1932

Abstract

One promising approach to mitigate the negative impacts of insect pests in forests is to adapt forestry practices to create ecosystems that are more resistant and resilient to biotic disturbances. At the stand scale, local stand management practices often cause idiosyncratic effects on forest pests depending on the environmental context and the focal pest species. However, increasing tree diversity appears to be a general strategy for reducing pest damage across several forest types. At the landscape scale, increasing forest heterogeneity (e.g., intermixing different forest types and/or age classes) represents a promising frontier for improving forest resistance and resilience and for avoiding large-scale outbreaks. In addition to their greater resilience, heterogeneous forest landscapes frequently support a wide range of ecosystem functions and services. A challenge will be to develop cooperation and coordination among multiple actors at spatial scales that transcend historical practices in forest management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-062321-065511
2022-01-07
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ento/67/1/annurev-ento-062321-065511.html?itemId=/content/journals/10.1146/annurev-ento-062321-065511&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albrich K, Rammer W, Turner MG, Ratajczak Z, Braziunas KH et al. 2020. Simulating forest resilience: a review. Glob. Ecol. Biogeogr. 29:2082–96
    [Google Scholar]
  2. 2. 
    Alfaro RI, King JN, VanAkker L. 2013. Delivering Sitka spruce with resistance against white pine weevil in British Columbia, Canada. For. Chron. 89:235–45
    [Google Scholar]
  3. 3. 
    Alfaro RI, Langor D. 2016. Changing paradigms in the management of forest insect disturbances. Can. Entomol. 148:S7–18
    [Google Scholar]
  4. 4. 
    Aoki CF, Cook M, Dunn J, Finley D, Fleming L et al. 2018. Old pests in new places: effects of stand structure and forest type on susceptibility to a bark beetle on the edge of its native range. For. Ecol. Manag. 419–20:206–19
    [Google Scholar]
  5. 5. 
    Asaro C, Nowak JT, Elledge A. 2017. Why have southern pine beetle outbreaks declined in the southeastern U.S. with the expansion of intensive pine silviculture? A brief review of hypotheses. For. Ecol. Manag. 391:338–48
    [Google Scholar]
  6. 6. 
    Aukema BH, Carroll AL, Zhu J, Raffa KF, Sickley TA, Taylor SW. 2006. Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29:427–41
    [Google Scholar]
  7. 7. 
    Ayres MP, Lombardero MJ. 2018. Forest pests and their management in the Anthropocene. Can. J. For. Res. 48:292–301
    [Google Scholar]
  8. 8. 
    Bāders E, Jansons Ā, Matisons R, Elferts D, Desaine I. 2018. Landscape diversity for reduced risk of insect damage: a case study of spruce bud scale in Latvia. Forests 9:545
    [Google Scholar]
  9. 9. 
    Baeten L, Bruelheide H, Plas F, Kambach S, Ratcliffe S et al. 2019. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56:733–44
    [Google Scholar]
  10. 10. 
    Bakaj F, Mietkiewicz N, Veblen TT, Kulakowski D. 2016. The relative importance of tree and stand properties in susceptibility to spruce beetle outbreak in the mid-20th century. Ecosphere 7:e01485
    [Google Scholar]
  11. 11. 
    Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. 2009. Associational resistance and associational susceptibility: having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 40:1–20
    [Google Scholar]
  12. 12. 
    Bauce É, Fuentealba A. 2013. Interactions between stand thinning, site quality and host tree species on spruce budworm biological performance and host tree resistance over a 6 year period after thinning. For. Ecol. Manag. 304:212–23
    [Google Scholar]
  13. 13. 
    Bellahirech A, Branco M, Catry FX, Bonifácio L, Sousa E, Ben Jamâa ML. 2019. Site- and tree-related factors affecting colonization of cork oaks Quercus suber L. by ambrosia beetles in Tunisia. Ann. For. Sci. 76:45
    [Google Scholar]
  14. 14. 
    Billings RF 2011. Mechanical control of southern pine beetle infestations. Southern Pine Beetle II RN Coulson, KD Klepzig 399–413 Gen. Tech. Rep. Ser. SRS-140 Asheville, NC: US Dep. Agric. For. Serv. South. Res. Stn.
    [Google Scholar]
  15. 15. 
    Blomqvist M, Kosunen M, Starr M, Kantola T, Holopainen M, Lyytikäinen-Saarenmaa P. 2018. Modelling the predisposition of Norway spruce to Ips typographus L. infestation by means of environmental factors in southern Finland. Eur. J. For. Res. 137:675–91
    [Google Scholar]
  16. 16. 
