1932

Abstract

Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-080320-030537
2022-11-30
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/56/1/annurev-genet-080320-030537.html?itemId=/content/journals/10.1146/annurev-genet-080320-030537&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:54612185–95
    [Google Scholar]
  2. 2.
    Adamson ED, Woodland HR. 1977. Changes in the rate of histone synthesis during oocyte maturation and very early development of Xenopus laevis. Dev. Biol. 57:1136–49
    [Google Scholar]
  3. 3.
    Almouzni G, Méchali M, Wolffe AP. 1990. Competition between transcription complex assembly and chromatin assembly on replicating DNA. EMBO J 9:2573–82
    [Google Scholar]
  4. 4.
    Almouzni G, Méchali M, Wolffe AP. 1991. Transcription complex disruption caused by a transition in chromatin structure. Mol. Cell. Biol. 11:2655–65
    [Google Scholar]
  5. 5.
    Almouzni G, Wolffe AP. 1995. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis. EMBO J 14:81752–65
    [Google Scholar]
  6. 6.
    Amodeo AA, Jukam D, Straight AF, Skotheim JM. 2015. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. PNAS 112:10e1086–95
    [Google Scholar]
  7. 7.
    Amodeo AA, Skotheim JM. 2016. Cell-size control. Cold Spring Harb. Perspect. Biol. 8:4a019083
    [Google Scholar]
  8. 8.
    Anderson CA, Roberts S, Zhang H, Kelly CM, Kendall A et al. 2015. Ploidy variation in multinucleate cells changes under stress. Mol. Biol. Cell 26:61129–40
    [Google Scholar]
  9. 9.
    Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ et al. 2009. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 28:81067–77
    [Google Scholar]
  10. 10.
    Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:4975–86
    [Google Scholar]
  11. 11.
    Blythe SA, Wieschaus EF. 2015. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160:61169–81
    [Google Scholar]
  12. 12.
    Blythe SA, Wieschaus EF. 2016. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. eLife 5:e20148
    [Google Scholar]
  13. 13.
    Boveri T 1905. Zellenstudien V. Über die Abhängigkeit der Kerngrösse und Zellenzahl bei Seeigellarven von der Chromosomenzahl der Ausganszellen. Jenaische Z. Naturwiss. 39:445–524
    [Google Scholar]
  14. 14.
    Brantley SE, Di Talia S. 2021. Cell cycle control during early embryogenesis. Development 148:13dev193128
    [Google Scholar]
  15. 15.
    Cadart C, Monnier S, Grilli J, Sáez PJ, Srivastava N et al. 2018. Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat. Commun. 9:13275
    [Google Scholar]
  16. 16.
    Callan HG, Lloyd L. 1960. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Philos. Trans. R. Soc. Lond. B 243:702135–219
    [Google Scholar]
  17. 17.
    Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. 2015. Transposons, genome size, and evolutionary insights in animals. Cytogenet. Genome Res. 147:4217–39
    [Google Scholar]
  18. 18.
    Cantwell H, Nurse P. 2019. Unravelling nuclear size control. Curr. Genet. 65:61281–85
    [Google Scholar]
  19. 19.
    Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 95:1147–75
    [Google Scholar]
  20. 20.
    Chan KY, Yan C-CS, Roan H-Y, Hsu S-C, Tseng T-L et al. 2022. Skin cells undergo asynthetic fission to expand body surfaces in zebrafish. Nature 605:7908119–25
    [Google Scholar]
  21. 21.
    Chan SH, Tang Y, Miao L, Darwich-Codore H, Vejnar CE et al. 2019. Brd4 and P300 confer transcriptional competency during zygotic genome activation. Dev. Cell 49:867–81.e8
    [Google Scholar]
  22. 22.
    Chari S, Wilky H, Govindan J, Amodeo AA. 2019. Histone concentration regulates the cell cycle and transcription in early development. Development 146:19dev177402
    [Google Scholar]
  23. 23.
    Chen H, Einstein LC, Little SC, Good MC. 2019. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo. Dev. Cell 49:6852–66.e7
    [Google Scholar]
  24. 24.
    Chen Y, Zhao G, Zahumensky J, Honey S, Futcher B 2020. Differential scaling of gene expression with cell size may explain size control in budding yeast. Mol. Cell 78:2359–70.e6
    [Google Scholar]
  25. 25.
