1932

Abstract

Autophagy, a lysosome-mediated degradation process evolutionarily conserved from yeast to mammals, is essential for maintaining cellular homeostasis and combating diverse cellular stresses. Autophagy involves de novo synthesis of a double-membrane autophagosome, sequestration of selected cellular contents, and subsequent delivery of sequestrated contents to the vacuole (in yeasts and plants) or to lysosomes (in animal cells) for degradation and recycling. Genetic studies in unicellular and multicellular model organisms have systematically revealed the molecular machinery, regulation, and function of autophagy in physiological settings. I review genetic studies in model organisms—from yeast to worm to fly—that enable us to not only identify autophagy genes, including genes and the metazoan-specific genes, but also uncover variants of autophagy in developmental contexts, novel regulatory mechanisms, and signaling events involved in mediating systemic autophagy response. Genetic analysis also helps us understand the liquid–liquid phase separation and transition that control autophagic degradation of protein aggregates. The emerging role of autophagy in zebrafish tissue regeneration is also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-022422-095608
2022-11-30
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-022422-095608.html?itemId=/content/journals/10.1146/annurev-genet-022422-095608&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E et al. 2011. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–47
    [Google Scholar]
  2. 2.
    Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK et al. 2021. Autophagy in healthy aging and disease. Nat. Aging 1:634–50
    [Google Scholar]
  3. 3.
    Anding AL, Baehrecke EH. 2017. Cleaning house: selective autophagy of organelles. Dev. Cell 41:10–22
    [Google Scholar]
  4. 4.
    Anding AL, Wang CX, Chang T-K, Sliter DA, Powers CM et al. 2018. Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance. Curr. Biol. 28:287–95
    [Google Scholar]
  5. 5.
    Ashford TP, Porter KR. 1962. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12:198–202
    [Google Scholar]
  6. 6.
    Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685–701
    [Google Scholar]
  7. 7.
    Baba M, Osumi M, Scott SV, Klionsky DJ, Ohsumi Y. 1997. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol. 139:1687–95
    [Google Scholar]
  8. 8.
    Baba M, Takeshige K, Baba N, Ohsumi Y. 1994. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124:903–13
    [Google Scholar]
  9. 9.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  10. 10.
    Berry DL, Baehrecke EH. 2007. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–48
    [Google Scholar]
  11. 11.
    Bhukel A, Beuschel CB, Maglione M, Lehmann M, Juhasz G et al. 2019. Autophagy within the mushroom body protects from synapse aging in a non-cell autonomous manner. Nat. Commun. 10:1318
    [Google Scholar]
  12. 12.
    Chang T-K, Shravage BV, Hayes SD, Powers CM, Simin RT et al. 2013. Uba1 functions in Atg7- and Atg3-independent autophagy. Nat. Cell Biol. 15:1067–78
    [Google Scholar]
  13. 13.
    Chávez MN, Morales RA, López-Crisosto C, Roa JC, Allende ML, Lavandero S. 2020. Autophagy activation in zebrafish heart regeneration. Sci. Rep. 10:2191
    [Google Scholar]
  14. 14.
    Chen D, Wang Z, Zhao YG, Zheng H, Zhao H et al. 2020. Inositol polyphosphate multikinase inhibits liquid-liquid phase separation of TFEB to negatively regulate autophagy activity. Dev. Cell 55:588–602
    [Google Scholar]
  15. 15.
    Chowdhury S, Otomo C, Leitner A, Ohashi K, Aebersold R et al. 2018. Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. PNAS 115:E9792–801
    [Google Scholar]
  16. 16.
    Delorme-Axford E, Klionsky DJ. 2018. Transcriptional and post-transcriptional regulation of autophagy in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 293:5396–403
    [Google Scholar]
  17. 17.
    DeLuca SZ, O'Farrell PH. 2012. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22:660–68
    [Google Scholar]
  18. 18.
    Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S. 2009. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19:1741–46
    [Google Scholar]
  19. 19.
    DeRenzo C, Reese KJ, Seydoux G. 2003. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424:685–89
    [Google Scholar]
  20. 20.
    Deter RL, Baudhuin P, Deduve C. 1967. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 35:C11–16
    [Google Scholar]
  21. 21.
