1932

Abstract

has emerged as a powerful model system for studying the genetics of flowering plants. Originally chosen for its phylogenetic proximity to the large-genome cereal crops wheat and barley, it is proving to be useful for more than simply providing markers for comparative mapping. Studies in have provided new insight into the structure and physiology of plant cell walls, the development and chemical composition of endosperm, and the genetic basis for cold tolerance. Recent work on auxin transport has uncovered mechanisms that apply to all angiosperms other than . In addition to the areas in which it is currently used, is uniquely suited for studies of floral development, vein patterning, the controls of the perennial versus annual habit, and genome organization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112414-055135
2015-11-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-112414-055135.html?itemId=/content/journals/10.1146/annurev-genet-112414-055135&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo-Garcia J, Collins NC, Ahmadinejad N, Ma L, Houben A. 1.  et al. 2013. Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theor. Appl. Genet. 126:2969–82 [Google Scholar]
  2. Araneda L, Sim SC, Bae JJ, Chakraborty N, Curley J. 2.  et al. 2013. Comparative genome analysis between Agrostis stolonifera and members of the Pooideae subfamily, including Brachypodium distachyon. PLOS ONE 8:e79425 [Google Scholar]
  3. Azhaguvel P, Li W, Rudd JC, Gill BG, Michels GJJ, Weng Y. 3.  2009. Aphid feeding response and microsatellite-based genetic diversity among diploid Brachypodium distachyon (L.) Beauv. accessions. Plant Genet. Res. Charact. Util. 7:72–79 [Google Scholar]
  4. Beccari JB. 4.  1745. De Frumento. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii II. Part I 122–27 Ex typographia Laelii a Vulpe, apud Metropolitanum.
  5. Bennetzen JL, Kellogg EA. 5.  1997. Do plants have a one-way ticket to genomic obesity?. Plant Cell 9:1509–14 [Google Scholar]
  6. Bevan MW, Garvin DF, Vogel JP. 6.  2010. Brachypodium distachyon genomics for sustainable food and fuel production. Curr. Opin. Biotechnol. 21:211–17 [Google Scholar]
  7. Bouvier d'Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cezard L. 7.  et al. 2013. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 73:496–508 [Google Scholar]
  8. 8. Brachypodium.org 2015. http://www.brachybase.org/
  9. Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R. 9.  et al. 2012. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLOS ONE 7:e41916 [Google Scholar]
  10. Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF. 9.  et al. 2011. Brachypodium as a model for the grasses: today and the future. Plant Physiol. 157:3–13 [Google Scholar]
  11. Brown RC, Lemmon BE. 10.  2007. The developmental biology of cereal endosperm. Endosperm O-A Olsen 1–20 Berlin: Springer-Verlag [Google Scholar]
  12. Campbell CS, Quinn JA, Cheplick GP, Bell TJ. 11.  1983. Cleistogamy in grasses. Annu. Rev. Ecol. Syst. 14:411–41 [Google Scholar]
  13. Carpita NC. 12.  1996. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:445–76 [Google Scholar]
  14. Carroll SB. 13.  2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36 [Google Scholar]
  15. Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ. 14.  et al. 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann. Bot. 109:385–405 [Google Scholar]
  16. Christiansen P, Andersen CH, Didion T, Folling M, Nielsen KK. 15.  2005. A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep. 23:751–58 [Google Scholar]
  17. Clayton WD, Harman KT, Williamson H. 16.  2006. GrassBase: The Online World Grass Flora Richmond, UK: KEW http://www.kew.org/data/grasses-db.html
  18. Devos KM, Dolezel J, Feuillet C. 17.  2009. Genome organization and comparative genomics. Wheat, Science and Trade B Carver 327–67 Hoboken, NJ: Wiley-Blackwell [Google Scholar]
  19. Drader T, Kleinhofs A. 18.  2010. A synteny map and disease resistance gene comparison between barley and the model monocot Brachypodium distachyon. Genome 53:406–17 [Google Scholar]
  20. Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P. 19.  et al. 2001. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127:1539–55 [Google Scholar]