    Bone C, White JC, Wulder MA, Robertson C, Nelson TA. 2013. Impact of forest fragmentation on patterns of mountain pine beetle-caused tree mortality. Forests 4:279–95
    [Google Scholar]
  17. 17. 
    Bonello P, Campbell FT, Cipollini D, Conrad AO, Farinas C et al. 2020. Invasive tree pests devastate ecosystems—a proposed new response framework. Front. For. Glob. Change 3:2
    [Google Scholar]
  18. 18. 
    Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ 2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773
    [Google Scholar]
  19. 19. 
    Branco M, Brockerhoff EG, Castagneyrol B, Orazio C, Jactel H 2015. Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. J. Appl. Ecol. 52:69–77
    [Google Scholar]
  20. 20. 
    Campbell EM, Antos JA, vanAkker L. 2019. Resilience of southern Yukon boreal forests to spruce beetle outbreaks. For. Ecol. Manag. 433:52–63
    [Google Scholar]
  21. 21. 
    Campbell EM, MacLean DA, Bergeron Y. 2008. The severity of budworm-caused growth reductions in balsam fir/spruce stands varies with the hardwood content of surrounding forest landscapes. For. Sci. 54:195–205
    [Google Scholar]
  22. 22. 
    Castagneyrol B, Giffard B, Valdés-Correcher E, Hampe A. 2019. Tree diversity effects on leaf insect damage on pedunculate oak: the role of landscape context and forest stratum. For. Ecol. Manag. 433:287–94
    [Google Scholar]
  23. 23. 
    Cavaletto G, Mazzon L, Faccoli M, Marini L 2019. Habitat loss and alien tree invasion reduce defoliation intensity of an eruptive forest pest. For. Ecol. Manag. 433:497–503
    [Google Scholar]
  24. 24. 
    Charbonneau D, Lorenzetti F, Doyon F, Mauffette Y. 2012. The influence of stand and landscape characteristics on forest tent caterpillar (Malacosoma disstria) defoliation dynamics: the case of the 1999–2002 outbreak in northwestern Quebec. Can. J. For. Res. 42:1827–36
    [Google Scholar]
  25. 25. 
    Charbonnier Y, Gaüzère P, van Halder I, Nezan J, Barnagaud J-Y et al. 2016. Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landsc. Ecol. 31:291–300
    [Google Scholar]
  26. 26. 
    Chen H, Ott P, Wang J, Ebata T 2014. A positive response of mountain pine beetle to pine forest-clearcut edges at the landscape scale in British Columbia, Canada. Landsc. Ecol. 29:1625–39
    [Google Scholar]
  27. 27. 
    Coggins SB, Coops NC, Wulder MA, Bater CW, Ortlepp SM. 2011. Comparing the impacts of mitigation and non-mitigation on mountain pine beetle populations. J. Environ. Manag. 92:112–20
    [Google Scholar]
  28. 28. 
    Damien M, Jactel H, Meredieu C, Régolini M, van Halder I, Castagneyrol B. 2016. Pest damage in mixed forests: disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. For. Ecol. Manag. 378:103–10
    [Google Scholar]
  29. 29. 
    de Groot M, Diaci J, Ogris N 2019. Forest management history is an important factor in bark beetle outbreaks: lessons for the future. For. Ecol. Manag. 433:467–74
    [Google Scholar]
  30. 30. 
    de Groot M, Ogris N, Kobler A 2018. The effects of a large-scale ice storm event on the drivers of bark beetle outbreaks and associated management practices. For. Ecol. Manag. 408:195–201
    [Google Scholar]
  31. 31. 
    Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. 2020. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks?. J. Appl. Ecol. 57:67–76
    [Google Scholar]
  32. 32. 
    Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. 2020. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes. J. Environ. Manag. 254:109792
    [Google Scholar]
  33. 33. 
    Dobor L, Hlásny T, Zimová S. 2020. Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: the role of management. Ecol. Evol. 10:12233–45
    [Google Scholar]
  34. 34. 
    Dodds KJ, Aoki CF, Arango-Velez A, Cancelliere J, D'Amato AW et al. 2018. Expansion of southern pine beetle into northeastern forests: management and impact of a primary bark beetle in a new region. J. For. 116:178–91
    [Google Scholar]
  35. 35. 