    Dikic I, Elazar Z. 2018. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19:349–64
    [Google Scholar]
  22. 22.
    Dunn WA Jr. 1990. Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J. Cell Biol. 110:1935–45
    [Google Scholar]
  23. 23.
    Eickhorst C, Licheva M, Kraft C. 2020. Scaffold proteins in bulk and selective autophagy. Prog. Mol. Biol. Transl. 172:15–35
    [Google Scholar]
  24. 24.
    Feng YC, He D, Yao ZY, Klionsky DJ. 2014. The machinery of macroautophagy. Cell Res. 24:24–41
    [Google Scholar]
  25. 25.
    Fenouille N, Nascimbeni AC, Botti-Millet J, Dupont N, Morel E, Codogno P. 2017. To be or not to be cell autonomous? Autophagy says both. Essays Biochem. 61:649–61
    [Google Scholar]
  26. 26.
    Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T et al. 2020. Phase separation organizes the site of autophagosome formation. Nature 578:301–5
    [Google Scholar]
  27. 27.
    Gatica D, Lahiri V, Klionsky DJ. 2018. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20:233–42
    [Google Scholar]
  28. 28.
    Gomez-Sanchez R, Rose J, Guimaraes R, Mari M, Papinski D et al. 2018. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J. Cell Biol. 217:2743–63
    [Google Scholar]
  29. 29.
    Gordon PB, Holen I, Fosse M, Røtnes JS, Seglen PO. 1993. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J. Biol. Chem. 268:26107–12
    [Google Scholar]
  30. 30.
    Graef M, Friedman JR, Graham C, Babu M, Nunnari J. 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24:2918–31
    [Google Scholar]
  31. 31.
    Guo B, Huang XX, Zhang PP, Qi LX, Liang QQ et al. 2014. Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep. 15:705–13
    [Google Scholar]
  32. 32.
    Guo B, Liang QQ, Li L, Hu Z, Wu F et al. 2014. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16:1215–26
    [Google Scholar]
  33. 33.
    Guzikowski AR, Chen YS, Zid BM. 2019. Stress-induced mRNP granules: form and function of processing bodies and stress granules. Wiley Interdiscip. Rev. RNA 10:e1524
    [Google Scholar]
  34. 34.
    Hamacher-Brady A, Brady NR. 2016. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci. 73:775–95
    [Google Scholar]
  35. 35.
    Hansen M, Rubinsztein DC, Walker DW. 2018. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19:579–93
    [Google Scholar]
  36. 36.
    Hara T, Takamura A, Kishi C, Iemura S-I, Natsume T et al. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181:497–510
    [Google Scholar]
  37. 37.
    Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. 1996. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J. Biol. Chem. 271:17621–24
    [Google Scholar]
  38. 38.
    Harding TM, Morano KA, Scott SV, Klionsky DJ. 1995. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131:591–602
    [Google Scholar]
  39. 39.
    Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:1433–37
    [Google Scholar]
  40. 40.
    He CC, Song H, Yorimitsu T, Monastyrska I, Yen WL et al. 2006. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J. Cell Biol. 175:925–35
    [Google Scholar]
  41. 41.
    Heo J-M, Ordureau A, Paulo JA, Rinehart J, Harper JW. 2015. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60:7–20
    [Google Scholar]
  42. 42.
    Hird SN, Paulsen JE, Strome S. 1996. Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 122:1303–12
    [Google Scholar]
  43. 43.
    Inglis PN, Ou G, Leroux MR, Scholey JM. 2007. The sensory cilia of Caenorhabditis elegans. WormBook 2007: doi/10.1895/wormbook.1.126.2, http://www.wormbook.org
    [Google Scholar]
  44. 44.
    Itakura E, Kishi-Itakura C, Mizushima N. 2012. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–69
    [Google Scholar]
  45. 45.
    Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764–76
    [Google Scholar]
  46. 46.
    Ji CC, Zhao HY, Chen D, Zhang H, Zhao YG. 2021. β-propeller proteins WDR45 and WDR45B control autophagosome maturation into autolysosomes in neural cells. Curr. Biol. 31:1666–77
    [Google Scholar]
  47. 47.
    Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T et al. 2014. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25:1327–37
    [Google Scholar]
  48. 48.