  21. Edwards EJ, Smith SA. 20.  2010. Phylogenetic analyses reveal the shady history of C4 grasses. PNAS 107:2532–37 [Google Scholar]
  22. Ellis JR, Chaffey NJ. 21.  1987. Structural differentiation of the nucellar epidermis in the caryopsis of rice (Oryza sativa). Ann. Bot. 60:671–75 [Google Scholar]
  23. Estep MC, McKain MR, Vela Diaz D, Zhong J, Hodge JG. 22.  et al. 2014. Allopolyploidy, diversification, and the Miocene grassland expansion. PNAS 111:15149–54 [Google Scholar]
  24. Evers T, Millar S. 23.  2002. Cereal grain structure and development: some implications for quality. J. Cereal Sci. 36:261–84 [Google Scholar]
  25. Faricelli ME, Valarik M, Dubcovsky J. 24.  2010. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct. Integr. Genomics 10:293–306 [Google Scholar]
  26. Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H. 25.  2009. Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52:876–90 [Google Scholar]
  27. Fjellheim S, Boden S, Trevaskis B. 26.  2014. The role of seasonal flowering responses in adaptation of grasses to temperate climates. Front. Plant Sci. 5:431 [Google Scholar]
  28. Foote TN, Griffiths S, Allouis S, Moore G. 27.  2004. Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct. Integr. Genomics 4:26–33 [Google Scholar]
  29. Fox SE, Preece J, Kimbrel JA, Marchini GL, Sage A. 28.  et al. 2013. Sequencing and de novo transcriptome assembly of Brachypodium sylvaticum (Poaceae). Appl. Plant Sci. 1:pii:apps.1200011 [Google Scholar]
  30. Gale MD, Devos KM. 29.  1998. Plant comparative genetics after 10 years. Science 282:656–59 [Google Scholar]
  31. Garvin DF, McKenzie N, Vogel JP, Mockler TC, Blankenheim ZJ. 30.  et al. 2010. An SSR-based genetic linkage map of the model grass Brachypodium distachyon. Genome 53:1–13 [Google Scholar]
  32. Gershon D. 31.  1970. Studies on aging in nematodes. I. The nematode as a model organism for aging research. Exp. Gerontol. 5:7–12 [Google Scholar]
  33. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF. 32.  1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16:433–42 [Google Scholar]
  34. Girin T, David LC, Chardin C, Sibout R, Krapp A. 33.  et al. 2014. Brachypodium: a promising hub between model species and cereals. J. Exp. Bot. 65:5683–96 [Google Scholar]
  35. Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M. 34.  et al. 2014. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 79:361–74 [Google Scholar]
  36. 35. Grass Phylogeny Work. Group 2001. Phylogeny and subfamilial classification of the Poaceae. Ann. Mo. Bot. Gard. 88:373–457 [Google Scholar]
  37. 36. Grass Phylogeny Work. Group II 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 193:304–12 [Google Scholar]
  38. Griffiths S, Sharp R, Foote TN, Bertin I, Wanos M. 37.  et al. 2006. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–52 [Google Scholar]
  39. Guillon F, Bouchet B, Jamme F, Robert P, Quemener B. 38.  et al. 2011. Brachypodium distachyon grain: characterization of endosperm cell walls. J. Exp. Bot. 62:1001–15 [Google Scholar]
  40. Guillon F, Larre C, Petipas F, Berger A, Moussawi J. 39.  et al. 2012. A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J. Exp. Bot. 63:739–55 [Google Scholar]
  41. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ. 40.  2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130:639–48 [Google Scholar]
  42. Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K. 41.  et al. 2013. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol. 13:131 [Google Scholar]
  43. Hands P, Drea S. 42.  2012. A comparative view of grain development in Brachypodium distachyon. J. Cereal Sci. 56:2–8 [Google Scholar]
  44. Harris PJ, Hartley RD. 43.  1980. Phenolic constituents of the cell walls of monocotyledons. Biochem. Syst. Ecol. 8:153–60 [Google Scholar]
  45. Harris PJ, Tretheway JAK. 44.  2009. The distribution of ester-linked ferulic acid in the cell walls of angiosperms. Phytochem. Rev. 9:19–33 [Google Scholar]
  46. Hartley W. 45.  1973. Studies on the origin, evolution, and distribution of the Gramineae. V. The subfamily Festucoideae. Aust. J. Bot. 21:201–34 [Google Scholar]
