1932

Abstract

Meiosis, a key process in the creation of haploid gametes, is a complex cellular division incorporating unique timing and intricate chromosome dynamics. Abnormalities in this elaborate dance can lead to the production of aneuploid gametes, i.e., eggs containing an incorrect number of chromosomes, many of which cannot generate a viable pregnancy. For many decades, research has been attempting to address why this process is notoriously error prone in humans compared to many other organisms. Rapidly developing technologies, access to new clinical material, and a mounting public infertility crisis have kept the field both active and quickly evolving. In this review, we discuss the history of aneuploidy in humans with a focus on its origins in maternal meiosis. We also gather current working mechanistic hypotheses, as well as up-and-coming areas of interest that point to future scientific avenues and their potential clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-072820-033609
2022-11-30
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-072820-033609.html?itemId=/content/journals/10.1146/annurev-genet-072820-033609&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Angell RR. 1991. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum. Genet. 86:383–87
    [Google Scholar]
  2. 2.
    Angell RR. 1994. Aneuploidy in older women: higher rates of aneuploidy in oocytes from older women. Hum. Reprod. 9:1199–200
    [Google Scholar]
  3. 3.
    Angell RR, Ledger W, Yong EL, Harkness L, Baird DT. 1991. Cytogenetic analysis of unfertilized human oocytes. Hum. Reprod. 6:568–73
    [Google Scholar]
  4. 4.
    Baker TG. 1963. A quantitative and cytological study of germ cells in human ovaries. Proc. R. Soc. Lond. B 158:417–33
    [Google Scholar]
  5. 5.
    Barone S, Sarogni P, Valli R, Pallotta MM, Silvia G et al. 2020. Chromosome missegregation in single human oocytes is related to the age and gene expression profile. Int. J. Mol. Sci. 21:1934
    [Google Scholar]
  6. 6.
    Batnasan E, Xie S, Zhang Q, Li Y. 2020. Observation of parthanatos involvement in diminished ovarian reserve patients and melatonin's protective function through inhibiting ADP-ribose (PAR) expression and preventing AIF translocation into the nucleus. Reprod. Sci. 27:75–86
    [Google Scholar]
  7. 7.
    Ben-Meir A, Burstein E, Borrego-Alvarez A, Chong J, Wong E et al. 2015. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14:887–95
    [Google Scholar]
  8. 8.
    Bentov Y, Hannam T, Jurisicova A, Esfandiari N, Casper RF. 2014. Coenzyme Q10 supplementation and oocyte aneuploidy in women undergoing IVF-ICSI treatment. Clin. Med. Insights Reprod. Health 8:31–36
    [Google Scholar]
  9. 9.
    Benzacken B, Martin-Pont B, Bergère M, Hugues JN, Wolf JP, Selva J. 1998. Chromosome 21 detection in human oocyte fluorescence in situ hybridization: possible effect of maternal age. J. Assist. Reprod. Genet. 15:105–10
    [Google Scholar]
  10. 10.
    Bond DJ, Chandley A. 1983. Aneuploidy Oxf. Monogr. Med. Genet. No. 11 New York: Oxford Univ. Press
  11. 11.
    Bongso A, Chye NS, Ratnam S, Sathananthan H, Wong PC. 1988. Chromosome anomalies in human oocytes failing to fertilize after insemination in vitro. Hum. Reprod. 3:645–49
    [Google Scholar]
  12. 12.
    Boue J, Bou A, Lazar P. 1975. Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology 12:11–26
    [Google Scholar]
  13. 13.
    Brown WMC, Law P, Smith PG. 1969. Sex chromosome aneuploidy and parental age. Ann. Hum. Genet. 33:1–14
    [Google Scholar]
  14. 14.
    Bugge M, Collins A, Petersen MB, Fisher J, Brandt C et al. 1998. Non-disjunction of chromosome 18. Hum. Mol. Genet. 7:661–69
    [Google Scholar]
  15. 15.
    Burkhardt S, Borsos M, Szydlowska A, Godwin J, Williams SA et al. 2016. Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26:678–85
    [Google Scholar]
  16. 16.
    Capalbo A, Ubaldi FM, Rienzi L, Scott R, Treff N. 2017. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum. Reprod. 32:492–98
    [Google Scholar]
  17. 17.
    Chernus JM, Allen EG, Zeng Z, Hoffman ER, Hassold TJ et al. 2019. A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21. PLOS Genet 15:e1008414
    [Google Scholar]
  18. 18.
    Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA. 2010. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr. Biol. 20:1522–28
    [Google Scholar]
  19. 19.
    Daughtry BL, Rosenkrantz JL, Lazar NH, Fei SS, Redmayne N et al. 2019. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res 29:367–82
    [Google Scholar]
  20. 20.