    Dodds KJ, DiGirolomo MF, Fraver S. 2019. Response of bark beetles and woodborers to tornado damage and subsequent salvage logging in northern coniferous forests of Maine, USA. For. Ecol. Manag. 450:117489
    [Google Scholar]
  36. 36. 
    Dulaurent A-M, Porté AJ, van Halder I, Vétillard F, Menassieu P, Jactel H. 2011. A case of habitat complementation in forest pests: Pine processionary moth pupae survive better in open areas. For. Ecol. Manag. 261:1069–76
    [Google Scholar]
  37. 37. 
    Dyer LA, Carson WP, Leigh EG 2012. Insect outbreaks in tropical forests: patterns, mechanisms, and consequences. Insect Outbreaks Revisited P Barbosa, DK Letourneau, AA Agrawal 219–45 New York: Wiley
    [Google Scholar]
  38. 38. 
    Dymond CC, Tedder S, Spittlehouse DL, Raymer B, Hopkins K et al. 2014. Diversifying managed forests to increase resilience. Can. J. For. Res. 44:1196–205
    [Google Scholar]
  39. 39. 
    Egan JM, Jacobi WR, Negron JF, Smith SL, Cluck DR. 2010. Forest thinning and subsequent bark beetle-caused mortality in Northeastern California. For. Ecol. Manag. 260:1832–42
    [Google Scholar]
  40. 40. 
    Ennos R, Cottrell J, Hall J, O'Brien D. 2019. Is the introduction of novel exotic forest tree species a rational response to rapid environmental change? A British perspective. For. Ecol. Manag. 432:718–28
    [Google Scholar]
  41. 41. 
    Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO et al. 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14:101–12
    [Google Scholar]
  42. 42. 
    FAO (Food Agric. Org. U. N.) 2020. Global forest resources assessment 2020 Rep., FAO, Rome. http://www.fao.org/forest-resources-assessment/2020/en/?utm_source=twitter&utm_medium=social+media&utm_campaign=fao
  43. 43. 
    Ferrenberg S. 2016. Landscape features and processes influencing forest pest dynamics. Curr. Landsc. Ecol. Rep. 1:19–29
    [Google Scholar]
  44. 44. 
    Fettig C, McKelvey S. 2014. Resiliency of an interior ponderosa pine forest to bark beetle infestations following fuel-reduction and forest-restoration treatments. Forests 5:153–76
    [Google Scholar]
  45. 45. 
    Fettig CJ, Gibson KE, Munson AS, Negrón JF. 2014. Cultural practices for prevention and mitigation of mountain pine beetle infestations. For. Sci. 60:450–63
    [Google Scholar]
  46. 46. 
    Fettig CJ, Hilszczański J 2014. Management strategies for bark beetles in conifer forests. Bark Beetles: Biology and Ecology of Native and Invasive Species F Vega, R Hofstetter 555–84 Amsterdam: Elsevier
    [Google Scholar]
  47. 47. 
    Fettig CJ, McKelvey SR. 2010. Bark beetle responses to stand structure and prescribed fire at Blacks Mountain experimental forest, California, USA: 5-year data. Fire Ecol 6:26–42
    [Google Scholar]
  48. 48. 
    Foit J. 2012. Felling date affects the occurrence of Pityogenes chalcographus on Scots pine logging residues. Agric. For. Entomol. 14:383–88
    [Google Scholar]
  49. 49. 
    Foster DR, Orwig DA. 2006. Preemptive and salvage harvesting of New England forests: when doing nothing is a viable alternative. Conserv. Biol. 20:959–70
    [Google Scholar]
  50. 50. 
    Fuentealba A, Bauce É. 2012. Soil drainage class, host tree species, and thinning influence host tree resistance to the spruce budworm. Can. J. For. Res. 42:1771–83
    [Google Scholar]
  51. 51. 
    Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L et al. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4:1340
    [Google Scholar]
  52. 52. 
    Gely C, Laurance SGW, Stork NE 2020. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. 95:434–48
    [Google Scholar]
  53. 53. 
    Goldin SR, Hutchinson MF. 2014. Coarse woody debris reduces the rate of moisture loss from surface soils of cleared temperate Australian woodlands. Soil Res 52:637–44
    [Google Scholar]
  54. 54. 
    Grodzki W, Jakuš R, Lajzová E, Sitková Z, Maczka T, Škvarenina J. 2006. Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) in the Tatra Mts. in Poland and Slovakia. Ann. For. Sci. 63:55–61
    [Google Scholar]
  55. 55. 