    Juhasz G, Erdi B, Sass M, Neufeld TP. 2007. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–66
    [Google Scholar]
  49. 49.
    Kaganovich D. 2017. There is an inclusion for that: Material properties of protein granules provide a platform for building diverse cellular functions. Trends Biochem. Sci. 42:765–76
    [Google Scholar]
  50. 50.
    Kageyama S, Gudmundsson SR, Sou Y-S, Ichimura Y, Tamura N et al. 2021. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 12:16
    [Google Scholar]
  51. 51.
    Kang CH, Avery L 2009. Systemic regulation of starvation response in Caenorhabditis elegans. Genes Dev. 23:12–17
    [Google Scholar]
  52. 52.
    Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. 2009. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17:98–109
    [Google Scholar]
  53. 53.
    Karanasios E, Stapleton E, Manifava M, Kaizuka T, Mizushima N et al. 2013. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126:5224–38
    [Google Scholar]
  54. 54.
    Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E et al. 2016. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat. Commun. 7:12420
    [Google Scholar]
  55. 55.
    Katheder NS, Khezri R, O'Farrell F, Schultz SW, Jain A et al. 2017. Microenvironmental autophagy promotes tumour growth. Nature 541:417–20
    [Google Scholar]
  56. 56.
    Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S et al. 2011. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 14:173–83
    [Google Scholar]
  57. 57.
    Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A et al. 2001. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153:381–96
    [Google Scholar]
  58. 58.
    Kim J, Scott SV, Oda MN, Klionsky DJ. 1997. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 137:609–18
    [Google Scholar]
  59. 59.
    Klionsky DJ, Cregg JM, Dunn WA Jr., Emr SD, Sakai Y et al. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5:539–45
    [Google Scholar]
  60. 60.
    Klionsky DJ, Cueva R, Yaver DS. 1992. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119:287–99
    [Google Scholar]
  61. 61.
    Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H. 2018. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. PNAS 115:10363–68
    [Google Scholar]
  62. 62.
    Ktistakis NT, Tooze SA. 2016. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 26:624–35
    [Google Scholar]
  63. 63.
    Lamark T, Johansen T. 2021. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 37:143–69
    [Google Scholar]
  64. 64.
    Lamb CA, Yoshimori T, Tooze SA. 2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol Cell Biol. 14:759–74
    [Google Scholar]
  65. 65.
    Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang CX et al. 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–14
    [Google Scholar]
  66. 66.
    Lee C-Y, Cooksey BAK, Baehrecke EH. 2002. Steroid regulation of midgut cell death during Drosophila development. Dev. Biol. 250:101–11
    [Google Scholar]
  67. 67.
    Li SH, Yang PG, Tian E, Zhang H. 2013. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. . Mol. Cell 52:421–33
    [Google Scholar]
  68. 68.
    Liang Q, Yang P, Tian E, Han J, Zhang H. 2012. The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8:1426–33
    [Google Scholar]
  69. 69.
    Lin L, Rodrigues FSLM, Kary C, Contet A, Logan M et al. 2017. Complement-related regulates autophagy in neighboring cells. Cell 170:158–71.E8
    [Google Scholar]
  70. 70.
    Lin L, Yang PG, Huang XX, Zhang H, Lu Q, Zhang H. 2013. The scaffold protein EPG-7 links cargo receptor complexes with the autophagic assembly machinery. J. Cell Biol. 201:113–29
    [Google Scholar]
  71. 71.
    Liou W, Geuze HJ, Geelen MJH, Slot JW. 1997. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J. Cell Biol. 136:61–70
    [Google Scholar]
  72. 72.
    Lu Q, Wu F, Zhang H. 2013. Aggrephagy: lessons from C. elegans. Biochem. J. 452:381–90
    [Google Scholar]
  73. 73.
    Lu Q, Yang PG, Huang XX, Hu WQ, Guo B et al. 2011. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev. Cell 21:343–57
    [Google Scholar]
  74. 74.
    Maeda S, Otomo C, Otomo T 2019. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 8:e45777
    [Google Scholar]
  75. 75.
    Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S et al. 2020. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27:1194–201
    [Google Scholar]
  76. 76.