    Destouni A, Zamani Esteki M, Catteeuw M, Tsuiko O, Dimitriadou E et al. 2016. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res 26:567–78
    [Google Scholar]
  21. 21.
    Di Emidio G, Santini SJ, D'Alessandro AM, Vetuschi A, Sferra R et al. 2019. SIRT1 participates in the response to methylglyoxal-dependent glycative stress in mouse oocytes and ovary. Biochim. Biophys. Acta Mol. Basis Dis. 1865:1389–401
    [Google Scholar]
  22. 22.
    Djalali M, Rosenbusch B, Wolf M, Sterzik K. 1988. Cytogenetics of unfertilized human oocytes. J. Reprod. Fertil. 84:647–52
    [Google Scholar]
  23. 23.
    Duncan FE, Hornick JE, Lampson MA, Schultz RM, Shea LD, Woodruff TK. 2012. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell 11:1121–24
    [Google Scholar]
  24. 24.
    Dupont C, Froenicke L, Lyons LA, Bavister BD, Brenner CA. 2009. Chromosomal instability in rhesus macaque preimplantation embryos. Fertil. Steril. 91:1230–37
    [Google Scholar]
  25. 25.
    Dupont C, Harvey AJ, Armant DR, Zelinski MB, Brenner CA. 2012. Expression profiles of cohesins, shugoshins and spindle assembly checkpoint genes in rhesus macaque oocytes predict their susceptibility for aneuploidy during embryonic development. Cell Cycle 11:740–48
    [Google Scholar]
  26. 26.
    Dupont C, Segars J, DeCherney A, Bavister BD, Armant DR, Brenner CA. 2010. Incidence of chromosomal mosaicism in morphologically normal nonhuman primate preimplantation embryos. Fertil. Steril. 93:2545–50
    [Google Scholar]
  27. 27.
    Edwards JH, Harnden DG, Cameron AH, Crosse VM, Wolff OH. 1960. A new trisomic syndrome. Lancet 275:787–90
    [Google Scholar]
  28. 28.
    Fisher JM, Harvey JF, Morton NE, Jacobs PA. 1995. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am. J. Hum. Genet. 56:669–75
    [Google Scholar]
  29. 29.
    Ford CE, Jones KW, Miller OJ, Mittwoch U, Penrose LS et al. 1959. The chromosomes in a patient showing both mongolism and the Klinefelter syndrome. Lancet 273:709–10
    [Google Scholar]
  30. 30.
    Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. 1959. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet 273:711–13
    [Google Scholar]
  31. 31.
    Ford CE, Polani PE, Briggs JH, Bishop PM. 1959. A presumptive human XXY/XX mosaic. Nature 183:1030–32
    [Google Scholar]
  32. 32.
    Forman EJ, Treff NR, Stevens JM, Garnsey HM, Katz-Jaffe MG et al. 2013. Embryos whose polar bodies contain isolated reciprocal chromosome aneuploidy are almost always euploid. Hum. Reprod. 28:502–8
    [Google Scholar]
  33. 33.
    Garcia-Cruz R, Brieno MA, Roig I, Grossmann M, Velilla E et al. 2010. Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum. Reprod. 25:2316–27
    [Google Scholar]
  34. 34.
    Ghevaria H, SenGupta S, Naja R, Odia R, Exeter H et al. 2022. Next generation sequencing detects premeiotic errors in human oocytes. Int. J. Mol. Sci. 23:665
    [Google Scholar]
  35. 35.
    Ghevaria H, SenGupta S, Sarna U, Sargeant S, Serhal P, Delhanty J. 2014. The contribution of germinal mosaicism to human aneuploidy. Cytogenet. Genome Res. 144:264–74
    [Google Scholar]
  36. 36.
    Golbus MS. 1981. The influence of strain, maternal age, and method of maturation on mouse oocyte aneuploidy. Cytogenet. Cell Genet. 31:84–90
    [Google Scholar]
  37. 37.
    Gondos B, Westergaard L, Byskov AG. 1986. Initiation of oogenesis in the human fetal ovary: ultrastructural and squash preparation study. Am. J. Obstet. Gynecol. 155:189–95
    [Google Scholar]
  38. 38.
    Gras L, McBain J, Trounson A, Kola I. 1992. The incidence of chromosomal aneuploidy in stimulated and unstimulated (natural) uninseminated human oocytes. Hum. Reprod. 7:1396–401
    [Google Scholar]
  39. 39.
    Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R 2010. Gene expression profiles of single human mature oocytes in relation to age. Hum. Reprod. 25:957–68
    [Google Scholar]
  40. 40.
    Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A et al. 2019. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365:1466–69
    [Google Scholar]
  41. 41.
