1932

Abstract

Meiosis is essential for reproduction in sexually reproducing organisms. A key stage in meiosis is the synapsis of maternal and paternal homologous chromosomes, accompanied by exchange of genetic material to generate crossovers. A decade ago, studies found that when chromosomes fail to synapse, the many hundreds of genes housed within them are transcriptionally inactivated. This process, meiotic silencing, is conserved in all mammals studied to date, but its purpose is not yet defined. Here, I review the molecular genetics of meiotic silencing and consider the many potential functions that it could serve in the mammalian germ line. In addition, I discuss how meiotic silencing influences sex differences in meiotic infertility and the profound impact that meiotic silencing has had on the evolution of mammalian sex chromosomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112414-055145
2015-11-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/genet/49/1/annurev-genet-112414-055145.html?itemId=/content/journals/10.1146/annurev-genet-112414-055145&mimeType=html&fmt=ahah

Literature Cited

  1. Adelman CA, Petrini JH. 1.  2008. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLOS Genet. 4:e1000042 [Google Scholar]
  2. Ashley T, Plug AW, Xu J, Solari AJ, Reddy G. 2.  et al. 1995. Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates. Chromosoma 104:19–28 [Google Scholar]
  3. Baarends WM, Hoogerbrugge JW, Roest HP, Ooms M, Vreeburg J. 3.  et al. 1999. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev. Biol. 207:322–33 [Google Scholar]
  4. Baarends WM, Wassenaar E, Hoogerbrugge JW, Schoenmakers S, Sun ZW, Grootegoed JA. 4.  2007. Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome. J. Cell Sci. 120:1841–51 [Google Scholar]
  5. Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E. 5.  et al. 2005. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol. Cell. Biol. 25:1041–53 [Google Scholar]
  6. Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG. 6.  et al. 2005. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol. Cell. Biol. 25:7203–15 [Google Scholar]
  7. Baudat F, Imai Y, de Massy B. 7.  2013. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14:794–806 [Google Scholar]
  8. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. 8.  2000. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6:989–98 [Google Scholar]
  9. Bean CJ, Schaner CE, Kelly WG. 9.  2004. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nat. Genet. 36:100–5 [Google Scholar]
  10. Becherel OJ, Yeo AJ, Stellati A, Heng EY, Luff J. 10.  et al. 2013. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLOS Genet. 9:e1003435 [Google Scholar]
  11. Bellani MA, Romanienko PJ, Cairatti DA, Camerini-Otero RD. 11.  2005. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm/− spermatocytes. J. Cell Sci. 118:3233–45 [Google Scholar]
  12. Bhattacharyya T, Gregorova S, Mihola O, Anger M, Sebestova J. 12.  et al. 2013. Mechanistic basis of infertility of mouse intersubspecific hybrids. PNAS 110:E468–77 [Google Scholar]
  13. Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M. 13.  et al. 2013. Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions. PLOS Genet. 9:e1003985 [Google Scholar]
  14. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC. 14.  2014. Reversal of female infertility by Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 343:533–36 [Google Scholar]
  15. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ. 15.  et al. 2010. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17:679–87 [Google Scholar]
  16. Burgoyne PS, Mahadevaiah SK, Turner JM. 16.  2009. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 10:207–16 [Google Scholar]
  17. Burgoyne PS, Sutcliffe MJ, Mahadevaiah SK. 17.  1992. The role of unpaired sex chromosomes in spermatogenic failure. Andrologia 24:17–20 [Google Scholar]
  18. Campbell P, Good JM, Nachman MW. 18.  2013. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice. Genetics 193:819–28 [Google Scholar]
  19. Carofiglio F, Inagaki A, de Vries S, Wassenaar E, Schoenmakers S. 19.  et al. 2013. SPO11-independent DNA repair foci and their role in meiotic silencing. PLOS Genet. 9:e1003538 [Google Scholar]
  20. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT. 20.  et al. 2002. Genomic instability in mice lacking histone H2AX. Science 296:922–27 [Google Scholar]
  21. Cheng Y, Buffone MG, Kouadio M, Goodheart M, Page DC. 21.  et al. 2007. Abnormal sperm in mice lacking the Taf7l gene. Mol. Cell. Biol. 27:2582–89 [Google Scholar]