    Cheng L, Chen J, Kong Y, Tan C, Kafri R, Björklund M. 2021. Size-scaling promotes senescence-like changes in proteome and organelle content. bioRxiv 2021.08.05.455193. https://doi.org/10.1101/2021.08.05.455193
    [Crossref]
  26. 26.
    Cho EH, Nijhout HF. 2013. Development of polyploidy of scale-building cells in the wings of Manduca sexta. Arthropod Struct. Dev. 42:137–46
    [Google Scholar]
  27. 27.
    Church SH, de Medeiros BAS, Donoughe S, Márquez Reyes NL, Extavour CG 2021. Repeated loss of variation in insect ovary morphology highlights the role of development in life-history evolution. Proc. R. Soc. B 288:20210150
    [Google Scholar]
  28. 28.
    Claude K-L, Bureik D, Chatzitheodoridou D, Adarska P, Singh A, Schmoller KM 2021. Transcription coordinates histone amounts and genome content. Nat. Commun. 12:14202
    [Google Scholar]
  29. 29.
    Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341:6148893–96
    [Google Scholar]
  30. 30.
    Collart C, Smith JC, Zegerman P. 2017. Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition. Dev. Cell 42:182–96.e3
    [Google Scholar]
  31. 31.
    Dapples CC, King RC. 1970. The development of the nucleolus of the ovarian nurse cell of Drosophila melanogaster. Z. Zellforsch. 103:134–47
    [Google Scholar]
  32. 32.
    D'Ario M, Tavares R, Schiessl K, Desvoyes B, Gutierrez C et al. 2021. Cell size controlled in plants using DNA content as an internal scale. Science 372:65471176–81
    [Google Scholar]
  33. 33.
    de las Heras JI, Batrakou DG, Schirmer EC. 2013. Cancer biology and the nuclear envelope: a convoluted relationship. Semin. Cancer Biol. 23:2125–37
    [Google Scholar]
  34. 34.
    Dej KJ, Spradling AC. 1999. The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development 126:2293–303
    [Google Scholar]
  35. 35.
    Del Pino EM, Humphries AA Jr. 1978. Multiple nuclei during early oogenesis in Flectonotus pygmaeus and other marsupial frogs. Biol. Bull. 154:198–212
    [Google Scholar]
  36. 36.
    Demidenko ZN, Blagosklonny MV. 2008. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7:213355–61
    [Google Scholar]
  37. 37.
    Deutsch VR, Tomer A. 2006. Megakaryocyte development and platelet production. Br. J. Haematol. 134:5453–66
    [Google Scholar]
  38. 38.
    Djabrayan NJ-V, Smits CM, Krajnc M, Stern T, Yamada S et al. 2019. Metabolic regulation of developmental cell cycles and zygotic transcription. Curr. Biol. 29:71193–98.e5
    [Google Scholar]
  39. 39.
    Donoughe S, Hoffmann J, Nakamura T, Rycroft CH, Extavour CG. 2022. Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat. Commun. 13:3889
    [Google Scholar]
  40. 40.
    Dumont JN. 1972. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136:2153–79
    [Google Scholar]
  41. 41.
    Dundon SER, Chang S-S, Kumar A, Occhipinti P, Shroff H et al. 2016. Clustered nuclei maintain autonomy and nucleocytoplasmic ratio control in a syncytium. Mol. Biol. Cell 27:132000–7
    [Google Scholar]
  42. 42.
    Edgar BA, Kiehle CP, Schubiger G. 1986. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44:2365–72
    [Google Scholar]
  43. 43.
    Edgar BA, Lehman DA, O'Farrell PH. 1994. Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 120:113131–43
    [Google Scholar]
  44. 44.
    Edgar BA, O'Farrell PH 1989. Genetic control of cell division patterns in the Drosophila embryo. Cell 57:1177–87
    [Google Scholar]
  45. 45.
    Edgar BA, Orr-Weaver TL. 2001. Endoreplication cell cycles: more for less. Cell 105:3297–306
    [Google Scholar]
  46. 46.
    Edgar BA, Schubiger G. 1986. Parameters controlling transcriptional activation during early Drosophila development. Cell 44:6871–77
    [Google Scholar]
  47. 47.
    Fankhauser G. 1939. Polyploidy in the salamander. Eurycea bislineata. J. Heredity 30:9379–88
    [Google Scholar]
  48. 48.
