1932

Abstract

Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. 's interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-021436
2022-11-30
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-071719-021436.html?itemId=/content/journals/10.1146/annurev-genet-071719-021436&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alley MR, Maddock JR, Shapiro L. 1992. Polar localization of a bacterial chemoreceptor. Genes Dev 6:825–36
    [Google Scholar]
  2. 2.
    Alley MR, Maddock JR, Shapiro L. 1993. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. Science 259:1754–57
    [Google Scholar]
  3. 3.
    August JT, Cooper S, Shapiro L, Zinder ND. 1963. RNA phage induced RNA polymerase. Cold Spring Harb. Symp. Quant. Biol. 28:95–97
    [Google Scholar]
  4. 4.
    Baltimore D, Franklin RM. 1963. Properties of the mengovirus and poliovirus RNA polymerases. Cold Spring Harb. Symp. Quant. Biol. 28:105–8
    [Google Scholar]
  5. 5.
    Bellamy AR, Shapiro L, August JT, Joklik WK. 1967. Studies on reovirus RNA: I. Characterization of reovirus genome RNA. J. Mol. Biol. 29:1–17
    [Google Scholar]
  6. 6.
    Berdis AJ, Lee I, Coward JK, Stephens C, Wright R et al. 1998. A cell cycle-regulated adenine DNA methyltransferase from Caulobacter crescentus processively methylates GANTC sites on hemimethylated DNA. PNAS 95:2874–79
    [Google Scholar]
  7. 7.
    Bowman GR, Comolli LR, Gaietta GM, Fero M, Hong SH et al. 2010. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol. Microbiol. 76:173–89
    [Google Scholar]
  8. 8.
    Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M et al. 2008. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134:945–55
    [Google Scholar]
  9. 9.
    Brilli M, Fondi M, Fani R, Mengoni A, Ferri L et al. 2010. The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst. Biol. 4:52
    [Google Scholar]
  10. 10.
    Collier J, McAdams HH, Shapiro L. 2007. A DNA methylation ratchet governs progression through a bacterial cell cycle. PNAS 104:17111–16
    [Google Scholar]
  11. 11.
    Crosson S, McAdams H, Shapiro L. 2004. A genetic oscillator and the regulation of cell cycle progression in Caulobacter crescentus. Cell Cycle 3:1252–54
    [Google Scholar]
  12. 12.
    Davidson EH, Erwin DH. 2006. Gene regulatory networks and the evolution of animal body plans. Science 311:796–800
    [Google Scholar]
  13. 13.
    Domian IJ, Quon KC, Shapiro L. 1997. Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415–24
    [Google Scholar]
  14. 14.
    Driks A, Bryan R, Shapiro L, DeRosier DJ. 1989. The organization of the Caulobacter crescentus flagellar filament. J. Mol. Biol. 206:627–36
    [Google Scholar]
  15. 15.
    Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. 2008. A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134:956–68
    [Google Scholar]
  16. 16.
    Ely B, Shapiro L. 1989. The molecular genetics of differentiation. Genetics 123:427–29
    [Google Scholar]
  17. 17.
    Holtzendorff J, Hung D, Brende P, Reisenauer A, Viollier PH et al. 2004. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304:983–87
    [Google Scholar]
  18. 18.
    Hottes AK, Shapiro L, McAdams HH. 2005. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58:1340–53
    [Google Scholar]
  19. 19.
    Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  20. 20.
    Jensen RB, Shapiro L. 2003. Cell-cycle-regulated expression and subcellular localization of the Caulobacter crescentus SMC chromosome structural protein. J. Bacteriol. 185:3068–75
    [Google Scholar]
  21. 21.
    Jensen RB, Wang SC, Shapiro L. 2001. A moving DNA replication factory in Caulobacter crescentus. EMBO J 20:4952–63
    [Google Scholar]
  22. 22.
    Judd EM, Comolli LR, Chen JC, Downing KH, Moerner WE, McAdams HH. 2005. Distinct constrictive processes, separated in time and space, divide Caulobacter inner and outer membranes. J. Bacteriol. 187:6874–82
    [Google Scholar]
  23. 23.
    Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M et al. 2013. Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle. PNAS 110:E4658–67
    [Google Scholar]
  24. 24.
    Lasker K, Mann TH, Shapiro L. 2016. An intracellular compass spatially coordinates cell cycle modules in Caulobacter crescentus. Curr. Opin. Microbiol. 33:131–39
    [Google Scholar]
  25. 25.
    Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH et al. 2020. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat. Microbiol. 5:418–29
    [Google Scholar]
  26. 26.
    Laub MT, Chen SL, Shapiro L, McAdams HH. 2002. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. PNAS 99:4632–37
    [Google Scholar]
  27. 27.
    Laub MT, McAdams HH, Feldblyum T, Fraser CM, Shapiro L. 2000. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–48
    [Google Scholar]
  28. 28.
    Loeb T, Zinder ND. 1961. A bacteriophage containing RNA. PNAS 47:282–89
    [Google Scholar]
  29. 29.
    Maddock J, Shapiro L 1993. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:171723
    [Google Scholar]
  30. 30.
    Marczynski GT, Shapiro L. 1992. Cell-cycle control of a cloned chromosomal origin of replication from Caulobacter crescentus. J. Mol. Biol. 226:959–77
    [Google Scholar]
  31. 31.
    Marczynski GT, Shapiro L. 2002. Control of chromosome replication in Caulobacter crescentus. Annu. Rev. Microbiol. 56:625–56
    [Google Scholar]
  32. 32.