    Gryaznova Y, Keating L, Touati SA, Cladiere D, El Yakoubi W et al. 2021. Kinetochore individualization in meiosis I is required for centromeric cohesin removal in meiosis II. EMBO J 40:e106797
    [Google Scholar]
  42. 42.
    Hall HE, Chan ER, Collins A, Judis L, Shirley S et al. 2007. The origin of trisomy 13. Am. J. Med. Genet. A 143A:2242–48
    [Google Scholar]
  43. 43.
    Hall HE, Surti U, Hoffner L, Shirley S, Feingold E, Hassold T. 2007. The origin of trisomy 22: evidence for acrocentric chromosome-specific patterns of nondisjunction. Am. J. Med. Genet. A 143A:2249–55
    [Google Scholar]
  44. 44.
    Hartshorne G 2013. Key events in early oogenesis affecting oocyte competence in women. Textbook of Clinical Embryology K Coward, D Wells 48–57 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  45. 45.
    Hartwell LH, Smith D. 1985. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–95
    [Google Scholar]
  46. 46.
    Hassold TJ, Chiu D. 1985. Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Hum. Genet. 70:11–17
    [Google Scholar]
  47. 47.
    Hassold TJ, Hunt P. 2001. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2:280–91
    [Google Scholar]
  48. 48.
    Hassold TJ, Jacobs PA. 1984. Trisomy in man. Annu. Rev. Genet. 18:69–97
    [Google Scholar]
  49. 49.
    Hassold TJ, Jacobs P, Kline J, Stein Z, Warburton D. 1980. Effect of maternal age on autosomal trisomies. Ann. Hum. Genet. 44:29–36
    [Google Scholar]
  50. 50.
    Hassold TJ, Maylor-Hagen H, Wood A, Gruhn J, Hoffmann E et al. 2021. Failure to recombine is a common feature of human oogenesis. Am. J. Hum. Genet. 108:16–24
    [Google Scholar]
  51. 51.
    Hassold TJ, Merrill M, Adkins K, Freeman S, Sherman S 1995. Recombination and maternal age–dependent nondisjunction: molecular studies of trisomy 16. Am. J. Hum. Genet. 57:867–74
    [Google Scholar]
  52. 52.
    Hassold TJ, Sherman S. 2000. Down syndrome: genetic recombination and the origin of the extra chromosome 21. Clin. Genet. 57:95–100
    [Google Scholar]
  53. 53.
    Hawk HW, Tyler WJ, Casida LE. 1954. Some factors affecting age at puberty in Holstein-Friesian heifers. J. Dairy Sci. 37:252–58
    [Google Scholar]
  54. 54.
    Henderson IR, Bomblies K 2021. Evolution and plasticity of genome-wide meiotic recombination rates. Annu. Rev. Genet. 55:23–43
    [Google Scholar]
  55. 55.
    Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y et al. 2016. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539:299–303
    [Google Scholar]
  56. 56.
    Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA. 2005. SMC1β-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat. Genet. 37:1351–55
    [Google Scholar]
  57. 57.
    Holubcova Z, Blayney M, Elder K, Schuh M. 2015. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348:1143–47
    [Google Scholar]
  58. 58.
    Hornak M, Hulinska P, Musilova P, Kubickova S, Rubes J. 2009. Investigation of chromosome aneuploidies in early porcine embryos using comparative genomic hybridization. Cytogenet. Genome Res. 126:210–16
    [Google Scholar]
  59. 59.
    Hornak M, Jeseta M, Musilova P, Pavlok A, Kubelka M et al. 2011. Frequency of aneuploidy related to age in porcine oocytes. PLOS ONE 6:e18892
    [Google Scholar]
  60. 60.
    Hornak M, Kubicek D, Broz P, Hulinska P, Hanzalova K et al. 2016. Aneuploidy detection and mtDNA quantification in bovine embryos with different cleavage onset using a next-generation sequencing-based protocol. Cytogenet. Genome Res. 150:60–67
    [Google Scholar]
  61. 61.
    Hornak M, Oracova E, Hulinska P, Urbankova L, Rubes J. 2012. Aneuploidy detection in pigs using comparative genomic hybridization: from the oocytes to blastocysts. PLOS ONE 7:e30335
    [Google Scholar]
  62. 62.
    Hosseini FS, Shamsipour M, Yazdekhasti H, Akbari-Asbagh F, Shahraki Z, Aghaee-Bakhtiari SH. 2021. The effect of oral melatonin supplementation on MT-ATP6 gene expression and IVF outcomes in Iranian infertile couples: a nonrandomized controlled trial. Naunyn Schmiedebergs Arch. Pharmacol. 394:1487–95
    [Google Scholar]
  63. 63.
    Hou Y, Fan W, Yan L, Li R, Lian Y et al. 2013. Genome analyses of single human oocytes. Cell 155:1492–506
    [Google Scholar]
  64. 64.
