1932

Abstract

DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase–like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand–breaking chemicals and radiation. Since some homologous recombination–defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-072920-041046
2022-11-30
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-072920-041046.html?itemId=/content/journals/10.1146/annurev-genet-072920-041046&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi N, So S, Koyama H. 2004. Loss of nonhomologous end joining confers camptothecin resistance in DT40 cells. Implications for the repair of topoisomerase I-mediated DNA damage. J. Biol. Chem. 279:37343–48
    [Google Scholar]
  2. 2.
    Aguirrezabalaga I, Sierra LM, Comendador MA. 1995. The hypermutability conferred by the mus308 mutation of Drosophila is not specific for cross-linking agents. Mutat. Res. 336:243–50
    [Google Scholar]
  3. 3.
    Alexander JL, Beagan K, Orr-Weaver TL, McVey M 2016. Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells. PNAS 113:13809–14
    [Google Scholar]
  4. 4.
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Google Scholar]
  5. 5.
    Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A et al. 2022. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature 601:268–73
    [Google Scholar]
  6. 6.
    Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. 2008. Low-fidelity DNA synthesis by human DNA polymerase θ. Nucleic Acids Res. 36:3847–56
    [Google Scholar]
  7. 7.
    Arnaudeau C, Lundin C, Helleday T. 2001. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J. Mol. Biol. 307:1235–45
    [Google Scholar]
  8. 8.
    Asagoshi K, Lehmann W, Braithwaite EK, Santana-Santos L, Prasad R et al. 2012. Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase β. Nucleic Acids Res. 40:670–81
    [Google Scholar]
  9. 9.
    Beagan K, Armstrong RL, Witsell A, Roy U, Renedo N et al. 2017. Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair. PLOS Genet. 13:e1006813
    [Google Scholar]
  10. 10.
    Beagan K, McVey M. 2016. Linking DNA polymerase theta structure and function in health and disease. Cell. Mol. Life Sci. 73:603–15
    [Google Scholar]
  11. 11.
    Bernstein KA, Gangloff S, Rothstein R. 2010. The RecQ DNA helicases in DNA repair. Annu. Rev. Genet. 44:393–417
    [Google Scholar]
  12. 12.
    Black SJ, Ozdemir AY, Kashkina E, Kent T, Rusanov T et al. 2019. Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nat. Commun. 10:4423
    [Google Scholar]
  13. 13.
    Bonilla B, Hengel SR, Grundy MK, Bernstein KA. 2020. RAD51 gene family structure and function. Annu. Rev. Genet. 54:25–46
    [Google Scholar]
  14. 14.
    Boyd JB, Sakaguchi K, Harris PV. 1990. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125:813–19
    [Google Scholar]
  15. 15.
    Burgers PMJ, Kunkel TA. 2017. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86:417–38
    [Google Scholar]
  16. 16.
    Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. 2007. Ku heterodimer-independent end joining in Trypanosoma brucei cell extracts relies upon sequence microhomology. Eukaryot. Cell 6:1773–81
    [Google Scholar]
  17. 17.
    Carvajal-Garcia J, Cho J-E, Carvajal-Garcia P, Feng W, Wood RD et al. 2020. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. PNAS 117:8476–85
    [Google Scholar]
  18. 18.
    Carvajal-Garcia J, Crown KN, Ramsden DA, Sekelsky J. 2021. DNA polymerase theta suppresses mitotic crossing over. PLOS Genet. 17:e1009267
    [Google Scholar]
  19. 19.
    Carvajal-Maldonado D, Drogalis Beckham L, Wood RD, Doublié S 2022. When DNA polymerases multitask: functions beyond nucleotidyl transfer. Front. Mol. Biosci. 8:815845
    [Google Scholar]
  20. 20.
    Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62
    [Google Scholar]
  21. 21.
    Cejka P, Symington LS. 2021. DNA end resection: mechanism and control. Annu. Rev. Genet. 55:285–307
    [Google Scholar]
  22. 22.
    Chan SH, Yu AM, McVey M. 2010. Dual roles for DNA polymerase θ in alternative end-joining repair of double-strand breaks in Drosophila. PLOS Genet. 6:e1001005
    [Google Scholar]
  23. 23.
    Chandramouly G, Liao SR, Rusanov T, Borisonnik N, Calbert ML et al. 2021. Polθ promotes the repair of 5′-DNA-protein crosslinks by microhomology-mediated end-joining. Cell Rep. 34:108820
    [Google Scholar]
  24. 24.
    Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T et al. 2021. Pol θ reverse transcribes RNA and promotes RNA-templated DNA repair. Sci. Adv. 7:eabf1771
    [Google Scholar]
  25. 25.
    Cheok CF, Wu L, Garcia PL, Janscak P, Hickson ID. 2005. The Bloom's syndrome helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids Res. 33:3932–41
    [Google Scholar]
  26. 26.
    Chopra N, Tovey H, Pearson A, Cutts R, Toms C et al. 2020. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat. Commun. 11:2662
    [Google Scholar]
  27. 27.
    Clay DE, Bretscher HS, Jezuit EA, Bush KB, Fox DT. 2021. Persistent DNA damage signaling and DNA polymerase theta promote broken chromosome segregation. J. Cell Biol. 220:e202106116
    [Google Scholar]
  28. 28.
    Cong K, Peng M, Kousholt AN, Lee WTC, Lee S et al. 2021. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81:3128–44.e7
    [Google Scholar]
  29. 29.
    Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA et al. 2000. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1:80–84
    [Google Scholar]
  30. 30.
    Cristini A, Gromak N, Sordet O. 2020. Transcription-dependent DNA double-strand breaks and human disease. Mol. Cell. Oncol. 7:1691905
    [Google Scholar]
  31. 31.
    Davarinejad H, Huang Y-C, Mermaz B, LeBlanc C, Poulet A et al. 2022. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 375:1281–86
    [Google Scholar]
  32. 32.
    Davis L, Khoo KJ, Zhang Y, Maizels N. 2020. POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks. PNAS 117:22900–9
    [Google Scholar]
  33. 33.
    Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K et al. 2019. Mitotic CDK promotes replisome disassembly, fork breakage, and complex DNA rearrangements. Mol. Cell 73:915–29.e6
    [Google Scholar]
  34. 34.
    Doublié S, Zahn KE. 2014. Structural insights into eukaryotic DNA replication. Front. Microbiol. 5:444
    [Google Scholar]
  35. 35.
    Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ et al. 2019. Genetic determinants of cellular addiction to DNA polymerase theta. Nat. Commun. 10:4286
    [Google Scholar]
  36. 36.
    Feng W, Smith CM, Simpson DA, Gupta GP. 2022. Targeting non-homologous and alternative end joining repair to enhance cancer radiosensitivity. Semin. Radiat. Oncol. 32:29–41
    [Google Scholar]
  37. 37.
    Fujikane R, Shinagawa H, Ishino Y. 2006. The archaeal Hjm helicase has recQ-like functions, and may be involved in repair of stalled replication fork. Genes Cells 11:99–110
    [Google Scholar]
  38. 38.
    Garcia PL, Liu Y, Jiricny J, West SC, Janscak P. 2004. Human RECQ5β, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J. 23:2882–91
    [Google Scholar]
  39. 39.
    Ghezraoui H, Piganeau M, Renouf B, Renaud J-B, Sallmyr A et al. 2014. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 55:829–42
    [Google Scholar]
  40. 40.
    Goff JP, Shields DS, Seki M, Choi S, Epperly MW et al. 2009. Lack of DNA polymerase θ (POLQ) radiosensitizes bone marrow stromal cells in vitro and increases reticulocyte micronuclei after total-body irradiation. Radiat. Res. 172:165–74
    [Google Scholar]
  41. 41.
    Guiblet WM, DeGiorgio M, Cheng X, Chiaromonte F, Eckert KA et al. 2021. Selection and thermostability suggest G-quadruplexes are novel functional elements of the human genome. Genome Res. 31:1136–49
    [Google Scholar]
  42. 42.
    Guy CP, Bolt EL. 2005. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res. 33:3678–90
    [Google Scholar]
  43. 43.
    Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC. 1996. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol. Cell. Biol. 16:5764–71
    [Google Scholar]
  44. 44.
    Hastings PJ, Ira G, Lupski JR 2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLOS Genet. 5:e1000327
    [Google Scholar]
  45. 45.
    He P, Yang W 2018. Template and primer requirements for DNA Pol θ-mediated end joining. PNAS 115:7747–52
    [Google Scholar]
  46. 46.
    Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM. 2010. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1:175–84
    [Google Scholar]
  47. 47.
    Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ et al. 2010. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown. Cancer Res. 70:2984–93
    [Google Scholar]
  48. 48.