    Mao K, Wang K, Liu X, Klionsky DJ. 2013. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26:9–18
    [Google Scholar]
  77. 77.
    Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T et al. 2020. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27:1185–93
    [Google Scholar]
  78. 78.
    Matsui T, Jiang PD, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. 2018. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J. Cell Biol. 217:2633–45
    [Google Scholar]
  79. 79.
    McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H et al. 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57:39–54
    [Google Scholar]
  80. 80.
    McMahon L, Muriel JM, Roberts B, Quinn M, Johnstone IL. 2003. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol. Biol. Cell 14:1366–78
    [Google Scholar]
  81. 81.
    McPhee CK, Baehrecke EH. 2009. Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta Mol. Cell Res. 1793:1452–60
    [Google Scholar]
  82. 82.
    McPhee CK, Logan MA, Freeman MR, Baehrecke EH. 2010. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 465:1093–96
    [Google Scholar]
  83. 83.
    Meneghetti G, Skobo T, Chrisam M, Facchinello N, Fontana CM et al. 2019. The epg5 knockout zebrafish line: a model to study Vici syndrome. Autophagy 15:1438–54
    [Google Scholar]
  84. 84.
    Miao G, Zhang Y, Chen D, Zhang H 2020. The ER-localized transmembrane protein TMEM39A/SUSR2 regulates autophagy by controlling the trafficking of the PtdIns(4)P phosphatase SAC1. Mol. Cell 77:618–32
    [Google Scholar]
  85. 85.
    Mizushima N. 2018. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20:521–27
    [Google Scholar]
  86. 86.
    Mizushima N. 2020. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 63:1–10
    [Google Scholar]
  87. 87.
    Mizushima N, Levine B. 2020. Autophagy in human diseases. N. Engl. J. Med. 383:1564–76
    [Google Scholar]
  88. 88.
    Moehlman AT, Youle RJ. 2020. Mitochondrial quality control and restraining innate immunity. Annu. Rev. Cell Dev. Biol. 36:265–89
    [Google Scholar]
  89. 89.
    Morishita H, Kanda Y, Kaizuka T, Chino H, Nakao K et al. 2020. Autophagy is required for maturation of surfactant-containing lamellar bodies in the lung and swim bladder. Cell Rep 33:108477
    [Google Scholar]
  90. 90.
    Morishita H, Mizushima N. 2019. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35:453–75
    [Google Scholar]
  91. 91.
    Moss JJ, Hammond CL, Lane JD. 2020. Zebrafish as a model to study autophagy and its role in skeletal development and disease. Histochem. Cell Biol. 154:549–64
    [Google Scholar]
  92. 92.
    Moss JJ, Wirth M, Tooze SA, Lane JD, Hammond CL. 2021. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J. 35:e22002
    [Google Scholar]
  93. 93.
    Nakatogawa H. 2020. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21:439–58
    [Google Scholar]
  94. 94.
    Noda NN, Wang Z, Zhang H. 2020. Liquid–liquid phase separation in autophagy. J. Cell Biol. 219:e202004062
    [Google Scholar]
  95. 95.
    Novikoff AB. 1959. The proximal tubule cell in experimental hydronephrosis. J. Biophys. Biochem. Cytol. 6:136–38
    [Google Scholar]
  96. 96.
    Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN et al. 2020. Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J. 39:e104948
    [Google Scholar]
  97. 97.
    Ohsumi Y. 2014. Historical landmarks of autophagy research. Cell Res 24:9–23
    [Google Scholar]
  98. 98.
    Okamoto K, Kondo-Okamoto N, Ohsumi Y. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17:87–97
    [Google Scholar]
  99. 99.
    Orii M, Tsuji T, Ogasawara Y, Fujimoto T. 2021. Transmembrane phospholipid translocation mediated by Atg9 is involved in autophagosome formation. J. Cell Biol. 220:e202009194
    [Google Scholar]
  100. 100.
    Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K et al. 2019. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26:281–88
    [Google Scholar]
  101. 101.
    Panas MD, Ivanov P, Anderson P 2016. Mechanistic insights into mammalian stress granule dynamics. J. Cell Biol. 215:313–23
    [Google Scholar]
  102. 102.
    Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E. 2014. Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 29:305–20
    [Google Scholar]
  103. 103.
    Puertollano R, Ferguson SM, Brugarolas J, Ballabio A. 2018. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J 37:e98804
    [Google Scholar]
  104. 104.
    Ravenhill BJ, Boyle KB, von Muhlinen N, Ellison CJ, Masson GR et al. 2019. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol. Cell 74:320–29
    [Google Scholar]
  105. 105.
    Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE et al. 2017. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–40
    [Google Scholar]
  106. 106.
    Richter B, Sliter DA, Herhaus L, Stolz A, Wang CX et al. 2016. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. PNAS 113:4039–44
    [Google Scholar]
  107. 107.
    Rodger CE, McWilliams TG, Ganley IG. 2018. Mammalian mitophagy—from in vitro molecules to in vivo models. FEBS J 285:1185–202
    [Google Scholar]
  108. 108.
    Russell RC, Yuan HX, Guan KL. 2014. Autophagy regulation by nutrient signaling. Cell Res. 24:42–57
    [Google Scholar]
  109. 109.
    Saera-Vila A, Kish PE, Louie KW, Grzegorski SJ, Klionsky DJ, Kahana A. 2016. Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration. Autophagy 12:1864–75
    [Google Scholar]
  110. 110.
    Sánchez-Martín P, Sou Y-S, Kageyama S, Koike M, Waguri S, Komatsu M. 2020. NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep. 21:e48902
    [Google Scholar]
  111. 111.
    Sato M, Sato K. 2011. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334:1141–44
    [Google Scholar]
  112. 112.
    Sato M, Sato K, Tomura K, Kosako H, Sato K. 2018. The autophagy receptor ALLO-1 and the IKKE-1 kinase control clearance of paternal mitochondria in Caenorhabditis elegans. Nat. Cell Biol. 20:81–91
    [Google Scholar]
  113. 113.
    Sawa-Makarska J, Abert C, Romanov J, Zens B, Ibiricu I, Martens S. 2014. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane–cargo apposition during selective autophagy. Nat. Cell Biol. 16:425–33
    [Google Scholar]
  114. 114.
    Scott SV, Baba M, Ohsumi Y, Klionsky DJ. 1997. Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J. Cell Biol. 138:37–44
    [Google Scholar]
  115. 115.
    Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. 2001. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7:1131–41
    [Google Scholar]
  116. 116.
    Seglen PO, Bohley P. 1992. Autophagy and other vacuolar protein degradation mechanisms. Experientia 48:158–72
    [Google Scholar]
  117. 117.
    Seglen PO, Gordon PB, Poli A. 1980. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim. Biophys. Acta. Gen. Subj. 630:103–18
    [Google Scholar]
  118. 118.
    Shen JL, Fortier TM, Wang RX, Baehrecke EH. 2021. Vps13D functions in a Pink1-dependent and Parkin-independent mitophagy pathway. J. Cell Biol. 220:e202104073
    [Google Scholar]
  119. 119.
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  120. 120.
    Shintani T, Huang WP, Stromhaug PE, Klionsky DJ. 2002. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3:825–37
    [Google Scholar]
  121. 121.
    Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495–501
    [Google Scholar]
  122. 122.
    Strome S. 2005. Specification of the germ line. WormBook 2005: doi/10.1895/wormbook1.9.1, http://www.wormbook.org
    [Google Scholar]
  123. 123.
    Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y. 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126:2534–44
    [Google Scholar]
  124. 124.
    Suzuki K, Kubota Y, Sekito T, Ohsumi Y. 2007. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–18
    [Google Scholar]
  125. 125.
    Takats S, Pircs K, Nagy P, Varga A, Karpati M et al. 2014. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol. Biol. Cell 25:1338–54
    [Google Scholar]
  126. 126.
    Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. 1992. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119:301–11
    [Google Scholar]
  127. 127.
    Tanaka A, Cleland MM, Xu S, Narendra DP, Suen D-F et al. 2010. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191:1367–80
    [Google Scholar]
  128. 128.
    Tian E, Wang FX, Han JH, Zhang H. 2009. epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. . Autophagy 5:608–15
    [Google Scholar]
  129. 129.