    Hultén MA, Patel S, Jonasson J, Iwarsson E. 2010. On the origin of the maternal age effect in trisomy 21 Down syndrome: the Oocyte Mosaicism Selection model. Reproduction 139:1–9
    [Google Scholar]
  65. 65.
    Hutchins JR, Toyoda Y, Hegemann B, Poser I, Heriche JK et al. 2010. Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328:593–99
    [Google Scholar]
  66. 66.
    Hutt KJ, Albertini DF. 2007. An oocentric view of folliculogenesis and embryogenesis. Reprod. BioMed. Online 14:758–64
    [Google Scholar]
  67. 67.
    Jacobs PA. 1977. Human chromosome heteromorphisms (variants). Prog. Med. Genet. 2:251–74
    [Google Scholar]
  68. 68.
    Jacobs PA, Baikie AG, Court Brown WM, Macgregor TN, Maclean N, Harnden DG 1959. Evidence for the existence of the human “super female. .” Lancet 274:423–25
    [Google Scholar]
  69. 69.
    Jacobs PA, Baikie AG, Court Brown WM, Strong JA 1959. The somatic chromosomes in mongolism. Lancet 273:710
    [Google Scholar]
  70. 70.
    Jacobs PA, Morton NE. 1977. Origin of human trisomics and polyploids. Hum. Hered. 27:59–72
    [Google Scholar]
  71. 71.
    Jacobs PA, Strong JA. 1959. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183:302–3
    [Google Scholar]
  72. 72.
    Jagiello G, Fang JS, Turchin HA, Lewis SE, Gluecksohn-Waelsch S. 1976. Cytological observations of deletions in pachytene stages of oogenesis and spermatogenesis in the mouse. Chromosoma 58:377–86
    [Google Scholar]
  73. 73.
    Kamiguchi Y, Rosenbusch B, Sterzik K, Mikamo K. 1993. Chromosomal analysis of unfertilized human oocytes prepared by a gradual fixation-air drying method. Hum. Genet. 90:533–41
    [Google Scholar]
  74. 74.
    Kim J, Ishiguro K, Nambu A, Akiyoshi B, Yokobayashi S et al. 2015. Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 517:466–71
    [Google Scholar]
  75. 75.
    Kim MK, Park EA, Kim HJ, Choi WY, Cho JH et al. 2013. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS?. Reprod. Biomed. Online 26:22–29
    [Google Scholar]
  76. 76.
    Kim S, Peterson SE, Jasin M, Keeney S. 2016. Mechanisms of germ line genome instability. Semin. Cell Dev. Biol. 54:177–87
    [Google Scholar]
  77. 77.
    Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. 2021. The role of mitochondria in oocyte maturation. Cells 10:2484
    [Google Scholar]
  78. 78.
    Koehler KE, Hawley RS, Sherman S, Hassold T. 1996. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5:1495–504
    [Google Scholar]
  79. 79.
    Konstantinidis M, Ravichandran K, Gunes Z, Prates R, Goodall NN et al. 2020. Aneuploidy and recombination in the human preimplantation embryo. Copy number variation analysis and genome-wide polymorphism genotyping. Reprod. Biomed. Online 40:479–93
    [Google Scholar]
  80. 80.
    Kouznetsova A, Lister L, Nordenskjöld M, Herbert M, Höög C. 2007. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat. Genet. 39:966–68
    [Google Scholar]
  81. 81.
    Kuliev A, Cieslak J, Ilkevitch Y, Verlinsky Y. 2003. Chromosomal abnormalities in a series of 6,733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Reprod. Biomed. Online 6:54–59
    [Google Scholar]
  82. 82.
    Lagirand-Cantaloube J, Ciabrini C, Charrasse S, Ferrieres A, Castro A et al. 2017. Loss of centromere cohesion in aneuploid human oocytes correlates with decreased kinetochore localization of the Sac proteins Bub1 and Bubr1. Sci. Rep. 7:44001
    [Google Scholar]
  83. 83.
    Lamb NE, Feingold E, Savage A, Avramopoulos D, Freeman S et al. 1997. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6:1391–99
    [Google Scholar]
  84. 84.
    Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L et al. 1996. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14:400–5
    [Google Scholar]
  85. 85.
    Lejeune J, Turpin R, Gautier M. 1959. [Mongolism; a chromosomal disease (trisomy)]. Bull. Acad. Natl. Med. 143:256–65 In French )
    [Google Scholar]
  86. 86.
    Lenzi ML, Smith J, Snowden T, Kim M, Fishel R et al. 2005. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. Am. J. Hum. Genet. 76:112–27
    [Google Scholar]
  87. 87.
    Lim AS, Ho AT, Tsakok MF. 1995. Chromosomes of oocytes failing in-vitro fertilization. Hum. Reprod. 10:2570–75
    [Google Scholar]
  88. 88.