    Farrell JA, O'Farrell PH 2014. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu. Rev. Genet. 48:269–94
    [Google Scholar]
  49. 49.
    Farrell JA, Shermoen AW, Yuan K, O'Farrell PH. 2012. Embryonic onset of late replication requires Cdc25 down-regulation. Genes Dev 26:7714–25
    [Google Scholar]
  50. 50.
    Fogarty P, Campbell SD, Abu-Shumays R, Phalle BS, Yu KR et al. 1997. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7:6418–26
    [Google Scholar]
  51. 51.
    Fox DT, Gall JG, Spradling AC. 2010. Error-prone polyploid mitosis during normal Drosophila development. Genes Dev 24:202294–302
    [Google Scholar]
  52. 52.
    Fox DT, Spradling AC. 2009. The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5:3290–97
    [Google Scholar]
  53. 53.
    Fukaya T, Lim B, Levine M. 2017. Rapid rates of Pol II elongation in the Drosophila embryo. Curr. Biol. 27:91387–91
    [Google Scholar]
  54. 54.
    Gaginskaya E, Kulikova T, Krasikova A. 2009. Avian lampbrush chromosomes: a powerful tool for exploration of genome expression. Cytogenet. Genome Res. 124:3–4251–67
    [Google Scholar]
  55. 55.
    Gall JG. 2012. Are lampbrush chromosomes unique to meiotic cells?. Chromosome Res 20:8905–9
    [Google Scholar]
  56. 56.
    Gardner JD, Laurin M, Organ CL. 2020. The relationship between genome size and metabolic rate in extant vertebrates. Philos. Trans. R. Soc. B 375:179320190146
    [Google Scholar]
  57. 57.
    Geng Y, Yu Q, Sicinska E, Das M, Schneider JE et al. 2003. Cyclin E ablation in the mouse. Cell 114:4431–43
    [Google Scholar]
  58. 58.
    Gibeaux R, Miller K, Acker R, Kwon T, Heald R. 2018. Xenopus hybrids provide insight into cell and organism size control. Front. Physiol. 9:1758
    [Google Scholar]
  59. 59.
    Ginzberg MB, Chang N, D'Souza H, Patel N, Kafri R, Kirschner MW. 2018. Cell size sensing in animal cells coordinates anabolic growth rates and cell cycle progression to maintain cell size uniformity. eLife 7:e26957
    [Google Scholar]
  60. 60.
    Greenberg SB, Grove GL, Cristofalo VJ. 1977. Cell size in aging monolayer cultures. In Vitro 13:5297–300
    [Google Scholar]
  61. 61.
    Gregory TR. 2000. Nucleotypic effects without nuclei: genome size and erythrocyte size in mammals. Genome 43:5895–901
    [Google Scholar]
  62. 62.
    Gregory TR. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27:5830–43
    [Google Scholar]
  63. 63.
    Hansson K-A, Eftestøl E, Bruusgaard JC, Juvkam I, Cramer AW et al. 2020. Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nat. Commun. 11:16288
    [Google Scholar]
  64. 64.
    Hayden L, Chao A, Deneke VE, Vergassola M, Puliafito A, Di Talia S. 2022. Cullin-5 mutants reveal collective sensing of the nucleocytoplasmic ratio in Drosophila embryogenesis. Curr. Biol. 32:92084–92.e4
    [Google Scholar]
  65. 65.
    Heijo H, Shimogama S, Nakano S, Miyata A, Iwao Y, Hara Y. 2020. DNA content contributes to nuclear size control in Xenopus laevis. Mol. Biol. Cell 31:242703–17
    [Google Scholar]
  66. 66.
    Hertwig R. 1903. Ueber die Korrelation von Zell-und Kerngrösse und ihre Bedeutung für die Geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Centralbl. 23:49–62
    [Google Scholar]
  67. 67.
    Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I. 2019. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Sci. Rep. 9:13234
    [Google Scholar]
  68. 68.
    Horner HA, Macgregor HC. 1983. C value and cell volume: their significance in the evolution and development of amphibians. J. Cell Sci. 63:135–46
    [Google Scholar]
  69. 69.