    Hogg M, Sauer-Eriksson AE, Johansson E 2012. Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Res. 40:2611–22
    [Google Scholar]
  49. 49.
    Hogg M, Seki M, Wood RD, Doublié S, Wallace SS. 2011. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J. Mol. Biol. 405:642–52
    [Google Scholar]
  50. 50.
    Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. 2020. Structure and function relationships in mammalian DNA polymerases. Cell. Mol. Life Sci. 77:35–59
    [Google Scholar]
  51. 51.
    Hwang T, Reh S, Dunbayev Y, Zhong Y, Takata Y et al. 2020. Defining the mutation signatures of DNA polymerase θ in cancer genomes. NAR Cancer 2:zcaa017
    [Google Scholar]
  52. 52.
    Inagaki S, Nakamura K, Morikami A. 2009. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLOS Genet. 5:e1000613
    [Google Scholar]
  53. 53.
    Inagaki S, Suzuki T, Ohto M-A, Urawa H, Horiuchi T et al. 2006. Arabidopsis TEBICHI, with helicase and DNA polymerase domains, is required for regulated cell division and differentiation in meristems. Plant Cell 18:879–92
    [Google Scholar]
  54. 54.
    Jain R, Aggarwal AK, Rechkoblit O. 2018. Eukaryotic DNA polymerases. Curr. Opin. Struct. Biol. 53:77–87
    [Google Scholar]
  55. 55.
    Kamath-Loeb A, Loeb LA, Fry M. 2012. The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures. PLOS ONE 7:e30189
    [Google Scholar]
  56. 56.
    Kamisugi Y, Whitaker JW, Cuming AC. 2016. The transcriptional response to DNA-double-strand breaks in Physcomitrella patens. PLOS ONE 11:e0161204
    [Google Scholar]
  57. 57.
    Kamp JA, Lemmens BBLG, Romeijn RJ, Changoer SC, van Schendel R, Tijsterman M 2021. Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. Nat. Commun. 12:7126
    [Google Scholar]
  58. 58.
    Karow JK, Constantinou A, Li J-L, West SC, Hickson ID. 2000. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. PNAS 97:6504–8
    [Google Scholar]
  59. 59.
    Karow JK, Newman RH, Freemont PS, Hickson ID. 1999. Oligomeric ring structure of the Bloom's syndrome helicase. Curr. Biol. 9:597–600
    [Google Scholar]
  60. 60.
    Kelso AA, Lopezcolorado FW, Bhargava R, Stark JM. 2019. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLOS Genet 15:e1008319
    [Google Scholar]
  61. 61.
    Laverty DJ, Averill AM, Doublié S, Greenberg MM. 2017. The A-rule and deletion formation during abasic and oxidized abasic site bypass by DNA polymerase θ. ACS Chem. Biol. 12:1584–92
    [Google Scholar]
  62. 62.
    Laverty DJ, Greenberg MM. 2018. Expanded substrate scope of DNA polymerase θ and DNA polymerase β: lyase activity on 5′-overhangs and clustered lesions. Biochemistry 57:6119–27
    [Google Scholar]
  63. 63.
    Laverty DJ, Mortimer IP, Greenberg MM. 2018. Mechanistic insight through irreversible inhibition: DNA polymerase θ uses a common active site for polymerase and lyase activities. J. Am. Chem. Soc. 140:9034–37
    [Google Scholar]
  64. 64.
    Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H et al. 2020. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res. 48:9660–80
    [Google Scholar]
  65. 65.
    Lemée F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire M-J et al. 2010. DNA polymerase θ up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. PNAS 107:13390–95
    [Google Scholar]
  66. 66.
    Liu Q, Palomero L, Moore J, Guix I, Espín R et al. 2021. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci. Transl. Med. 13:eabc4465
    [Google Scholar]
  67. 67.
    Liu X, Jiang Y, Takata K-i, Nowak B, Liu C et al. 2019. CNDAC-induced DNA double-strand breaks cause aberrant mitosis prior to cell death. Mol. Cancer Ther. 18:2283–95
    [Google Scholar]
  68. 68.
    Llorens-Agost M, Ensminger M, Le HP, Gawai A, Liu J et al. 2021. POLθ-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nat. Cell Biol. 23:1095–104
    [Google Scholar]
  69. 69.
    Machwe A, Lozada EM, Xiao L, Orren DK. 2006. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins. BMC Mol. Biol. 7:1
    [Google Scholar]
  70. 70.