    Gunderson LH. 2000. Ecological resilience—in theory and application. Annu. Rev. Ecol. Evol. Syst. 31:425–39
    [Google Scholar]
  56. 56. 
    Henery ML. 2011. The constraints of selecting for insect resistance in plantation trees. Agric. For. Entomol. 13:111–20
    [Google Scholar]
  57. 57. 
    Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335
    [Google Scholar]
  58. 58. 
    Hilmers T, Biber P, Knoke T, Pretzsch H 2020. Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. Eur. J. For. Res. 139:567–84
    [Google Scholar]
  59. 59. 
    Hindmarch TD, Reid ML. 2001. Forest thinning affects reproduction in pine engravers (Coleoptera: Scolytidae) breeding in felled lodgepole pine trees. Environ. Entomol. 30:919–24
    [Google Scholar]
  60. 60. 
    Hlásny T, Turčáni M. 2013. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann. For. Sci. 70:481–91
    [Google Scholar]
  61. 61. 
    Holmes SB, MacQuarrie CJK. 2016. Chemical control in forest pest management. Can. Entomol. 148:S270–95
    [Google Scholar]
  62. 62. 
    Hood SM, Baker S, Sala A. 2016. Fortifying the forest: Thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Ecol. Appl. 26:1984–2000
    [Google Scholar]
  63. 63. 
    Hopmans P, Elms SR. 2013. Impact of defoliation by Essigella californica on the growth of mature Pinus radiata and response to N, P and S fertilizer. For. Ecol. Manag. 289:190–200
    [Google Scholar]
  64. 64. 
    Hughes JS, Cobbold CA, Haynes K, Dwyer G. 2015. Effects of forest spatial structure on insect outbreaks: insights from a host-parasitoid model. Am. Nat. 185:E130–52
    [Google Scholar]
  65. 65. 
    Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B et al. 2017. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 3:223–43
    [Google Scholar]
  66. 66. 
    Jactel H, Branco M, Duncker P, Gardiner B, Grodzki W et al. 2012. A multicriteria risk analysis to evaluate impacts of forest management alternatives on forest health in Europe. Ecol. Soc. 17:52
    [Google Scholar]
  67. 67. 
    Jactel H, Moreira X, Castagneyrol B. 2021. Tree diversity and forest resistance to insect pests: patterns, mechanisms and prospects. Annu. Rev. Entomol. 66:277–96
    [Google Scholar]
  68. 68. 
    Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W et al. 2009. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 66:701
    [Google Scholar]
  69. 69. 
    Jactel H, Petit J, Desprez-Loustau M-L, Delzon S, Piou D et al. 2012. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18:267–76
    [Google Scholar]
  70. 70. 
    Jenkins MJ, Runyon JB, Fettig CJ, Page WG, Bentz BJ 2014. Interactions among the mountain pine beetle, fires, and fuels. For. Sci. 60:489–501
    [Google Scholar]
  71. 71. 
    Kamińska A, Lisiewicz M, Kraszewski B, Stereńczak K 2020. Habitat and stand factors related to spatial dynamics of Norway spruce dieback driven by Ips typographus (L.) in the Białowieża Forest District. For. Ecol. Manag. 476:118432
    [Google Scholar]
  72. 72. 
    Kautz M, Meddens AJH, Hall RJ, Arneth A. 2017. Biotic disturbances in Northern Hemisphere forests: a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob. Ecol. Biogeogr. 26:533–52
    [Google Scholar]
  73. 73. 
    Kautz M, Schopf R, Ohser J. 2013. The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. For. Res. 132:453–65
    [Google Scholar]
  74. 74. 
    Kenis M, Hurley BP, Hajek AE, Cock MJW. 2017. Classical biological control of insect pests of trees: facts and figures. Biol. Invasions 19:3401–17
    [Google Scholar]
  75. 75. 
    Klapwijk MJ, Bylund H, Schroeder M, Björkman C 2016. Forest management and natural biocontrol of insect pests. Forestry 89:253–62
    [Google Scholar]
  76. 76. 
    Krivak-Tetley FE, Lantschner MV, Lombardero MJ, Garnas JR, Hurley BP et al. 2020. Aggressive tree killer or natural thinning agent? Assessing the impacts of a globally important forest insect. For. Ecol. Manag. 483:118728
    [Google Scholar]
  77. 77. 