    Huang H-C, Chiang S-J, Wen S-H, Lee P-J, Chen H-W et al. 2019. Three-dimensional nucleus-to-cytoplasm ratios provide better discrimination of normal and lung adenocarcinoma cells than in two dimensions. J. Biomed. Opt. 24:8080502
    [Google Scholar]
  70. 70.
    Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM. 2017. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169:2216–28.e19
    [Google Scholar]
  71. 71.
    Imran Alsous J, Villoutreix P, Berezhkovskii AM, Shvartsman SY. 2017. Collective growth in a small cell network. Curr. Biol. 27:172670–76.e4
    [Google Scholar]
  72. 72.
    Irle T, Schierenberg E. 2002. Developmental potential of fused Caenorhabditis elegans oocytes: generation of giant and twin embryos. Dev. Genes Evol. 212:6257–66
    [Google Scholar]
  73. 73.
    Jevtić P, Edens LJ, Li X, Nguyen T, Chen P, Levy DL 2015. Concentration-dependent effects of nuclear lamins on nuclear size in Xenopus and mammalian cells. J. Biol. Chem. 290:4627557–71
    [Google Scholar]
  74. 74.
    Jevtić P, Levy DL. 2014. Mechanisms of nuclear size regulation in model systems and cancer. Cancer Biology and the Nuclear Envelope: Recent Advances May Elucidate Past Paradoxes EC Schirmer, JI de las Heras 537–69 New York: Springer
    [Google Scholar]
  75. 75.
    Jevtić P, Levy DL. 2015. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr. Biol. 25:145–52
    [Google Scholar]
  76. 76.
    Jevtić P, Levy DL. 2017. Both nuclear size and DNA amount contribute to midblastula transition timing in Xenopus laevis. Sci. Rep. 7:17908
    [Google Scholar]
  77. 77.
    Johnson MR, Stephenson RA, Ghaemmaghami S, Welte MA. 2018. Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. eLife 7:e36021
    [Google Scholar]
  78. 78.
    Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. 2007. The size of the nucleus increases as yeast cells grow. Mol. Biol. Cell 18:93523–32
    [Google Scholar]
  79. 79.
    Joseph SR, Pálfy M, Hilbert L, Kumar M, Karschau J et al. 2017. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 6:e23326
    [Google Scholar]
  80. 80.
    Jukam D, Kapoor RR, Straight AF, Skotheim JM. 2021. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus. Curr. Biol. 31:194269–81.e8
    [Google Scholar]
  81. 81.
    Jukam D, Shariati SAM, Skotheim JM. 2017. Zygotic genome activation in vertebrates. Dev. Cell 42:4316–32
    [Google Scholar]
  82. 82.
    Kane DA, Kimmel CB. 1993. The zebrafish midblastula transition. Development 119:2447–56
    [Google Scholar]
  83. 83.
    Kane DA, Warga RM, Kimmel CB. 1992. Mitotic domains in the early embryo of the zebrafish. Nature 360:6406735–37
    [Google Scholar]
  84. 84.
    Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F, Rosell R 2016. Cellular and molecular biology of small cell lung cancer: an overview. Transl. Lung Cancer Res. 5:12–15
    [Google Scholar]
  85. 85.
    Kennell D, Riezman H. 1977. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114:11–21
    [Google Scholar]
  86. 86.
    Kimelman D, Kirschner M, Scherson T. 1987. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48:3399–407
    [Google Scholar]
  87. 87.
    Kobayakawa Y, Kubota HY. 1981. Temporal pattern of cleavage and the onset of gastrulation in amphibian embryos developed from eggs with the reduced cytoplasm. Development 62:183–94
    [Google Scholar]
  88. 88.
    Lanz MC, Zatulovskiy E, Swaffer MP, Zhang L, Ilerten I et al. 2021. Increasing cell size remodels the proteome and promotes senescence. bioRxiv 2021.07.29.454227. https://doi.org/10.1101/2021.07.29.454227
    [Crossref]
  89. 89.
    Lazzeri E, Angelotti ML, Conte C, Anders H-J, Romagnani P. 2019. Surviving acute organ failure: cell polyploidization and progenitor proliferation. Trends Mol. Med. 25:5366–81
    [Google Scholar]
  90. 90.
    Lemière J, Real-Calderon P, Holt LJ, Fai TG, Chang F 2021. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. bioRxiv 2021.12.05.471221. https://doi.org/10.1101/2021.12.05.471221
    [Crossref]
  91. 91.
