop plants on life history traits of the lady beetle Harmonia axyridis. Entomol. Gen. 40:243–52
    [Google Scholar]
  151. 151. 
    Welch KD, Harwood JD. 2014. Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control 75:18–27
    [Google Scholar]
  152. 152. 
    Wetzel W, Kharouba H, Robinson M, Holyoak M, Karban K 2016. Variability in plant nutrients reduces insect herbivore performance. Nature 539:425–27
    [Google Scholar]
  153. 153. 
    Wezel A, Casagrande M, Celette F, Vian J-F, Ferrer A et al. 2014. Agroecological practices for sustainable agriculture: a review. Agron. Sustain. Dev. 34:1–20
    [Google Scholar]
  154. 154. 
    White TCR. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905–9
    [Google Scholar]
  155. 155. 
    White TCR. 1993. The inadequate environment: nitrogen and the abundance of animals. J. Exp. Mar. Biol. Ecol. 186:133–34
    [Google Scholar]
  156. 156. 
    Wilson LJ, Whitehouse MEA, Herron GA. 2018. The management of insect pests in Australian cotton: an evolving story. Annu. Rev. Entomol. 63:215–37
    [Google Scholar]
  157. 157. 
    Wolf KM, Torbert EE, Bryant D, Burger M, Denison RF et al. 2018. The Century Experiment: the first twenty years of UC Davis’ Mediterranean agroecological experiment. Ecology 99:503
    [Google Scholar]
  158. 158. 
    Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N. 2012. Pollinator habitat enhancement: benefits to other ecosystem services. Agric. Ecosyst. Environ. 159:112–22
    [Google Scholar]
  159. 159. 
    Wright RJ. 1984. Evaluation of crop rotation for control of Colorado potato beetles (Coleoptera: Chrysomelidae) in commercial potato fields on Long Island. J. Econ. Entomol. 77:1254–59
    [Google Scholar]
  160. 160. 
    Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–78
    [Google Scholar]
  161. 161. 
    Wyckhuys KAG, Burra DD, Tran DH, Graziosi I, Walter AJ et al. 2017. Soil fertility regulates invasive herbivore performance and top-down control in tropical agroecosystems of Southeast Asia. Agric. Ecosyst. Environ. 249:38–49
    [Google Scholar]
  162. 162. 
    Xu QC, Xu HL, Qin FF, Tan JY, Liu G et al. 2010. Relay intercropping into tomato decreases cabbage pest incidence. Int. J. Food Agric. Environ. 8:1037–41
    [Google Scholar]
  163. 163. 
    Zanic K, Dumicic G, Skaljac M, Goreta Ban S, Urlic B 2011. The effects of nitrogen rate and the ratio of NO3:NH4 on Bemisia tabaci populations in hydroponic tomato crops. Crop Prot 30:228–33
    [Google Scholar]
  164. 164. 
    Zavala JA, Nabity PD, DeLucia EH. 2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58:79–97
    [Google Scholar]
  165. 165. 
    Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG et al. 2015. Full crop protection from an insect pest by expression of long doublestranded RNAs in plastids. Science 347:911–14Engineered plants to allow chloroplasts expressing RNA molecules targeting vital insect genes.
    [Google Scholar]
/content/journals/10.1146/annurev-ento-060121-060505
Loading
/content/journals/10.1146/annurev-ento-060121-060505
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error