    Kulakowski D. 2016. Managing bark beetle outbreaks (Ips typographus, Dendroctonus spp.) in conservation areas in the 21st century. For. Res. Pap. 77:352–57
    [Google Scholar]
  78. 78. 
    Kumbaşlı M, Bauce É, Rochefort S, Crépin M 2011. Effects of tree age and stand thinning related variations in balsam fir secondary compounds on spruce budworm Choristoneura fumiferana development, growth and food utilization. Agric. For. Entomol. 13:131–41
    [Google Scholar]
  79. 79. 
    Lausch A, Fahse L, Heurich M. 2011. Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: a long-term quantitative landscape-level analysis. For. Ecol. Manag. 261:233–45
    [Google Scholar]
  80. 80. 
    Leverkus AB, Buma B, Wagenbrenner J, Burton PJ, Lingua E et al. 2021. Tamm review: Does salvage logging mitigate subsequent forest disturbances?. For. Ecol. Manag. 481:118721
    [Google Scholar]
  81. 81. 
    Leverkus AB, Lindenmayer DB, Thorn S, Gustafsson L 2018. Salvage logging in the world's forests: interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27:1140–54
    [Google Scholar]
  82. 82. 
    Liebhold AM. 2012. Forest pest management in a changing world. Int. J. Pest Manag. 58:289–95
    [Google Scholar]
  83. 83. 
    Lombardero MJ, Ayres MP. 2011. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula. Environ. Entomol. 40:1007–18
    [Google Scholar]
  84. 84. 
    Lombardero MJ, Ayres MP, Ayres BD. 2006. Effects of fire and mechanical wounding on Pinus resinosa resin defenses, beetle attacks, and pathogens. For. Ecol. Manag. 225:349–58
    [Google Scholar]
  85. 85. 
    López-Villamor A, Carreño S, López-Goldar X, Suárez-Vidal E, Sampedro L et al. 2019. Risk of damage by the pine weevil Hylobius abietis in southern Europe: effects of silvicultural and landscape factors. For. Ecol. Manag. 444:290–98
    [Google Scholar]
  86. 86. 
    Lundquist JE, Reich RM. 2014. Landscape dynamics of mountain pine beetles. For. Sci. 60:464–75
    [Google Scholar]
  87. 87. 
    Maguire DY, James PMA, Buddle CM, Bennett EM. 2015. Landscape connectivity and insect herbivory: a framework for understanding tradeoffs among ecosystem services. Glob. Ecol. Conserv. 4:73–84
    [Google Scholar]
  88. 88. 
    Marini L, Ayres MP, Battisti A, Faccoli M. 2012. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Clim. Change 115:327–41
    [Google Scholar]
  89. 89. 
    Marini L, Bartomeus I, Rader R, Lami F. 2019. Species-habitat networks: a tool to improve landscape management for conservation. J. Appl. Ecol. 56:923–28
    [Google Scholar]
  90. 90. 
    Marini L, Lindelöw Å, Jönsson AM, Wulff S, Schroeder LM 2013. Population dynamics of the spruce bark beetle: a long-term study. Oikos 122:1768–76
    [Google Scholar]
  91. 91. 
    Marini L, Økland B, Jönsson AM, Bentz B, Carroll A et al. 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40:1426–35
    [Google Scholar]
  92. 92. 
    McAvoy T, Mays R, Johnson N, Salom S. 2017. The effects of shade, fertilizer, and pruning on eastern hemlock trees and hemlock woolly adelgid. Forests 8:156
    [Google Scholar]
  93. 93. 
    Meddens AJH, Hicke JA, Vierling LA, Hudak AT. 2013. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens. Environ. 132:49–58
    [Google Scholar]
  94. 94. 
    Mezei P, Blaženec M, Grodzki W, Škvarenina J, Jakuš R. 2017. Influence of different forest protection strategies on spruce tree mortality during a bark beetle outbreak. Ann. For. Sci. 74:65
    [Google Scholar]
  95. 95. 
    Millar CI, Stephenson NL. 2015. Temperate forest health in an era of emerging megadisturbance. Science 349:823–26
    [Google Scholar]
  96. 96. 
    Minckley TA, Shriver RK, Shuman B. 2012. Resilience and regime change in a southern Rocky Mountain ecosystem during the past 17000 years. Ecol. Monogr. 82:49–68
    [Google Scholar]
  97. 97. 