    Lengefeld J, Cheng C-W, Maretich P, Blair M, Hagen H et al. 2021. Cell size is a determinant of stem cell potential during aging. Sci. Adv. 7:46eabk0271
    [Google Scholar]
  92. 92.
    Levy DL, Heald R. 2010. Nuclear size is regulated by importin α and Ntf2 in Xenopus. Cell 143:2288–98
    [Google Scholar]
  93. 93.
    Levy DL, Heald R. 2015. Biological scaling problems and solutions in amphibians. Cold Spring Harb. Perspect. Biol. 8:1a019166
    [Google Scholar]
  94. 94.
    Li Q, Rycaj K, Chen X, Tang DG 2015. Cancer stem cells and cell size: a causal link?. Semin. Cancer Biol. 35:191–99
    [Google Scholar]
  95. 95.
    Licht LE, Lowcock LA. 1991. Genome size and metabolic rate in salamanders. Comp. Biochem. Physiol. Part B Comp. Biochem. 100:183–92
    [Google Scholar]
  96. 96.
    Liu J. 2018. The dualistic origin of human tumors. Semin. Cancer Biol. 53:1–16
    [Google Scholar]
  97. 97.
    Losick VP, Duhaime LG. 2021. The endocycle restores tissue tension in the Drosophila abdomen post wound repair. Cell Rep 37:2109827
    [Google Scholar]
  98. 98.
    Losick VP, Fox DT, Spradling AC. 2013. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 23:222224–32
    [Google Scholar]
  99. 99.
    Lu X, Li JM, Elemento O, Tavazoie S, Wieschaus EF. 2009. Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development 136:122101–10
    [Google Scholar]
  100. 100.
    MacGregor HC. 1980. Recent developments in the study of lampbrush chromosomes. Heredity 44:13–35
    [Google Scholar]
  101. 101.
    Machlus KR, Italiano JE Jr. 2013. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 201:6785–96
    [Google Scholar]
  102. 102.
    Mammoto T, Torisawa Y-S, Muyleart M, Hendee K, Anugwom C et al. 2019. Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging 11:177051–69
    [Google Scholar]
  103. 103.
    Marguerat S, Bähler J. 2012. Coordinating genome expression with cell size. Trends Genet 28:11560–65
    [Google Scholar]
  104. 104.
    Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. 2012. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151:3671–83
    [Google Scholar]
  105. 105.
    Martin NC, McCullough CT, Bush PG, Sharp L, Hall AC, Harrison DJ. 2002. Functional analysis of mouse hepatocytes differing in DNA content: volume, receptor expression, and effect of IFNγ. J. Cell. Physiol. 191:2138–44
    [Google Scholar]
  106. 106.
    McKay DJ, Klusza S, Penke TJR, Meers MP, Curry KP et al. 2015. Interrogating the function of metazoan histones using engineered gene clusters. Dev. Cell 32:3373–86
    [Google Scholar]
  107. 107.
    Miettinen TP, Björklund M. 2017. Mitochondrial function and cell size: an allometric relationship. Trends Cell Biol 27:6393–402
    [Google Scholar]
  108. 108.
    Miettinen TP, Ly KS, Manalis SR. 2022. Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis. eLife 11:e76664
    [Google Scholar]
  109. 109.
    Miller KE, Brownlee C, Heald R. 2020. The power of amphibians to elucidate mechanisms of size control and scaling. Exp. Cell Res. 392:1112036
    [Google Scholar]
  110. 110.
    Milo R, Phillips R. 2015. Cell Biology by the Numbers New York: Garland Sci.
  111. 111.
    Mirsky AE, Ris H. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34:4451–62
    [Google Scholar]
  112. 112.
    Mitchell EL, Hill RS. 1986. The occurrence of lampbrush chromosomes in early diplotene oocytes of Xenopus laevis. J. Cell Sci. 83:213–21
    [Google Scholar]
  113. 113.
    Mitsuru K. 1981. Relationships between number, size and shape of red blood cells in amphibians. Comp. Biochem. Physiol. Part A Physiol. 69:4771–75
    [Google Scholar]
  114. 114.
    Mueller RL, Gregory TR, Gregory SM, Hsieh A, Boore JL. 2008. Genome size, cell size, and the evolution of enucleated erythrocytes in attenuate salamanders. Zoology 111:3218–30
    [Google Scholar]
  115. 115.