    Lintern-Moore S, Peters H, Moore GP, Faber M. 1974. Follicular development in the infant human ovary. J. Reprod. Fertil. 39:53–64
    [Google Scholar]
  89. 89.
    Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL et al. 2010. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20:1511–21
    [Google Scholar]
  90. 90.
    Liu Y-J, Ji D-M, Liu Z-B, Wang T-J, Xie F-F et al. 2019. Melatonin maintains mitochondrial membrane potential and decreases excessive intracellular Ca2+ levels in immature human oocytes. Life Sci 235:116810
    [Google Scholar]
  91. 91.
    Llonch S, Barragan M, Nieto P, Mallol A, Elosua-Bayes M et al. 2021. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 20:e13360
    [Google Scholar]
  92. 92.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  93. 93.
    Ma L, Cai L, Hu M, Wang J, Xie J et al. 2020. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies. Fertil. Steril. 114:331–37
    [Google Scholar]
  94. 94.
    Ma S, Kalousek DK, Yuen BH, Gomel V, Katagiri S, Moon YS. 1994. Chromosome investigation in in vitro fertilization failure. J. Assist. Reprod. Genet. 11:445–51
    [Google Scholar]
  95. 95.
    Ma S, Kalousek DK, Zouves C, Yuen BH, Gomel V, Moon YS. 1989. Chromosome analysis of human oocytes failing to fertilize in vitro. Fertil. Steril. 51:992–97
    [Google Scholar]
  96. 96.
    Macas E, Floersheim Y, Hotz E, Imthurn B, Keller PJ, Walt H 1990. Abnormal chromosomal arrangements in human oocytes. Hum. Reprod. 5:703–7
    [Google Scholar]
  97. 97.
    Magenis RE, Hecht F, Milham S. 1968. Trisomy 13 (D1) syndrome: studies on parental age, sex ratio, and survival. J. Pediatr. 73:222–28
    [Google Scholar]
  98. 98.
    Mahmood R, Brierley CH, Faed MJ, Mills JA, Delhanty JD. 2000. Mechanisms of maternal aneuploidy: FISH analysis of oocytes and polar bodies in patients undergoing assisted conception. Hum. Genet. 106:620–26
    [Google Scholar]
  99. 99.
    Martin RH, Ko E, Rademaker A. 1991. Distribution of aneuploidy in human gametes: comparison between human sperm and oocytes. Am. J. Med. Genet. 39:321–31
    [Google Scholar]
  100. 100.
    Martin RH, Mahadevan MM, Taylor PJ, Hildebrand K, Long-Simpson L et al. 1986. Chromosomal analysis of unfertilized human oocytes. J. Reprod. Fertil. 78:673–78
    [Google Scholar]
  101. 101.
    McCoy RC, Demko ZP, Ryan A, Banjevic M, Hill M et al. 2015. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLOS Genet 11:e1005601
    [Google Scholar]
  102. 102.
    Michaeli G, Fejgin M, Ghetler Y, Ben Nun I, Beyth Y, Amiel A. 1990. Chromosomal analysis of unfertilized oocytes and morphologically abnormal preimplantation embryos from an in vitro fertilization program. J. In Vitro Fertil. Embryo Transf. 7:341–46
    [Google Scholar]
  103. 103.
    Michelmann HW, Mettler L. 1985. Cytogenetic investigations on human oocytes and early human embryonic stages. Fertil. Steril. 43:320–22
    [Google Scholar]
  104. 104.
    Mihalas BP, Redgrove KA, McLaughlin EA, Nixon B. 2017. Molecular mechanisms responsible for increased vulnerability of the ageing oocyte to oxidative damage. Oxid. Med. Cell. Longev. 2017:4015874
    [Google Scholar]
  105. 105.
    Nakagawa S, FitzHarris G. 2017. Intrinsically defective microtubule dynamics contribute to age-related chromosome segregation errors in mouse oocyte meiosis-I. Curr. Biol. 27:1040–47
    [Google Scholar]
  106. 106.
    Nguyen AL, Marin D, Zhou A, Gentilello AS, Smoak EM et al. 2017. Identification and characterization of Aurora kinase B and C variants associated with maternal aneuploidy. Mol. Hum. Reprod. 23:406–16
    [Google Scholar]
  107. 107.
    Ntostis P, Iles D, Kokkali G, Vaxevanoglou T, Kanavakis E et al. 2021. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Hum. Reprod. 37:80–92
    [Google Scholar]
  108. 108.
    Obradors A, Rius M, Cuzzi J, Daina G, Gutierrez-Mateo C et al. 2010. Errors at mitotic segregation early in oogenesis and at first meiotic division in oocytes from donor females: comparative genomic hybridization analyses in metaphase II oocytes and their first polar body. Fertil. Steril. 93:675–79
    [Google Scholar]
  109. 109.