    Macris MA, Krejci L, Bussen W, Shimamoto A, Sung P. 2006. Biochemical characterization of the RECQ4 protein, mutated in Rothmund-Thomson syndrome. DNA Repair 5:172–80
    [Google Scholar]
  71. 71.
    Mara K, Charlot F, Guyon-Debast A, Schaefer DG, Collonnier C et al. 2019. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens. New Phytol 222:1380–91
    [Google Scholar]
  72. 72.
    Marini F, Kim N, Schuffert A, Wood RD. 2003. POLN, a nuclear PolA family DNA polymerase homologous to the DNA cross-link sensitivity protein Mus308. J. Biol. Chem. 278:32014–19
    [Google Scholar]
  73. 73.
    Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. 2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254–57
    [Google Scholar]
  74. 74.
    Mateos-Gomez PA, Kent T, Deng SK, McDevitt S, Kashkina E et al. 2017. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ. Nat. Struct. Mol. Biol. 24:1116–23
    [Google Scholar]
  75. 75.
    McVey M. 2010. Strategies for DNA interstrand crosslink repair: Insights from worms, flies, frogs, and slime molds. Environ. Mol. Mutagen. 51:646–58
    [Google Scholar]
  76. 76.
    McVey M, Radut D, Sekelsky JJ. 2004. End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. Genetics 168:2067–76
    [Google Scholar]
  77. 77.
    Mohaghegh P, Karow JK, Brosh RM Jr., Bohr VA, Hickson ID. 2001. The Bloom's and Werner's syndrome proteins are DNA structure–specific helicases. Nucleic Acids Res. 29:2843–49
    [Google Scholar]
  78. 78.
    Morrical SW. 2015. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb. Perspect. Biol. 7:a016444
    [Google Scholar]
  79. 79.
    Muthurajan UM, Hepler MRD, Hieb AR, Clark NJ, Kramer M et al. 2014. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. PNAS 111:12752–57
    [Google Scholar]
  80. 80.
    Muzzini DM, Plevani P, Boulton SJ, Cassata G, Marini F. 2008. Caenorhabditis elegans POLQ-1 and HEL-308 function in two distinct DNA interstrand cross-link repair pathways. DNA Repair 7:941–50
    [Google Scholar]
  81. 81.
    Muzzolini L, Beuron F, Patwardhan A, Popuri V, Cui S et al. 2007. Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLOS Biol. 5:e20
    [Google Scholar]
  82. 82.
    Nakamura K, Kustatscher G, Alabert C, Hodl M, Forne I et al. 2021. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol. Cell 81:1084–99.e6
    [Google Scholar]
  83. 83.
    Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. 2015. Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23:2319–30
    [Google Scholar]
  84. 84.
    Nisa M, Bergis C, Pedroza-Garcia J-A, Drouin-Wahbi J, Mazubert C et al. 2021. The plant DNA polymerase theta is essential for the repair of replication-associated DNA damage. Plant J. 106:1197–207
    [Google Scholar]
  85. 85.
    Nishizawa-Yokoi A, Saika H, Hara N, Lee L-Y, Toki S, Gelvin SB. 2021. Agrobacterium T-DNA integration in somatic cells does not require the activity of DNA polymerase θ. New Phytol. 229:2859–72
    [Google Scholar]
  86. 86.
    Oyama T, Oka H, Mayanagi K, Shirai T, Matoba K et al. 2009. Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm. BMC Struct. Biol. 9:2
    [Google Scholar]
  87. 87.
    Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. 2018. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J. Biol. Chem. 293:5259–69
    [Google Scholar]
  88. 88.
    Plecenikova A, Slaninova M, Riha K. 2014. Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLOS ONE 9:e105482
    [Google Scholar]
  89. 89.
    Popuri V, Bachrati CZ, Muzzolini L, Mosedale G, Costantini S et al. 2008. The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J. Biol. Chem. 283:17766–76
    [Google Scholar]
  90. 90.
    Prakash R, Zhang Y, Feng W, Jasin M. 2015. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7:a016600
    [Google Scholar]
  91. 91.
    Prasad R, Longley MJ, Sharief FS, Hou EW, Copeland WC, Wilson SH. 2009. Human DNA polymerase θ possesses 5′-dRP lyase activity and functions in single-nucleotide base excision repair in vitro. Nucleic Acids Res. 37:1868–77
    [Google Scholar]
  92. 92.