    Naidoo S, Slippers B, Plett JM, Coles D, Oates CN. 2019. The road to resistance in forest trees. Front. Plant Sci. 10:273
    [Google Scholar]
  98. 98. 
    Negrón JF, Allen KK, Ambourn A, Cook B, Marchand K. 2017. Large-scale thinnings, Ponderosa pine, and mountain pine beetle in the Black Hills, USA. For. Sci. 63:529–36
    [Google Scholar]
  99. 99. 
    Nelson KN, Rocca ME, Diskin M, Aoki CF, Romme WH. 2014. Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest. Landsc. Ecol. 29:97–109
    [Google Scholar]
  100. 100. 
    Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC et al. 2015. Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob. Change Biol. 21:935–46
    [Google Scholar]
  101. 101. 
    Nevalainen S, Sirkiä S, Peltoniemi M, Neuvonen S 2015. Vulnerability to pine sawfly damage decreases with site fertility but the opposite is true with Scleroderris canker damage; results from Finnish ICP Forests and NFI data. Ann. For. Sci. 72:909–17
    [Google Scholar]
  102. 102. 
    Nie Z, MacLean DA, Taylor AR. 2018. Forest overstory composition and seedling height influence defoliation of understory regeneration by spruce budworm. For. Ecol. Manag. 409:353–60
    [Google Scholar]
  103. 103. 
    Nikinmaa L, Lindner M, Cantarello E, Jump AS, Seidl R et al. 2020. Reviewing the use of resilience concepts in forest sciences. Curr. For. Rep. 6:61–80
    [Google Scholar]
  104. 104. 
    Nowak JT, Meeker JR, Coyle DR, Steiner CA, Brownie C. 2015. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the southern pine beetle prevention program. J. For. 113:454–62
    [Google Scholar]
  105. 105. 
    Nybakken L, Lie MH, Julkunen-Tiitto R, Asplund J, Ohlson M 2018. Fertilization changes chemical defense in needles of mature Norway spruce (Picea abies). Front. Plant Sci. 9:770
    [Google Scholar]
  106. 106. 
    Öhrn P, Björklund N, Långström B. 2018. Occurrence, performance and shoot damage of Tomicus piniperda in pine stands in southern Sweden after storm-felling. J. Appl. Entomol. 142:854–62
    [Google Scholar]
  107. 107. 
    Ostaff DP, Piene H, Quiring DT, Moreau G, Farrell JCG, Scarr T. 2006. Influence of pre-commercial thinning of balsam fir on defoliation by the balsam fir sawfly. For. Ecol. Manag. 223:342–48
    [Google Scholar]
  108. 108. 
    Pardos M, del Río M, Pretzsch H, Jactel H, Bielak K et al. 2021. The greater resilience of mixed forests to drought mainly depends on their composition: analysis along a climate gradient across Europe. For. Ecol. Manag. 481:118687
    [Google Scholar]
  109. 109. 
    Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA et al. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–17
    [Google Scholar]
  110. 110. 
    Rahman A, Viiri H, Tikkanen O-P. 2018. Is stump removal for bioenergy production effective in reducing pine weevil (Hylobius abietis) and Hylastes spp. breeding and feeding activities at regeneration sites?. For. Ecol. Manag. 424:184–90
    [Google Scholar]
  111. 111. 
    Régolini M, Castagneyrol B, Dulaurent-Mercadal A-M, Piou D, Samalens J-C, Jactel H. 2014. Effect of host tree density and apparency on the probability of attack by the pine processionary moth. For. Ecol. Manag. 334:185–92
    [Google Scholar]
  112. 112. 
    Rigot T, van Halder I, Jactel H. 2014. Landscape diversity slows the spread of an invasive forest pest species. Ecography 37:648–58
    [Google Scholar]
  113. 113. 
    Robert JA, Lindgren BS. 2006. Relationships between root form and growth, stability, and mortality in planted versus naturally regenerated lodgepole pine in north-central British Columbia. Can. J. For. Res. 36:2642–53
    [Google Scholar]
  114. 114. 
    Robert L-E, Sturtevant BR, Cooke BJ, James PMA, Fortin M-J et al. 2018. Landscape host abundance and configuration regulate periodic outbreak behavior in spruce budworm Choristoneura fumiferana. Ecography 41:1556–71
    [Google Scholar]
  115. 115. 
    Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43:95–124
    [Google Scholar]
  116. 116. 