    Mukherjee RN, Sallé J, Dmitrieff S, Nelson KM, Oakey J et al. 2020. The perinuclear ER scales nuclear size independently of cell size in early embryos. Dev. Cell 54:3395–409.e7
    [Google Scholar]
  116. 116.
    Murphy CM, Michael WM. 2013. Control of DNA replication by the nucleus/cytoplasm ratio in Xenopus. J. Biol. Chem. 288:4129382–93
    [Google Scholar]
  117. 117.
    Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE et al. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:5797267
    [Google Scholar]
  118. 118.
    Neumann FR, Nurse P. 2007. Nuclear size control in fission yeast. J. Cell Biol. 179:4593–600
    [Google Scholar]
  119. 119.
    Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP et al. 2019. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176:51083–97.e18
    [Google Scholar]
  120. 120.
    Newport J, Kirschner M. 1982. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:3675–86
    [Google Scholar]
  121. 121.
    Newport J, Kirschner M. 1982. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:3687–96
    [Google Scholar]
  122. 122.
    Nguyen T, Costa E, Deibert T, Reyes J, Keber F et al. 2021. Differential nuclear import sets the timing of protein access to the embryonic genome. bioRxiv 2021.10.18.464816. https://doi.org/10.1101/2021.10.18.464816
    [Crossref]
  123. 123.
    Nguyen T, Pappireddi N, Wühr M. 2019. Proteomics of nucleocytoplasmic partitioning. Curr. Opin. Chem. Biol. 48:55–63
    [Google Scholar]
  124. 124.
    Noetzli LJ, French SL, Machlus KR. 2019. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler. Thromb. Vasc. Biol. 39:71288–300
    [Google Scholar]
  125. 125.
    Nurse P. 1975. Genetic control of cell size at cell division in yeast. Nature 256:5518547–51
    [Google Scholar]
  126. 126.
    Olmo O, Morescalchi A. 1975. Evolution of the genome and cell sizes in salamanders. Experientia 31:7804–6
    [Google Scholar]
  127. 127.
    Orietti LC, Rosa VS, Antonica F, Kyprianou C, Mansfield W et al. 2021. Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis. Stem Cell Rep 16:51182–96
    [Google Scholar]
  128. 128.
    Padovan-Merhar O, Nair GP, Biaesch A, Mayer A, Scarfone S et al. 2015. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58:2339–52
    [Google Scholar]
  129. 129.
    Pellicer J, Fay MF, Leitch IJ. 2010. The largest eukaryotic genome of them all?. Botanical J. Linnean Soc. 164:110–15
    [Google Scholar]
  130. 130.
    Pienta KJ, Hammarlund EU, Brown JS, Amend SR, Axelrod RM. 2021. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. PNAS 118:7e2020838118
    [Google Scholar]
  131. 131.
    Prioleau M-N, Huet J, Sentenac A, Méchali M. 1994. Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77:3439–49
    [Google Scholar]
  132. 132.
    Rhind N. 2021. Cell-size control. Curr. Biol. 31:21R1414–20
    [Google Scholar]
  133. 133.
    Royzman I, Hayashi-Hagihara A, Dej KJ, Bosco G, Lee JY, Orr-Weaver TL. 2002. The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech. Dev. 119:2225–37
    [Google Scholar]
  134. 134.
    Sadeghi Shoreh Deli A, Scharf S, Steiner Y, Bein J, Hansmann M-L, Hartmann S. 2022. 3D analyses reveal T cells with activated nuclear features in T-cell/histiocyte-rich large B-cell lymphoma. Mod. Pathol. https://doi.org/10.1038/s41379-022-01016-8
    [Crossref] [Google Scholar]
  135. 135.
    Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB et al. 2007. Scaling of number, size, and metabolic rate of cells with body size in mammals. PNAS 104:114718–23
    [Google Scholar]
  136. 136.
    Schmoller KM, Skotheim JM. 2015. The biosynthetic basis of cell size control. Trends Cell Biol 25:12793–802
    [Google Scholar]
  137. 137.
    Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I. 2006. Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:1467–75
    [Google Scholar]
  138. 138.
    Shapiro JA, von Sternberg R. 2005. Why repetitive DNA is essential to genome function. Biol. Rev. 80:2227–50
    [Google Scholar]
  139. 139.