    Prodhomme MK, Pommier RM, Franchet C, Fauvet F, Bergoglio V et al. 2021. EMT transcription factor ZEB1 represses the mutagenic POLθ-mediated end-joining pathway in breast cancers. Cancer Res. 81:1595–606
    [Google Scholar]
  93. 93.
    Quinn GA, Banat AM, Abdelhameed AM, Banat IM. 2020. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery. J Med. Microbiol. 69:1040–48
    [Google Scholar]
  94. 94.
    Raia P, Delarue M, Sauguet L. 2019. An updated structural classification of replicative DNA polymerases. Biochem. Soc. Trans. 47:239–49
    [Google Scholar]
  95. 95.
    Ramsden DA, Carvajal-Garcia J, Gupta GP. 2022. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat. Rev. Mol. Cell Biol. 23:125–40
    [Google Scholar]
  96. 96.
    Randrianjatovo-Gbalou I, Rosario S, Sismeiro O, Varet H, Legendre R et al. 2018. Enzymatic synthesis of random sequences of RNA and RNA analogues by DNA polymerase theta mutants for the generation of aptamer libraries. Nucleic Acids Res. 46:6271–84
    [Google Scholar]
  97. 97.
    Roerink SF, van Schendel R, Tijsterman M 2014. Polymerase θ-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res. 24:954–62
    [Google Scholar]
  98. 98.
    Saito S, Maeda R, Adachi N. 2017. Dual loss of human POLQ and LIG4 abolishes random integration. Nat. Commun. 8:16112
    [Google Scholar]
  99. 99.
    Sakofsky CJ, Malkova A. 2017. Break induced replication in eukaryotes: mechanisms, functions, and consequences. Crit. Rev. Biochem. Mol. Biol. 52:395–413
    [Google Scholar]
  100. 100.
    Schaub JM, Soniat MM, Finkelstein IJ. 2022. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. Nucleic Acids Res. 50:3911–21
    [Google Scholar]
  101. 101.
    Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M 2019. Templated insertions: a smoking gun for polymerase theta-mediated end joining. Trends Genet. 35:632–44
    [Google Scholar]
  102. 102.
    Seki M, Marini F, Wood RD. 2003. POLQ (Pol θ), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 31:6117–26
    [Google Scholar]
  103. 103.
    Seki M, Masutani C, Yang LW, Schuffert A, Iwai S et al. 2004. High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J. 23:4484–94
    [Google Scholar]
  104. 104.
    Seki M, Wood RD. 2008. DNA polymerase θ (POLQ) can extend from mismatches and from bases opposite a (6-4) photoproduct. DNA Repair 7:119–27
    [Google Scholar]
  105. 105.
    Sharma S, Sommers JA, Choudhary S, Faulkner JK, Cui S et al. 2005. Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J. Biol. Chem. 280:28072–84
    [Google Scholar]
  106. 106.
    Shastri N, Tsai YC, Hile S, Jordan D, Powell B et al. 2018. Genome-wide identification of structure-forming repeats as principal sites of fork collapse upon ATR inhibition. Mol. Cell 72:222–38.e11
    [Google Scholar]
  107. 107.
    Shima N, Hartford SA, Duffy T, Wilson LA, Schimenti KJ, Schimenti JC. 2003. Phenotype-based identification of mouse chromosome instability mutants. Genetics 163:1031–40
    [Google Scholar]
  108. 108.
    Sizova I, Kelterborn S, Verbenko V, Kateriya S, Hegemann P 2021. Chlamydomonas POLQ is necessary for CRISPR/Cas9-mediated gene targeting. G3 11:jkab114
    [Google Scholar]
  109. 109.
    Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reutersward C et al. 2019. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med. 25:1526–33
    [Google Scholar]
  110. 110.
    Sun H, Karow JK, Hickson ID, Maizels N. 1998. The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273:27587–92
    [Google Scholar]
  111. 111.
    Takata K-I, Reh S, Yousefzadeh MJ, Zelazowski MJ, Bhetawal S et al. 2017. Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLOS Genet. 13:e1006818
    [Google Scholar]
  112. 112.