    Rossi J-P, Garcia J, Roques A, Rousselet J 2016. Trees outside forests in agricultural landscapes: spatial distribution and impact on habitat connectivity for forest organisms. Landsc. Ecol. 31:243–54
    [Google Scholar]
  117. 117. 
    Ruiz-Guerra B, Guevara R, Mariano NA, Dirzo R 2010. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119:317–25
    [Google Scholar]
  118. 118. 
    Russell MB, Fraver S, Aakala T, Gove JH, Woodall CW et al. 2015. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manag. 350:107–28
    [Google Scholar]
  119. 119. 
    Sánchez-Pinillos M, Leduc A, Ameztegui A, Kneeshaw D, Lloret F, Coll L 2019. Resistance, resilience or change: post-disturbance dynamics of boreal forests after insect outbreaks. Ecosystems 22:1886–901
    [Google Scholar]
  120. 120. 
    Seidl R. 2014. The shape of ecosystem management to come: anticipating risks and fostering resilience. Bioscience 64:1159–69
    [Google Scholar]
  121. 121. 
    Seidl R, Müller J, Hothorn T, Bässler C, Heurich M, Kautz M. 2016. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 53:530–40
    [Google Scholar]
  122. 122. 
    Senf C, Campbell EM, Pflugmacher D, Wulder MA, Hostert P. 2017. A multi-scale analysis of western spruce budworm outbreak dynamics. Landsc. Ecol. 32:501–14
    [Google Scholar]
  123. 123. 
    Seybold SJ, Bentz BJ, Fettig CJ, Lundquist JE, Progar RA, Gillette NE. 2018. Management of western North American bark beetles with semiochemicals. Annu. Rev. Entomol. 63:407–32
    [Google Scholar]
  124. 124. 
    Showalter DN, Raffa KF, Sniezko RA, Herms DA, Liebhold AM et al. 2018. Strategic development of tree resistance against forest pathogen and insect invasions in defense-free space. Front. Ecol. Evol. 124:6
    [Google Scholar]
  125. 125. 
    Sikström U, Hjelm K, Holt Hanssen K, Saksa T, Wallertz K. 2020. Influence of mechanical site preparation on regeneration success of planted conifers in clearcuts in Fennoscandia: a review. Silva Fenn. 54:10172
    [Google Scholar]
  126. 126. 
    Simard M, Powell EN, Raffa KF, Turner MG. 2012. What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone?. Glob. Ecol. Biogeogr. 21:556–67
    [Google Scholar]
  127. 127. 
    Sing L, Metzger MJ, Paterson JS, Ray D. 2018. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. Forestry 91:151–64
    [Google Scholar]
  128. 128. 
    Six D, Biber E, Long E 2014. Management for mountain pine beetle outbreak suppression: Does relevant science support current policy?. Forests 5:103–33
    [Google Scholar]
  129. 129. 
    Sniezko RA, Koch J. 2017. Breeding trees resistant to insects and diseases: putting theory into application. Biol. Invasions 19:3377–400
    [Google Scholar]
  130. 130. 
    Sommerfeld A, Senf C, Buma B, D'Amato AW, Després T et al. 2018. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9:4355
    [Google Scholar]
  131. 131. 
    Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. 2013. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For. Ecol. Manag. 305:273–81
    [Google Scholar]
  132. 132. 
    Stephens SL, McIver JD, Boerner REJ, Fettig CJ, Fontaine JB et al. 2012. The effects of forest fuel-reduction treatments in the United States. Bioscience 62:549–60
    [Google Scholar]
  133. 133. 
    Stereńczak K, Mielcarek M, Kamińska A, Kraszewski B, Piasecka Ż et al. 2020. Influence of selected habitat and stand factors on bark beetle Ips typographus (L.) outbreak in the Białowieża Forest. For. Ecol. Manag. 459:117826
    [Google Scholar]
  134. 134. 
    Strauss SH, Ma C, Ault K, Klocko AL 2016. Lessons from two decades of field trials with genetically modified trees in the USA: biology and regulatory compliance. Biosafety of Forest Transgenic Trees: Improving the Scientific Basis for Safe Tree Development and Implementation of EU Policy Directives C Vettori, F Gallardo, H Häggman, V Kazana, F Migliacci, G Pilate, M Fladung 101–24 Berlin: Springer
    [Google Scholar]
  135. 135. 