    OECD (Organ. Econ. Coop. Dev.) 2018. SF2.1. Fertility rates OECD Family Database, Paris https://www.oecd.org/els/family/SF_2_1_Fertility_rates.pdf
  110. 110.
    Oliver TR, Feingold E, Yu K, Cheung V, Tinker S et al. 2008. New insights into human nondisjunction of chromosome 21 in oocytes. PLOS Genet 4:e1000033
    [Google Scholar]
  111. 111.
    Ottolini CS, Newnham L, Capalbo A, Natesan SA, Joshi HA et al. 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47:727–35
    [Google Scholar]
  112. 112.
    Papadopoulos G, Randall J, Templeton AA 1989. The frequency of chromosome anomalies in human unfertilized oocytes and uncleaved zygotes after insemination in vitro. Hum. Reprod. 4:568–73
    [Google Scholar]
  113. 113.
    Patau K, Smith DW, Therman E, Inhorn SL, Wagner HP. 1960. Multiple congenital anomaly caused by an extra autosome. Lancet 275:790–93
    [Google Scholar]
  114. 114.
    Patel J, Tan SL, Hartshorne GM, McAinsh AD. 2016. Unique geometry of sister kinetochores in human oocytes during meiosis I may explain maternal age-associated increases in chromosomal abnormalities. Biol. Open 5:178–84
    [Google Scholar]
  115. 115.
    Pellestor F. 1991. Differential distribution of aneuploidy in human gametes according to their sex. Hum. Reprod. 6:1252–58
    [Google Scholar]
  116. 116.
    Pellestor F. 1991. Frequency and distribution of aneuploidy in human female gametes. Hum. Genet. 86:283–88
    [Google Scholar]
  117. 117.
    Pellestor F, Andréo B, Arnal F, Humeau C, Demaille J. 2003. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum. Genet. 112:195–203
    [Google Scholar]
  118. 118.
    Pellestor F, Sele B. 1988. Assessment of aneuploidy in the human female by using cytogenetics of IVF failures. Am. J. Hum. Genet. 42:274–83
    [Google Scholar]
  119. 119.
    Penrose LS. 1933. The relative effects of paternal and maternal age in mongolism. J. Genet. 27:219–24
    [Google Scholar]
  120. 120.
    Peters H, Byskov AG, Himelstein-Braw R, Faber M. 1975. Follicular growth: the basic event in the mouse and human ovary. Reproduction 45:559–66
    [Google Scholar]
  121. 121.
    Pieters MH, Geraedts JP, Dumoulin JC, Evers JL, Bras M et al. 1989. Cytogenetic analysis of in vitro fertilization (IVF) failures. Hum. Genet. 81:367–70
    [Google Scholar]
  122. 122.
    Plachot M, de Grouchy J, Junca AM, Mandelbaum J, Turleau C et al. 1987. From oocyte to embryo: a model, deduced from in vitro fertilization, for natural selection against chromosome abnormalities. Ann. Genet. 30:22–32
    [Google Scholar]
  123. 123.
    Plachot M, Veiga A, Montagut J, de Grouchy J, Calderon G et al. 1988. Are clinical and biological IVF parameters correlated with chromosomal disorders in early life: a multicentric study. Hum. Reprod. 3:627–35
    [Google Scholar]
  124. 124.
    Pujol A, Boiso I, Benet J, Veiga A, Durban M et al. 2003. Analysis of nine chromosome probes in first polar bodies and metaphase II oocytes for the detection of aneuploidies. Eur. J. Hum. Genet. 11:325–36
    [Google Scholar]
  125. 125.
    Revenkova E, Herrmann K, Adelfalk C, Jessberger R. 2010. Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol. 20:1529–33
    [Google Scholar]
  126. 126.
    Reyes JM, Silva E, Chitwood JL, Schoolcraft WB, Krisher RL, Ross PJ. 2017. Differing molecular response of young and advanced maternal age human oocytes to IVM. Hum. Reprod. 32:2199–208
    [Google Scholar]
  127. 127.
    Rizzo M, du Preez N, Ducheyne KD, Deelen C, Beitsma MM et al. 2020. The horse as a natural model to study reproductive aging-induced aneuploidy and weakened centromeric cohesion in oocytes. Aging 12:22220–32
    [Google Scholar]
  128. 128.
    Robinson WP, Kuchinka BD, Bernasconi F, Petersen MB, Schulze A et al. 1998. Maternal meiosis I non-disjunction of chromosome 15: dependence of the maternal age effect on level of recombination. Hum. Mol. Genet. 7:1011–19
    [Google Scholar]
  129. 129.