  47. Hasterok R, Draper J, Jenkins G. 46.  2004. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 12:397–403 [Google Scholar]
  48. Hasterok R, Marasek A, Donnison IS, Armstead I, Thomas A. 47.  et al. 2006. Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–62 [Google Scholar]
  49. Hochbach A, Schneider J, Röser M. 48.  2015. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy regions compared with plastid DNA. Mol. Phylogenet. Evol. 87:14–27 [Google Scholar]
  50. 50. Int. Barley Genome Seq. Consort 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–16 [Google Scholar]
  51. 51. Int. Brachypodium Initiat 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–68 [Google Scholar]
  52. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V. 48.  et al. 2001. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127:910–17 [Google Scholar]
  53. Jeong DH, Schmidt SA, Rymarquis LA, Park S, Ganssmann M. 49.  et al. 2013. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 14:R145 [Google Scholar]
  54. 54. Joint Genome Inst 2015. Brachypodium Resources. Berkeley: JGI jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/ [Google Scholar]
  55. 55. Joint Genome Inst 2015. Phytozome Berkeley: JGI http://phytozome.jgi.doe.gov/pz/portal.html
  56. Kakrana A, Hammond R, Patel P, Nakano M, Meyers BC. 50.  2014. sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res. 42:e139 [Google Scholar]
  57. Kawakami A, Yoshida M. 51.  2002. Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci. Biotechnol. Biochem. 66:2297–305 [Google Scholar]
  58. Kellogg EA. 52.  2015. Flowering Plants, Monocots: Poaceae 13 Families and Genera of Vascular Plants. Cham, Switz: Springer
  59. Kellogg EA, Bennetzen JL. 53.  2004. The evolution of nuclear genome structure in seed plants. Am. J. Bot. 91:1709–25 [Google Scholar]
  60. Kellogg EA, Camara PEAS, Rudall PJ, Ladd P, Malcomber ST. 54.  et al. 2013. Early inflorescence development in the grasses (Poaceae). Front. Plant Sci. 4:250 [Google Scholar]
  61. Kellogg EA, Campbell CS. 55.  1987. Phylogenetic analyses of the Gramineae. Grass Systematics and Evolution TR Soderstrom, KW Hilu, CS Campbell, ME Barkworth 310–22 Washington, DC: Smithson. Inst. Press [Google Scholar]
  62. Kowles RV, Phillips RL. 56.  1985. DNA amplification patterns in maize endosperm nuclei during kernel development. PNAS 82:7010–14 [Google Scholar]
  63. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J. 57.  et al. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–63 [Google Scholar]
  64. Kumble KD, Demmer J, Fish S, Hall C, Corrales S. 58.  et al. 2008. Characterization of a family of ice-active proteins from the ryegrass, Lolium perenne. Cryobiology 57:263–68 [Google Scholar]
  65. Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W. 59.  2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114:21–30 [Google Scholar]
  66. Larré C, Penninck S, Bouchet B, Lollier V, Tranquet O. 60.  et al. 2010. Brachypodium distachyon grain: identification and subcellular localization of storage proteins. J. Exp. Bot. 61:1771–83 [Google Scholar]
  67. Laudencia-Chingcuanco DL, Vensel WH. 61.  2008. Globulins are the main seed storage proteins in Brachypodium distachyon. Theor. Appl. Genet. 117:555–63 [Google Scholar]
  68. Leister D, Kurth J, Laurie DA, Yano M, Sasaki T. 62.  et al. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. PNAS 95:370–75 [Google Scholar]
  69. Li C, Rudi H, Stockinger EJ, Cheng H, Cao M. 63.  et al. 2012. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biol. 12:65 [Google Scholar]
  70. Livingston DP 3rd, Hincha DK, Heyer AG. 64.  2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66:2007–23 [Google Scholar]
  71. Livingston DP 3rd, Knivel DP, Gildow FE. 65.  1994. Fructan synthesis in oat. 1. Oligomer accumulation in stems during cold hardening and their in vitro synthesis in a crude enzyme extract. New Phytol. 127:27–36 [Google Scholar]
  72. Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD. 66.  et al. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. PNAS 106:15780–85 [Google Scholar]
  73. Luo S, Zhang Y, Hu Q, Chen J, Li K. 67.  et al. 2012. Dynamic nucleotide-binding site and leucine-rich repeat–encoding genes in the grass family. Plant Physiol. 159:197–210 [Google Scholar]