  22. Cloutier JM, Mahadevaiah SK, Ellnati E, Nussenzweig A, Tóth A, Turner JMA. 22.  2015. Histone H2AFX links meiotic chromosome asynapsis to prophase I oocyte loss in mammals. PLOS Genet. doi:10.1371/journal.pgen.1005462
  23. Cloutier JM, Mahadevaiah SK, Ellnati E, Tóth A, Turner JMA. 23.  2015. Mammalian meiotic silencing exhibits sexually dimorphic features. Chromosoma In press
  24. Cocquet J, Ellis PJ, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS. 24.  2012. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLOS Genet. 8:e1002900 [Google Scholar]
  25. Cocquet J, Ellis PJ, Yamauchi Y, Mahadevaiah SK, Affara NA. 25.  et al. 2009. The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLOS Biol. 7:e1000244 [Google Scholar]
  26. Cocquet J, Ellis PJ, Yamauchi Y, Riel JM, Karacs TP. 26.  et al. 2010. Deficiency in the multicopy Sycp3-like X-linked genes Slx and Slxl1 causes major defects in spermatid differentiation. Mol. Biol. Cell 21:3497–505 [Google Scholar]
  27. Comptour A, Moretti C, Serrentino ME, Auer J, Ialy-Radio C. 27.  et al. 2014. SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J. 281:1571–84 [Google Scholar]
  28. Daniel K, Lange J, Hached K, Fu J, Anastassiadis K. 28.  et al. 2011. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat. Cell Biol. 13:599–610 [Google Scholar]
  29. Di Giacomo M, Barchi M, Baudat F, Edelmann W, Keeney S, Jasin M. 29.  2005. Distinct DNA-damage–dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. PNAS 102:737–42 [Google Scholar]
  30. Emerson JJ, Kaessmann H, Betran E, Long M. 30.  2004. Extensive gene traffic on the mammalian X chromosome. Science 303:537–40 [Google Scholar]
  31. Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD. 31.  et al. 2003. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4:497–508 [Google Scholar]
  32. Fisher RA. 32.  1931. The evolution of dominance. Biol. Rev. 6:345–68 [Google Scholar]
  33. Franco MJ, Sciurano RB, Solari AJ. 33.  2007. Protein immunolocalization supports the presence of identical mechanisms of XY body formation in eutherians and marsupials. Chromosome Res. 15:815–24 [Google Scholar]
  34. Gendrel AV, Heard E. 34.  2014. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30:561–80 [Google Scholar]
  35. Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ. 35.  2006. The X and Y chromosomes assemble into H2A. Z, containing facultative heterochromatin, following meiosis Mol. Cell. Biol. 26:5394–405 [Google Scholar]
  36. Haldane JBS. 36.  1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12:101–9 [Google Scholar]
  37. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. 37.  2009. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–78 [Google Scholar]
  38. Handel MA, Schimenti JC. 38.  2010. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat. Rev. Genet. 11:124–36 [Google Scholar]
  39. Hasegawa K, Sin HS, Maezawa S, Broering TJ, Kartashov AV. 39.  et al. 2015. SCML2 establishes the male germline epigenome through regulation of histone H2A ubiquitination. Dev. Cell 32:574–88 [Google Scholar]
  40. Heard E, Turner J. 40.  2011. Function of the sex chromosomes in mammalian fertility. Cold Spring Harb. Perspect. Biol. 3a002675
  41. Henderson SA. 41.  1963. Differential ribonucleic acid synthesis of X and autosomes during meiosis. Nature 200:1235 [Google Scholar]
  42. Homolka D, Ivanek R, Capkova J, Jansa P, Forejt J. 42.  2007. Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res. 17:1431–37 [Google Scholar]
  43. Hornecker JL, Samollow PB, Robinson ES, Vandeberg JL, McCarrey JR. 43.  2007. Meiotic sex chromosome inactivation in the marsupial Monodelphis domestica. Genesis 45:696–708 [Google Scholar]
  44. Hoyer-Fender S, Costanzi C, Pehrson JR. 44.  2000. Histone macroH2A1.2 is concentrated in the XY-body by the early pachytene stage of spermatogenesis. Exp. Cell Res. 258:254–60 [Google Scholar]
  45. Huynh KD, Lee JT. 45.  2003. Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–62 [Google Scholar]
  46. Ichijima Y, Ichijima M, Lou Z, Nussenzweig A, Camerini-Otero RD. 46.  et al. 2011. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells. Genes Dev. 25:959–71 [Google Scholar]
  47. Inagaki A, Schoenmakers S, Baarends WM. 47.  2010. DNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis. Epigenetics 5:255–66 [Google Scholar]
  48. Inagaki A, Sleddens-Linkels E, Wassenaar E, Ooms M, van Cappellen WA. 48.  et al. 2011. Meiotic functions of RAD18. J. Cell Sci. 124:2837–50 [Google Scholar]
  49. Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S. 49.  2013. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev. 27:873–86 [Google Scholar]