    Sher N, Von Stetina JR, Bell GW, Matsuura S, Ravid K, Orr-Weaver TL 2013. Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells. PNAS 110:239368–73
    [Google Scholar]
  140. 140.
    Sherman F. 2002. Getting started with yeast. Methods Enzymol 350:3–41
    [Google Scholar]
  141. 141.
    Shermoen AW, McCleland ML, O'Farrell PH. 2010. Developmental control of late replication and S phase length. Curr. Biol. 20:232067–77
    [Google Scholar]
  142. 142.
    Shermoen AW, O'Farrell PH 1991. Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67:2303–10
    [Google Scholar]
  143. 143.
    Shimada M, Haruta M, Niida H, Sawamoto K, Nakanishi M. 2010. Protein phosphatase 1γ is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Rep 11:11883–89
    [Google Scholar]
  144. 144.
    Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N. 2002. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 21:143694–703
    [Google Scholar]
  145. 145.
    Shindo Y, Amodeo AA. 2019. Dynamics of free and chromatin-bound histone H3 during early embryogenesis. Curr. Biol. 29:2359–66.e4
    [Google Scholar]
  146. 146.
    Shindo Y, Amodeo AA. 2021. Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo. Curr. Biol. 31:122633–42.e6
    [Google Scholar]
  147. 147.
    Shindo Y, Amodeo AA. 2021. Modeling the role for nuclear import dynamics in the early embryonic cell cycle. Biophys. J. 120:194277–86
    [Google Scholar]
  148. 148.
    Shindo Y, Brown MG, Amodeo AA. 2022. Versatile roles for histones in early development. Curr. Opin. Cell Biol. 75:102069
    [Google Scholar]
  149. 149.
    Sibon OCM, Stevenson VA, Theurkauf WE. 1997. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388:663793–97
    [Google Scholar]
  150. 150.
    Simeoni I, Gilchrist MJ, Garrett N, Armisen J, Gurdon JB. 2012. Widespread transcription in an amphibian oocyte relates to its reprogramming activity on transplanted somatic nuclei. Stem Cells Dev 21:2181–90
    [Google Scholar]
  151. 151.
    Smith JDL, Bickham JW, Gregory TR. 2013. Patterns of genome size diversity in bats (order Chiroptera). Genome 56:8457–72
    [Google Scholar]
  152. 152.
    Song Y, Marmion R, Park JO, Biswas D, Rabinowitz JD, Shvartsman SY. 2017. Dynamic control of dNTP synthesis in early embryos. Dev. Cell 42:3301–8.e3
    [Google Scholar]
  153. 153.
    Sun C, Shepard DB, Chong RA, López Arriaza J, Hall K et al. 2012. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol. Evol. 4:2168–83
    [Google Scholar]
  154. 154.
    Sun X-M, Bowman A, Priestman M, Bertaux F, Martinez-Segura A et al. 2020. Size-dependent increase in RNA polymerase II initiation rates mediates gene expression scaling with cell size. Curr. Biol. 30:71217–30.e7
    [Google Scholar]
  155. 155.
    Swaffer MP, Marinov GK, Zheng H, Jones AW, Greenwood J et al. 2021. RNA polymerase II dynamics and mRNA stability feedback determine mRNA scaling with cell size. bioRxiv 2021.09.20.461005. https://doi.org/10.1101/2021.09.20.461005
    [Crossref]
  156. 156.
    Syed S, Wilky H, Raimundo J, Lim B, Amodeo AA. 2021. The nuclear to cytoplasmic ratio directly regulates zygotic transcription in Drosophila through multiple modalities. PNAS 118:14e2010210118
    [Google Scholar]
  157. 157.
    Thomas CA. 1971. The genetic organization of chromosomes. Annu. Rev. Genet. 5:237–56
    [Google Scholar]
  158. 158.
    Tollis S, Rizzotto A, Pham NT, Koivukoski S, Sivakumar A et al. 2022. Chemical interrogation of nuclear size identifies compounds with cancer cell line-specific effects on migration and invasion. ACS Chem. Biol. 17:3680–700
    [Google Scholar]
  159. 159.
    Travis WD. 2012. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 25:S1S18–30
    [Google Scholar]
  160. 160.