  74. Michelmore RW, Meyers BC. 68.  1998. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res. 8:1113–30 [Google Scholar]
  75. Molinari HB, Pellny TK, Freeman J, Shewry PR, Mitchell RA. 69.  2013. Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front. Plant Sci. 4:50 [Google Scholar]
  76. Moore G, Devos KM, Wang Z, Gale MD. 70.  1995. Cereal genome evolution. Grasses, line up and form a circle. Curr. Biol. 5:737–39 [Google Scholar]
  77. Mur LA, Allainguillaume J, Catalán P, Hasterok R, Jenkins G. 71.  et al. 2011. Exploiting the Brachypodium tool box in cereal and grass research. New Phytol. 191:334–47 [Google Scholar]
  78. Nguyen HN, Sabelli PA, Larkins BA. 72.  2007. Endoreduplication and programmed cell death in the cereal endosperm. Endosperm O-A Olsen 21–43 Berlin: Springer-Verlag [Google Scholar]
  79. O'Connor DL, Runions A, Sluis A, Bragg J, Vogel JP. 73.  et al. 2014. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLOS Comput. Biol. 10:e1003447 [Google Scholar]
  80. Opanowicz M, Hands P, Betts D, Parker ML, Toole GA. 74.  et al. 2011. Endosperm development in Brachypodium distachyon. J. Exp. Bot. 62:735–48 [Google Scholar]
  81. Opanowicz M, Vain P, Draper J, Parker D, Doonan JH. 75.  2008. Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci. 13:172–77 [Google Scholar]
  82. Percival J. 76.  1921. The Wheat Plant: A Monograph New York: Dutton
  83. Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M. 77.  et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–18 [Google Scholar]
  84. Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F. 78.  et al. 2014. p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J. 77:713–26 [Google Scholar]
  85. 85. Phytozome 10.3 2015. Brachypodium distachyon v2.1 (Purple false brome). Berkeley: JGI http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Bdistachyon [Google Scholar]
  86. Piep MB. 79.  2007. Brachypodium P. Beauv. Flora of North America North of Mexico 24 Magnoliophyta: Commelinidae (in part): Poaceae, Part 1 ME Barkworth, KM Capels, S Long, LK Anderton, MB Piep 187–92 New York: Oxford Univ. Press [Google Scholar]
  87. Priest HD, Fox SE, Rowley ER, Murray JR, Michael TP, Mockler TC. 80.  2014. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress. PLOS ONE 9:e87499 [Google Scholar]
  88. Rakoczy L. 81.  1973. The myxomycete Physarum nudum as a model organism for photobiological studies. Ber. Deutsch. Bot. Gesellschaft 86:141–64 [Google Scholar]
  89. Rao RS, Andersen JR, Dionisio G, Boelt B. 82.  2011. Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis. J. Plant Physiol. 168:344–51 [Google Scholar]
  90. Reeder JR. 83.  1957. The embryo in grass systematics. Am. J. Bot. 44:756–68 [Google Scholar]
  91. Robertson IH. 84.  1981. Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica 56:55–60 [Google Scholar]
  92. Sabelli PA, Larkins BA. 85.  2009. The contribution of cell cycle regulation to endosperm development. Sex. Plant Reprod. 22:207–19 [Google Scholar]
  93. Sabelli PA, Larkins BA. 86.  2009. The development of endosperm in grasses. Plant Physiol. 149:14–26 [Google Scholar]
  94. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN. 87.  et al. 2013. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–86 [Google Scholar]
  95. Sandve SR, Rudi H, Asp T, Rognli OA. 88.  2008. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol. Biol. 8:245 [Google Scholar]
  96. Schneider J, Döring E, Hilu KW, Röser M. 89.  2009. Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene-3trnK exon and nuclear ITS sequences. Taxon 58:405–24 [Google Scholar]
  97. Schneider J, Winterfeld G, Hoffmann MH, Röser MR. 90.  2011. Duthieeae, a new tribe of grasses (Poaceae) identified among the early diverging lineages of subfamily Pooideae: molecular phylogenetics, morphological delineation, cytogenetics and biogeography. Syst. Biodivers. 9:27–44 [Google Scholar]
  98. Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM. 91.  2010. Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenergy Res. 3:38–46 [Google Scholar]