  50. Keegan KS, Holtzman DA, Plug AW, Christenson ER, Brainerd EE. 50.  et al. 1996. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev. 10:2423–37 [Google Scholar]
  51. Keeney S, Giroux CN, Kleckner N. 51.  1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–84 [Google Scholar]
  52. Khalil AM, Boyar FZ, Driscoll DJ. 52.  2004. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. PNAS 101:16583–87 [Google Scholar]
  53. Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD. 53.  2004. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Genet. 36:642–46 [Google Scholar]
  54. Kierszenbaum AL, Tres LL. 54.  1974. Nucleolar and perichromosomal RNA synthesis during meiotic prophase in the mouse testis. J. Cell Biol. 60:39–53 [Google Scholar]
  55. Koehler KE, Schrump SE, Cherry JP, Hassold TJ, Hunt PA. 55.  2006. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr. Biol. 16:R579–80 [Google Scholar]
  56. Kouznetsova A, Lister L, Nordenskjold M, Herbert M, Hoog C. 56.  2007. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat. Genet. 39:966–68 [Google Scholar]
  57. Kouznetsova A, Wang H, Bellani M, Camerini-Otero RD, Jessberger R, Hoog C. 57.  2009. BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes. J. Cell Sci. 122:2446–52 [Google Scholar]
  58. LeMaire-Adkins R, Radke K, Hunt PA. 58.  1997. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139:1611–19 [Google Scholar]
  59. Lichten M, de Massy B. 59.  2011. The impressionistic landscape of meiotic recombination. Cell 147:267–70 [Google Scholar]
  60. Lifschytz E, Lindsley DL. 60.  1972. The role of X-chromosome inactivation during spermatogenesis. PNAS 69:182–86 [Google Scholar]
  61. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. 61.  2010. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev. Cell 18:371–84 [Google Scholar]
  62. Lu LY, Xiong Y, Kuang H, Korakavi G, Yu X. 62.  2013. Regulation of the DNA damage response on male meiotic sex chromosomes. Nat. Commun. 4:2105 [Google Scholar]
  63. Luo M, Zhou J, Leu NA, Abreu CM, Wang J. 63.  et al. 2015. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis. PLOS Genet. 11:e1004954 [Google Scholar]
  64. Mahadevaiah SK, Bourc'his D, de Rooij DG, Bestor TH, Turner JM, Burgoyne PS. 64.  2008. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J. Cell Biol. 182:263–76 [Google Scholar]
  65. Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P. 65.  et al. 2001. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 27:271–76 [Google Scholar]
  66. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S. 66.  et al. 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–69 [Google Scholar]
  67. Margolin G, Khil PP, Kim J, Bellani MA, Camerini-Otero RD. 67.  2014. Integrated transcriptome analysis of mouse spermatogenesis. BMC Genomics 15:39 [Google Scholar]
  68. Matsuda Y, Moens PB, Chapman VM. 68.  1992. Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) and Mus spretus. Chromosoma 101:483–92 [Google Scholar]
  69. McCarrey JR, Dilworth DD, Sharp RM. 69.  1992. Semiquantitative analysis of X-linked gene expression during spermatogenesis in the mouse: ethidium-bromide staining of RT-PCR products. Genet. Anal. Tech. Appl. 9:117–23 [Google Scholar]
  70. McKee BD, Handel MA. 70.  1993. Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102:71–80 [Google Scholar]
  71. Metzler-Guillemain C, Luciani J, Depetris D, Guichaoua MR, Mattei MG. 71.  2003. HP1β and HP1γ, but not HP1α, decorate the entire XY body during human male meiosis. Chromosome Res. 11:73–81 [Google Scholar]
  72. Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD, Eddy EM. 72.  2002. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev. Biol. 248:331–42 [Google Scholar]
  73. Modzelewski AJ, Holmes RJ, Hilz S, Grimson A, Cohen PE. 73.  2012. AGO4 regulates entry into meiosis and influences silencing of sex chromosomes in the male mouse germline. Dev. Cell 23:251–64 [Google Scholar]
  74. Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M. 74.  et al. 1997. Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106:207–15 [Google Scholar]
  75. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. 75.  2002. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J. Cell Sci. 115:1611–22 [Google Scholar]
  76. Moens PB, Tarsounas M, Morita T, Habu T, Rottinghaus ST. 76.  et al. 1999. The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108:95–102 [Google Scholar]
  77. Monesi V. 77.  1962. Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. J. Cell Biol. 14:1–18 [Google Scholar]
  78. Monesi V. 78.  1965. Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 17:11–21 [Google Scholar]