    Uchida M, Sun Y, McDermott G, Knoechel C, Le Gros MA et al. 2011. Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast 28:3227–36
    [Google Scholar]
  161. 161.
    Vacanti MP, Roy A, Cortiella J, Bonassar L, Vacanti CA. 2001. Identification and initial characterization of spore-like cells in adult mammals. J. Cell Biochem. 80:3455–60
    [Google Scholar]
  162. 162.
    Vaickus LJ, Tambouret RH. 2015. Young investigator challenge: the accuracy of the nuclear-to-cytoplasmic ratio estimation among trained morphologists. Cancer Cytopathol 123:9524–30
    [Google Scholar]
  163. 163.
    van de Pol ILE, Flik G, Verberk WCEP. 2020. Triploidy in zebrafish larvae: effects on gene expression, cell size and cell number, growth, development and swimming performance. PLOS ONE 15:3e0229468
    [Google Scholar]
  164. 164.
    Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner MW. 2011. Remodeling of the metabolome during early frog development. PLOS ONE 6:2e16881
    [Google Scholar]
  165. 165.
    Vastenhouw NL, Cao WX, Lipshitz HD. 2019. The maternal-to-zygotic transition revisited. Development 146:11dev161471
    [Google Scholar]
  166. 166.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:55071304–51
    [Google Scholar]
  167. 167.
    Vinogradov AE. 1995. Nucleotypic effect in homeotherms: Body-mass-corrected basal metabolic rate of mammals is related to genome size. Evolution 49:61249–59
    [Google Scholar]
  168. 168.
    Vinogradov AE. 1997. Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution 51:1220–25
    [Google Scholar]
  169. 169.
    Wakao S, Kitada M, Kuroda Y, Ogura F, Murakami T et al. 2012. Morphologic and gene expression criteria for identifying human induced pluripotent stem cells. PLOS ONE 7:12e48677
    [Google Scholar]
  170. 170.
    Watanabe N, Ishihara T, Ohshima Y. 2007. Mutants carrying two sma mutations are super small in the nematode C. elegans. Genes Cells 12:5603–9
    [Google Scholar]
  171. 171.
    Windner SE, Manhart A, Brown A, Mogilner A, Baylies MK. 2019. Nuclear scaling is coordinated among individual nuclei in multinucleated muscle fibers. Dev. Cell 49:148–62.e3
    [Google Scholar]
  172. 172.
    Xie S, Skotheim JM. 2020. A G1 sizer coordinates growth and division in the mouse epidermis. Curr. Biol. 30:5916–24.e2
    [Google Scholar]
  173. 173.
    Xie S, Skotheim JM. 2021. Cell-size control: Chromatin-based titration primes inhibitor dilution. Curr. Biol. 31:19R1127–29
    [Google Scholar]
  174. 174.
    Xie S, Swaffer M, Skotheim JM. 2022. Eukaryotic cell size control and its relation to biosynthesis and senescence. Annu. Rev. Cell Dev. Biol. 38:291319
    [Google Scholar]
  175. 175.
    Yahya G, Menges P, Ngandiri DA, Schulz D, Wallek A et al. 2021. Scaling of cellular proteome with ploidy. bioRxiv 2021.05.06.442919. https://doi.org/10.1101/2021.05.06.442919
    [Crossref]
  176. 176.
    Yuan K, Seller CA, Shermoen AW, O'Farrell PH. 2016. Timing the Drosophila mid-blastula transition: a cell cycle-centered view. Trends Genet 32:8496–507
    [Google Scholar]
  177. 177.
    Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A 2010. Fungal cell gigantism during mammalian infection. PLOS Pathog 6:6e1000945
    [Google Scholar]
  178. 178.
    Zatulovskiy E, Zhang S, Berenson DF, Topacio BR, Skotheim JM. 2020. Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division. Science 369:6502466–71
    [Google Scholar]
  179. 179.
    Zhang M, Kothari P, Mullins M, Lampson MA. 2014. Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 13:243828–38
    [Google Scholar]
  180. 180.
    Zhurinsky J, Leonhard K, Watt S, Marguerat S, Bähler J, Nurse P. 2010. A coordinated global control over cellular transcription. Curr. Biol. 20:222010–15
    [Google Scholar]
/content/journals/10.1146/annurev-genet-080320-030537
Loading
/content/journals/10.1146/annurev-genet-080320-030537
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error