    Rowsey R, Kashevarova A, Murdoch B, Dickenson C, Woodruff T et al. 2013. Germline mosaicism does not explain the maternal age effect on trisomy. Am. J. Med. Genet. A 161A:2495–503
    [Google Scholar]
  130. 130.
    Sarangapani KK, Duro E, Deng Y, de Lima Alves F, Ye Q et al. 2014. Sister kinetochores are mechanically fused during meiosis I in yeast. Science 346:248–51
    [Google Scholar]
  131. 131.
    Savva GM, Walker K, Morris JK. 2010. The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). Prenatal Diagnosis 30:57–64
    [Google Scholar]
  132. 132.
    Sears DD, Hegemann JH, Hieter P. 1992. Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. PNAS 89:5296–300
    [Google Scholar]
  133. 133.
    Shilton CA, Kahler A, Davis BW, Crabtree JR, Crowhurst J et al. 2020. Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse. Sci. Rep. 10:13314
    [Google Scholar]
  134. 134.
    Shuttleworth GE. 1909. Mongolian imbecility. 77th Annual Meeting of the British Medical Association661–65 Belfast, Irel: Br. Med. J.
    [Google Scholar]
  135. 135.
    Smits MAJ, van Maarle M, Hamer G, Mastenbroek S, Goddijn M, van Wely M. 2020. Cytogenetic testing of pregnancy loss tissue: a meta-analysis. Reprod. BioMed. Online 40:867–79
    [Google Scholar]
  136. 136.
    So C, Menelaou K, Uraji J, Harasimov K, Steyer AM et al. 2022. Mechanism of spindle pole organization and instability in human oocytes. Science 375:eabj3944
    [Google Scholar]
  137. 137.
    Subramanian VV, Bickel SE. 2008. Aging predisposes oocytes to meiotic nondisjunction when the cohesin subunit SMC1 is reduced. PLOS Genet 4:e1000263
    [Google Scholar]
  138. 138.
    Tachibana-Konwalski K, Godwin J, van der Weyden L, Champion L, Kudo NR et al. 2010. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 24:2505–16
    [Google Scholar]
  139. 139.
    Taylor AI. 1968. Autosomal trisomy syndromes: a detailed study of 27 cases of Edwards' syndrome and 27 cases of Patau's syndrome. J. Med. Genet. 5:227–52
    [Google Scholar]
  140. 140.
    Tease C, Hartshorne GM, Hulten MA. 2002. Patterns of meiotic recombination in human fetal oocytes. Am. J. Hum. Genet. 70:1469–79
    [Google Scholar]
  141. 141.
    Telfer EE, McLaughlin M. 2007. Natural history of the mammalian oocyte. Reprod. BioMed. Online 15:288–95
    [Google Scholar]
  142. 142.
    Thomas C, Cavazza T, Schuh M. 2021. Aneuploidy in human eggs: contributions of the meiotic spindle. Biochem. Soc. Trans. 49:107–18
    [Google Scholar]
  143. 143.
    Tšuiko O, Catteeuw M, Zamani Esteki M, Destouni A, Bogado Pascottini O et al. 2017. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum. Reprod. 32:2348–57
    [Google Scholar]
  144. 144.
    Tšuiko O, Vanneste M, Melotte C, Ding J, Debrock S et al. 2021. Haplotyping-based preimplantation genetic testing reveals parent-of-origin specific mechanisms of aneuploidy formation. NPJ Genom. Med. 6:81
    [Google Scholar]
  145. 145.
    Tutt DAR, Silvestri G, Serrano-Albal M, Simmons RJ, Kwong WY et al. 2021. Analysis of bovine blastocysts indicates ovarian stimulation does not induce chromosome errors, nor discordance between inner-cell mass and trophectoderm lineages. Theriogenology 161:108–19
    [Google Scholar]
  146. 146.
    Tyc KM, El Yakoubi W, Bag A, Landis J, Zhan Y et al. 2020. Exome sequencing links CEP120 mutation to maternally derived aneuploid conception risk. Hum. Reprod. 35:2134–48
    [Google Scholar]
  147. 147.
    Tyc KM, McCoy RC, Schindler K, Xing J. 2020. Mathematical modeling of human oocyte aneuploidy. PNAS 117:10455–64
    [Google Scholar]
  148. 148.
    Van Blerkom J, Henry G. 1988. Cytogenetic analysis of living human oocytes: cellular basis and developmental consequences of perturbations in chromosomal organization and complement. Hum. Reprod. 3:777–90
    [Google Scholar]
  149. 149.
    van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EA et al. 2011. Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum. Reprod. 26:1181–90
    [Google Scholar]
  150. 150.
    van den Berg MMJ, van Maarle MC, van Wely M, Goddijn M. 2012. Genetics of early miscarriage. Biochim. Biophys. Acta Mol. Basis Dis. 1822:1951–59
    [Google Scholar]
  151. 151.