    Tian Y, Li ZP, Hu WQ, Ren HY, Tian E et al. 2010. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–55
    [Google Scholar]
  130. 130.
    Tooze J, Hollinshead M, Ludwig T, Howell K, Hoflack B, Kern H. 1990. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J. Cell Biol. 111:329–45
    [Google Scholar]
  131. 131.
    Torggler R, Papinski D, Brach T, Bas L, Schuschnig M et al. 2016. Two independent pathways within selective autophagy converge to activate Atg1 kinase at the vacuole. Mol. Cell 64:221–35
    [Google Scholar]
  132. 132.
    Tsukada M, Ohsumi Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333:169–74
    [Google Scholar]
  133. 133.
    Turco E, Witt M, Abert C, Bock-Bierbaum T, Su M-Y et al. 2019. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell 74:330–46.e11
    [Google Scholar]
  134. 134.
    Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. 2014. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–80
    [Google Scholar]
  135. 135.
    Vargas JNS, Wang CX, Bunker E, Hao L, Maric D et al. 2019. Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol. Cell 74:347–62.e6
    [Google Scholar]
  136. 136.
    Wang Z, Miao GY, Xue X, Guo XY, Yuan CZ et al. 2016. The Vici syndrome protein EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol. Cell 63:781–95
    [Google Scholar]
  137. 137.
    Wang Z, Zhang H. 2019. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol. 29:417–27
    [Google Scholar]
  138. 138.
    Wu F, Watanabe Y, Guo XY, Qi X, Wang P et al. 2015. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell 60:914–29
    [Google Scholar]
  139. 139.
    Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T et al. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:219–33
    [Google Scholar]
  140. 140.
    Yamano K, Kikuchi R, Kojima W, Hayashida R, Koyano F et al. 2020. Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy. J. Cell Biol. 219:e201912144
    [Google Scholar]
  141. 141.
    Yamasaki A, Alam JM, Noshiro D, Hirata E, Fujioka Y et al. 2020. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77:1163–75
    [Google Scholar]
  142. 142.
    Yang P, Zhang H. 2011. The coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans. Autophagy 7:159–65
    [Google Scholar]
  143. 143.
    Yla-Anttila P, Vihinen H, Jokita E, Eskelinen EL. 2009. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5:1180–85
    [Google Scholar]
  144. 144.
    Yorimitsu T, Klionsky DJ. 2005. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16:1593–605
    [Google Scholar]
  145. 145.
    Zhang GM, Wang Z, Du Z, Zhang H. 2018. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174:1492–506
    [Google Scholar]
  146. 146.
    Zhang H, Baehrecke EH. 2015. Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol. 25:376–87
    [Google Scholar]
  147. 147.
    Zhang H, Ji X, Li PL, Liu C, Lou JZ et al. 2020. Liquid–liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 63:953–85
    [Google Scholar]
  148. 148.
    Zhang YJ, Qi LX, Zhang H. 2019. TGFβ-like DAF-7 acts as a systemic signal for autophagy regulation in C. elegans. J. Cell Biol. 218:3998–4006
    [Google Scholar]
  149. 149.
    Zhang YX, Yan LB, Zhou Z, Yang PG, Tian E et al. 2009. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–21
    [Google Scholar]
  150. 150.
    Zhao YG, Chen Y, Miao GY, Zhao HY, Qu WY et al. 2017. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol. Cell 67:974–89.E6
    [Google Scholar]
  151. 151.
    Zhao YG, Codogno P, Zhang H. 2021. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22:733–50
    [Google Scholar]
  152. 152.
    Zhao YG, Zhang H. 2018. Formation and maturation of autophagosomes in higher eukaryotes: a social network. Curr. Opin. Cell Biol. 53:29–36
    [Google Scholar]
  153. 153.
    Zhao YG, Zhang H. 2019. Autophagosome maturation: an epic journey from the ER to lysosomes. J. Cell Biol. 218:757–70
    [Google Scholar]
  154. 154.
    Zhou QH, Li HM, Li HZ, Nakagawa A, Lin J et al. 2016. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 353:394–99
    [Google Scholar]
/content/journals/10.1146/annurev-genet-022422-095608
Loading
/content/journals/10.1146/annurev-genet-022422-095608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error