    Straw NA, Bladon FM, Williams DT, Fielding NJ 2020. Variation in population densities of the green spruce aphid Elatobium abietinum (Walker) in relation to tree age and forest stand structure. For. Ecol. Manag. 464:118036
    [Google Scholar]
  136. 136. 
    Tabashnik BE, Carrière Y. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35:926–35
    [Google Scholar]
  137. 137. 
    Telford A, Cavers S, Ennos RA, Cottrell JE. 2015. Can we protect forests by harnessing variation in resistance to pests and pathogens?. Forestry 88:3–12
    [Google Scholar]
  138. 138. 
    Temperli C, Blattert C, Stadelmann G, Brändli U-B, Thürig E. 2020. Trade-offs between ecosystem service provision and the predisposition to disturbances: a NFI-based scenario analysis. For. Ecosyst. 7:27
    [Google Scholar]
  139. 139. 
    Temperli C, Hart SJ, Veblen TT, Kulakowski D, Hicks JJ, Andrus R. 2014. Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains?. For. Ecol. Manag. 334:53–63
    [Google Scholar]
  140. 140. 
    Thorn S, Bässler C, Brandl R, Burton PJ, Cahall R et al. 2018. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55:279–89
    [Google Scholar]
  141. 141. 
    Tudoran M-M, Marquer L, Jönsson AM 2016. Historical experience (1850–1950 and 1961–2014) of insect species responsible for forest damage in Sweden: influence of climate and land management changes. For. Ecol. Manag. 381:347–59
    [Google Scholar]
  142. 142. 
    Montano V, Bertheau C, Doležal P, Krumböck S, Okrouhlík J et al. 2016. How differential management strategies affect Ips typographus L. dispersal. For. Ecol. Manag. 360:195–204
    [Google Scholar]
  143. 143. 
    Van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K et al. 2016. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat. Commun. 7:11109
    [Google Scholar]
  144. 144. 
    Van Gunst KJ, Weisberg PJ, Yang J, Fan Y 2016. Do denser forests have greater risk of tree mortality: a remote sensing analysis of density-dependent forest mortality. For. Ecol. Manag. 359:19–32
    [Google Scholar]
  145. 145. 
    Van Lierop P, Lindquist E, Sathyapala S, Franceschini G. 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manag. 352:78–88
    [Google Scholar]
  146. 146. 
    Vanická H, Holuša J, Resnerová K, Ferenčík J, Potterf M et al. 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). For. Ecol. Manag. 470–71:118209
    [Google Scholar]
  147. 147. 
    Vorster AG, Evangelista PH, Stohlgren TJ, Kumar S, Rhoades CC et al. 2017. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States. For. Ecol. Manag. 389:116–26
    [Google Scholar]
  148. 148. 
    Wang B, Tian C, Liang Y. 2021. Mixed effects of landscape structure, tree diversity and stand's relative position on insect and pathogen damage in riparian poplar forests. For. Ecol. Manag. 479:118555
    [Google Scholar]
  149. 149. 
    Westlind DJ, Kerns BK. 2021. Repeated fall prescribed fire in previously thinned Pinus ponderosa increases growth and resistance to other disturbances. For. Ecol. Manag. 480:118645
    [Google Scholar]
  150. 150. 
    Wildemeersch M, Franklin O, Seidl R, Rogelj J, Moorthy I, Thurner S 2019. Modelling the multi-scaled nature of pest outbreaks. Ecol. Model. 409:108745
    [Google Scholar]
  151. 151. 
    Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. 2015. Planted forest health: the need for a global strategy. Science 349:832–36
    [Google Scholar]
  152. 152. 
    Woodcock P, Cottrell JE, Buggs RJA, Quine CP. 2018. Mitigating pest and pathogen impacts using resistant trees: a framework and overview to inform development and deployment in Europe and North America. Forestry 91:1–16
    [Google Scholar]
  153. 153. 
    Zhang J, Ritchie MW, Maguire DA, Oliver WW. 2013. Thinning ponderosa pine (Pinus ponderosa) stands reduces mortality while maintaining stand productivity. Can. J. For. Res. 43:311–20
    [Google Scholar]
  154. 154. 
    Zimová S, Dobor L, Hlásny T, Rammer W, Seidl R 2020. Reducing rotation age to address increasing disturbances in Central Europe: potential and limitations. For. Ecol. Manag. 475:118408
    [Google Scholar]
/content/journals/10.1146/annurev-ento-062321-065511
Loading
/content/journals/10.1146/annurev-ento-062321-065511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error