    Veiga A, Calderon G, Santalo J, Barri PN, Egozcue J. 1987. Chromosome studies in oocytes and zygotes from an IVF programme. Hum. Reprod. 2:425–30
    [Google Scholar]
  152. 152.
    Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G et al. 1998. Preimplantation diagnosis of common aneuploidies by the first- and second-polar body FISH analysis. J. Assist. Reprod. Genet. 15:285–89
    [Google Scholar]
  153. 153.
    Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G et al. 2001. Chromosomal abnormalities in the first and second polar body. Mol. Cell Endocrinol. 183:Suppl. 1S47–49
    [Google Scholar]
  154. 154.
    Vermeesch JR, Voet T, Devriendt K. 2016. Prenatal and pre-implantation genetic diagnosis. Nat. Rev. Genet. 17:643–56
    [Google Scholar]
  155. 155.
    Vozdová M, Machatková M, Kubíčková S, Zudová D, Jokešová E, Rubes J. 2001. Frequency of aneuploidy in pig oocytes matured in vitro and of the corresponding first polar bodies detected by fluorescent in situ hybridization. Theriogenology 56:771–76
    [Google Scholar]
  156. 156.
    Warren AC, Chakravarti A, Wong C, Slaugenhaupt SA, Halloran SL et al. 1987. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science 237:652–54
    [Google Scholar]
  157. 157.
    Wasserzug-Pash P, Rothman R, Reich E, Zecharyahu L, Schonberger O et al. 2022. Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 21:e13568
    [Google Scholar]
  158. 158.
    Weng KA, Jeffreys CA, Bickel SE. 2014. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. PLOS Genet 10:e1004607
    [Google Scholar]
  159. 159.
    Wertheim I, Jagiello GM, Ducayen MB. 1986. Aging and aneuploidy in human oocytes and follicular cells. J. Gerontol. 41:567–73
    [Google Scholar]
  160. 160.
    Westergaard CG, Byskov AG, Andersen CY. 2007. Morphometric characteristics of the primordial to primary follicle transition in the human ovary in relation to age. Hum. Reprod. 22:2225–31
    [Google Scholar]
  161. 161.
    Wramsby H, Fredga K. 1987. Chromosome analysis of human oocytes failing to cleave after insemination in vitro. Hum. Reprod. 2:137–42
    [Google Scholar]
  162. 162.
    Wramsby H, Fredga K, Liedholm P. 1987. Chromosome analysis of human oocytes recovered from preovulatory follicles in stimulated cycles. N. Engl. J. Med. 316:121–24
    [Google Scholar]
  163. 163.
    Wramsby H, Liedholm P. 1984. A gradual fixation method for chromosomal preparations of human oocytes. Fertil. Steril. 41:736–38
    [Google Scholar]
  164. 164.
    Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T et al. 2018. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362:356–60
    [Google Scholar]
  165. 165.
    Yoshino T, Suzuki T, Nagamatsu G, Yabukami H, Ikegaya M et al. 2021. Generation of ovarian follicles from mouse pluripotent stem cells. Science 373:eabe0237
    [Google Scholar]
  166. 166.
    Yuan L, Yin P, Yan H, Zhong X, Ren C et al. 2021. Single-cell transcriptome analysis of human oocyte ageing. J. Cell Mol. Med. 25:6289–303
    [Google Scholar]
  167. 167.
    Zenzes MT, Wang P, Casper RF. 1992. Evidence for maternal predisposition to chromosome aneuploidy in multiple oocytes of some in vitro fertilization patients. Fertil. Steril. 57:143–49
    [Google Scholar]
  168. 168.
    Zhang JJ, Liu X, Chen L, Zhang S, Zhang X et al. 2020. Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality. Aging 12:3950–61
    [Google Scholar]
  169. 169.
    Zhao H, Li T, Zhao Y, Tan T, Liu C et al. 2019. Single-cell transcriptomics of human oocytes: environment-driven metabolic competition and compensatory mechanisms during oocyte maturation. Antioxid. Redox Signal. 30:542–59
    [Google Scholar]
  170. 170.
    Zheng C-J, Byers B. 1992. Oocyte selection: a new model for the maternal-age dependence of Down syndrome. Hum. Genet. 90:1–6
    [Google Scholar]
  171. 171.
    Zielinska AP, Holubcova Z, Blayney M, Elder K, Schuh M. 2015. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. eLife 4:e11389
    [Google Scholar]
  172. 172.
    Zudova D, Rezacova O, Kubickova S, Rubes J. 2003. Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet. Genome Res. 102:179–83
    [Google Scholar]
/content/journals/10.1146/annurev-genet-072820-033609
Loading
/content/journals/10.1146/annurev-genet-072820-033609
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error