    McAdams HH, Arkin A. 1997. Stochastic mechanisms in gene expression. PNAS 94:814–19
    [Google Scholar]
  33. 33.
    McAdams HH, Arkin A. 1998. Simulation of prokaryotic genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27:199–224
    [Google Scholar]
  34. 34.
    McAdams HH, Arkin A. 1999. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15:65–69
    [Google Scholar]
  35. 35.
    McAdams HH, Shapiro L. 1995. Circuit simulation of genetic networks. Science 269:650–56
    [Google Scholar]
  36. 36.
    McAdams HH, Shapiro L. 2009. System-level design of bacterial cell cycle control. FEBS Lett 583:3984–91
    [Google Scholar]
  37. 37.
    McAdams HH, Shapiro L. 2011. The architecture and conservation pattern of whole-cell control circuitry. J. Mol. Biol. 409:28–35
    [Google Scholar]
  38. 38.
    McGrath PT, Iniesta AA, Ryan KR, Shapiro L, McAdams HH. 2006. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124:535–47
    [Google Scholar]
  39. 39.
    Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE et al. 2001. Complete genome sequence of Caulobacter crescentus. PNAS 98:4136–41
    [Google Scholar]
  40. 40.
    Poindexter JS. 1964. Biological properties and classification of the Caulobacter group. Bacteriol. Rev. 28:231–95
    [Google Scholar]
  41. 41.
    Quon KC, Marczynski GT, Shapiro L. 1996. Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93
    [Google Scholar]
  42. 42.
    Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT. 1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. PNAS 95:120–25
    [Google Scholar]
  43. 43.
    Reisenauer A, Shapiro L. 2002. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21:4969–77
    [Google Scholar]
  44. 44.
    Ryan KR, Huntwork S, Shapiro L. 2004. Recruitment of a cytoplasmic response regulator to the cell pole is linked to its cell cycle-regulated proteolysis. PNAS 101:7415–20
    [Google Scholar]
  45. 45.
    Saurabh S, Chong T, Bayas C, Dahlberg P, Cartwright H et al. 2022. Modulation of kinase activity within a bacterial membraneless organelle. Sci. Adv. 8:eabm6570
    [Google Scholar]
  46. 46.
    Shapiro L. 1995. The bacterial flagellum: from genetic network to complex architecture. Cell 80:525–27
    [Google Scholar]
  47. 47.
    Shapiro L, Agabian-Keshishian N. 1970. Specific assay for differentiation in the stalked bacterium Caulobacter crescentus. PNAS 67:200–3
    [Google Scholar]
  48. 48.
    Shapiro L, Agabian-Keshishian N, Bendis I. 1971. Bacterial differentiation. Science 173:884–92
    [Google Scholar]
  49. 49.
    Shaw P, Gomes SL, Sweeney K, Ely B, Shapiro L. 1983. Methylation involved in chemotaxis is regulated during Caulobacter differentiation. PNAS 80:5261–65
    [Google Scholar]
  50. 50.
    Shen X, Collier J, Dill D, Shapiro L, Horowitz M, McAdams HH. 2008. Architecture and inherent robustness of a bacterial cell-cycle control system. PNAS 105:11340–45
    [Google Scholar]
  51. 51.
    Speigelman S, Doi RH. 1963. Replication and translation of RNA genomes. Cold Spring Harb. Symp. Quant. Biol. 28:109–16
    [Google Scholar]
  52. 52.
    Stallmeyer MJ, Hahnenberger KM, Sosinsky GE, Shapiro L, DeRosier DJ. 1989. Image reconstruction of the flagellar basal body of Caulobacter crescentus. J. Mol. Biol. 205:511–18
    [Google Scholar]
  53. 53.
    Stephens C, Reisenauer A, Wright R, Shapiro L. 1996. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. PNAS 93:1210–14
    [Google Scholar]
  54. 54.
    Stephens CM, Zweiger G, Shapiro L. 1995. Coordinate cell cycle control of a Caulobacter DNA methyltransferase and the flagellar genetic hierarchy. J. Bacteriol. 177:1662–69
    [Google Scholar]
  55. 55.
    Toro E, Hong S-H, McAdams HH, Shapiro L. 2008. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. PNAS 105:15435–40
    [Google Scholar]
  56. 56.
    Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M et al. 2004. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. PNAS 101:9257–62
    [Google Scholar]
  57. 57.
    Wagenknecht T, DeRosier D, Shapiro L, Weissborn A. 1981. Three-dimensional reconstruction of the flagellar hook from Caulobacter crescentus. J. Mol. Biol. 151:439–65
    [Google Scholar]
  58. 58.
    Weissborn A, Steinmann HM, Shapiro L. 1982. Characterization of the proteins of the Caulobacter crescentus flagellar filament: peptide analysis and filament organization. J. Biol. Chem. 257:2066–74
    [Google Scholar]
  59. 59.
    Weissmann C, Simon L, Borst P, Ochhoa S. 1963. Induction of RNA synthetase in E. coli after infection by the RNA phage, MS2. Cold Spring Harb. Symp. Quant. Biol. 28:99–104
    [Google Scholar]
  60. 60.
    Wheeler RT, Gober JW, Shapiro L. 1998. Protein localization during the Caulobacter crescentus cell cycle. Curr. Opin. Microbiol. 1:636–42
    [Google Scholar]
  61. 61.
    Zweiger G, Marczynski G, Shapiro L. 1994. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J. Mol. Biol. 235:472–85
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-021436
Loading
/content/journals/10.1146/annurev-genet-071719-021436
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error