  99. Shewry PR, Napier JA, Tatham AS. 92.  1995. Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–56 [Google Scholar]
  100. Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T. 93.  et al. 2005. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol. Biol. 59:533–51 [Google Scholar]
  101. Smith BG, Harris PJ. 94.  1999. The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem. Syst. Ecol. 27:33–53 [Google Scholar]
  102. Somerville C. 95.  2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78 [Google Scholar]
  103. Soreng RJ, Davis JI. 96.  1998. Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. Bot. Rev. 64:1–85 [Google Scholar]
  104. Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J. 97.  et al. 2008. Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor. Appl. Genet. 116:481–90 [Google Scholar]
  105. Stevens PF. 98.  2001. Angiosperm Phylogeny Website Ver. 12, July 2012. http://www.mobot.org/MOBOT/research/APweb/
  106. Talavera S. 99.  1978. Aportación al estudio cariológico de las gramíneas españolas. Lagascalia 7:132–43 [Google Scholar]
  107. Thole V, Worland B, Wright J, Bevan MW, Vain P. 102.  2010. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21. Plant Biotechnol. J. 8:734–47 [Google Scholar]
  108. Tomlinson K, Denyer K, Callow JA. 103.  2003. Starch synthesis in cereal grains. Advances in Botanical Research JA Callow 1–61 London: Academic [Google Scholar]
  109. Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD. 104.  et al. 2013. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol. 13:61 [Google Scholar]
  110. Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ. 105.  et al. 2013. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J. Exp. Bot. 64:5033–47 [Google Scholar]
  111. Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F. 106.  2005. Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol. 46:884–91 [Google Scholar]
  112. Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 107.  2005. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–34 [Google Scholar]
  113. Tyler L, Fangel JU, Fagerstrom AD, Steinwand MA, Raab TK. 108.  et al. 2014. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines. BMC Plant Biol. 14:25 [Google Scholar]
  114. Vain P, Worland B, Thole V, McKenzie N, Alves SC. 109.  et al. 2008. Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol. J. 6:236–45 [Google Scholar]
  115. Vigeland MD, Spannagl M, Asp T, Paina C, Rudi H. 110.  et al. 2013. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. New Phytol. 199:1060–68 [Google Scholar]
  116. Vogel J, Hill T. 111.  2008. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 27:471–78 [Google Scholar]
  117. Vogel JP, Tuna M, Budak H, Huo N, Gu YQ, Steinwand MA. 112.  2009. Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC Plant Biol. 9:88 [Google Scholar]
  118. Wei B, Cai T, Zhang R, Li A, Huo N. 113.  et al. 2009. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct. Integr. Genomics 9:499–511 [Google Scholar]
  119. Wicker T, Buchmann JP, Keller B. 114.  2010. Patching gaps in plant genomes results in gene movement and erosion of collinearity. Genome Res. 20:1229–37 [Google Scholar]
  120. Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K. 115.  et al. 2006. Polar PIN localization directs auxin flow in plants. Science 312:883 [Google Scholar]
  121. Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG. 116.  2012. Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J. Biol. Chem. 287:8347–55 [Google Scholar]
  122. Wu L, Liu D, Wu J, Zhang R, Qin Z. 117.  et al. 2013. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant Cell 25:4363–77 [Google Scholar]
  123. Zhang C, Fei SZ, Arora R, Hannapel DJ. 118.  2010. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155–64 [Google Scholar]
  124. Zhang J, Xu Y, Huan Q, Chong K. 119.  2009. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics 10:449 [Google Scholar]
  125. Zhang W, Olson E, Saintenac C, Rouse M, Abate Z. 120.  et al. 2010. Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci. 50:2464–74 [Google Scholar]
/content/journals/10.1146/annurev-genet-112414-055135
Loading
/content/journals/10.1146/annurev-genet-112414-055135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error