    Thyme SB, Schier AF. 2016. Polq-mediated end joining is essential for surviving DNA double-strand breaks during early zebrafish development. Cell Rep. 15:707–14
    [Google Scholar]
  113. 113.
    van Bostelen I, Tijsterman M. 2017. Combined loss of three DNA damage response pathways renders C. elegans intolerant to light. DNA Repair 54:55–62
    [Google Scholar]
  114. 114.
    van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJ, Tijsterman M. 2016. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat. Plants 2:16164
    [Google Scholar]
  115. 115.
    Vanson S, Li Y, Wood RD, Doublié S. 2022. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair 116:103358
    [Google Scholar]
  116. 116.
    Vindigni A, Marino F, Gileadi O. 2010. Probing the structural basis of RecQ helicase function. Biophys. Chem. 149:67–77
    [Google Scholar]
  117. 117.
    Wang Z, Song Y, Li S, Kurian S, Xiang R et al. 2019. DNA polymerase θ (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse. J. Biol. Chem. 294:3909–19
    [Google Scholar]
  118. 118.
    Ward JD, Muzzini DM, Petalcorin MI, Martinez-Perez E, Martin JS et al. 2010. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair. Mol. Cell 37:259–72
    [Google Scholar]
  119. 119.
    Wei P-C, Chang AN, Kao J, Du Z, Meyers RM et al. 2016. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164:644–55
    [Google Scholar]
  120. 120.
    Whelan DR, Rothenberg E. 2021. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. PNAS 118:e2021963118
    [Google Scholar]
  121. 121.
    White TB, Lambowitz AM. 2012. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms. PLOS Genet. 8:e1002534
    [Google Scholar]
  122. 122.
    Wisnovsky S, Sack T, Pagliarini DJ, Laposa RR, Kelley SO. 2018. DNA polymerase θ increases mutational rates in mitochondrial DNA. ACS Chem. Biol. 13:900–8
    [Google Scholar]
  123. 123.
    Wood R, Doublié S. 2016. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair 44:22–32
    [Google Scholar]
  124. 124.
    Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA et al. 2016. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol. Cell 63:662–73
    [Google Scholar]
  125. 125.
    Yoon J-H, Johnson RE, Prakash L, Prakash S. 2019. DNA polymerase θ accomplishes translesion synthesis opposite 1,N6-ethenodeoxyadenosine with a remarkably high fidelity in human cells. Genes Dev. 33:282–87
    [Google Scholar]
  126. 126.
    Yoon J-H, McArthur MJ, Park J, Basu D, Wakamiya M et al. 2019. Error-prone replication through UV lesions by DNA polymerase θ protects against skin cancers. Cell 176:1295–309.e15
    [Google Scholar]
  127. 127.
    Yoon J-H, Roy Choudhury J, Park J, Prakash S, Prakash L 2014. A role for DNA polymerase θ in promoting replication through oxidative DNA lesion, thymine glycol, in human cells. J. Biol. Chem. 289:13177–85
    [Google Scholar]
  128. 128.
    Yousefzadeh MJ, Wood R. 2013. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair 12:1–9
    [Google Scholar]
  129. 129.
    Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC et al. 2014. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLOS Genetics 10:e1004654
    [Google Scholar]
  130. 130.
    Zahn KE, Averill AM, Aller P, Wood RD, Doublié S. 2015. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat. Struct. Mol. Biol. 22:304–11
    [Google Scholar]
  131. 131.
    Zahn KE, Jensen RB. 2021. Polymerase θ coordinates multiple intrinsic enzymatic activities during DNA repair. Genes 12:1310
    [Google Scholar]
  132. 132.
    Zahn KE, Jensen RB, Wood RD, Doublié S. 2021. Human DNA polymerase θ harbors DNA end-trimming activity critical for DNA repair. Mol. Cell 81:1534–47.e4
    [Google Scholar]
  133. 133.
    Zatreanu D, Robinson HMR, Alkhatib O, Boursier M, Finch H et al. 2021. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12:3636
    [Google Scholar]
  134. 134.
    Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. 2017. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat. Commun. 8:66
    [Google Scholar]
  135. 135.
    Zhao B, Rothenberg E, Ramsden DA, Lieber MR. 2020. The molecular basis and disease relevance of non-homologous DNA end joining. Nat. Rev. Mol. Cell Biol. 21:765–81
    [Google Scholar]
  136. 136.
    Zhou J, Gelot C, Pantelidou C, Li A, Yücel H et al. 2021. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2:598–610
    [Google Scholar]
/content/journals/10.1146/annurev-genet-072920-041046
Loading
/content/journals/10.1146/annurev-genet-072920-041046
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error