  79. Monesi V. 79.  1965. Synthetic activities during spermatogenesis in the mouse RNA and protein. Exp. Cell Res. 39:197–224 [Google Scholar]
  80. Morelli MA, Cohen PE. 80.  2005. Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–81 [Google Scholar]
  81. Motzkus D, Singh PB, Hoyer-Fender S. 81.  1999. M31, a murine homolog of Drosophila HP1, is concentrated in the XY body during spermatogenesis. Cytogenet. Cell Genet. 86:83–88 [Google Scholar]
  82. Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM. 82.  2008. The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat. Genet. 40:794–99 [Google Scholar]
  83. Mueller JL, Skaletsky H, Brown LG, Zaghlul S, Rock S. 83.  et al. 2013. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45:1083–87 [Google Scholar]
  84. Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M. 84.  et al. 2010. The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 11:367 [Google Scholar]
  85. Nagaoka SI, Hassold TJ, Hunt PA. 85.  2012. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13:493–504 [Google Scholar]
  86. Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR. 86.  et al. 2006. Postmeiotic sex chromatin in the male germline of mice. Curr. Biol. 16:660–67 [Google Scholar]
  87. Namekawa SH, VandeBerg JL, McCarrey JR, Lee JT. 87.  2007. Sex chromosome silencing in the marsupial male germ line. PNAS 104:9730–35 [Google Scholar]
  88. Ohno S. 88.  1967. Sex Chromosomes and Sex-Linked Genes New York/London: Springer-Verlag
  89. Ohno S, Kaplan WD, Kinosita R. 89.  1957. Conjugation of the heteropycnotic X and Y chromosomes of the rat spermatocyte. Exp. Cell Res. 12:395–97 [Google Scholar]
  90. Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM. 90.  et al. 2005. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–73 [Google Scholar]
  91. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. 91.  2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–49 [Google Scholar]
  92. Page J, de la Fuente R, Manterola M, Parra MT, Viera A. 92.  et al. 2012. Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis?. Chromosoma 121:307–26 [Google Scholar]
  93. Pan J, Eckardt S, Leu NA, Buffone MG, Zhou J. 93.  et al. 2009. Inactivation of Nxf2 causes defects in male meiosis and age-dependent depletion of spermatogonia. Dev. Biol. 330:167–74 [Google Scholar]
  94. Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T. 94.  1998. Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell Sci. 111:Pt. 4413–23 [Google Scholar]
  95. Rice WR. 95.  1984. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–42 [Google Scholar]
  96. Rice WR. 96.  1992. Sexually antagonistic genes: experimental evidence. Science 256:1436–39 [Google Scholar]
  97. Rogakou EP, Boon C, Redon C, Bonner WM. 97.  1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146:905–16 [Google Scholar]
  98. Rogers RS, Inselman A, Handel MA, Matunis MJ. 98.  2004. SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113:233–43 [Google Scholar]
  99. Romanienko PJ, Camerini-Otero RD. 99.  2000. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol. Cell 6:975–87 [Google Scholar]
  100. Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M. 100.  et al. 2010. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 20:2117–23 [Google Scholar]
  101. Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM. 101.  et al. 2013. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev. 27:1484–94 [Google Scholar]
  102. Royo H, Seitz H, Ellnati E, Peters AHFM, Stadler MB, Turner JMA. 102.  2015. Silencing of X-linked microRNAs by meiotic sex chromosome intactivation. PLOS Genet. doi:10.1371/journal.pgen.1005461
  103. Sachs L. 103.  1954. Sex-linkage and the sex chromosomes in man. Ann. Eugenics 18:255–61 [Google Scholar]
  104. Sachs L. 104.  1955. The possibilities of crossing-over between the sex chromosomes of the house mouse. Genetica 27:309–22 [Google Scholar]
  105. Sado T, Brockdorff N. 105.  2013. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos. Trans. R. Soc. B 368:20110325 [Google Scholar]
  106. Saifi GM, Chandra HS. 106.  1999. An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc. R. Soc. B 266:203–9 [Google Scholar]
  107. Schimenti J. 107.  2005. Synapsis or silence. Nat. Genet. 37:11–13 [Google Scholar]
  108. Sciurano R, Rahn M, Rey-Valzacchi G, Solari AJ. 108.  2007. The asynaptic chromatin in spermatocytes of translocation carriers contains the histone variant γ-H2AX and associates with the XY body. Hum. Reprod. 22:142–50 [Google Scholar]
  109. Scully R, Chen J, Plug A, Xiao Y, Weaver D. 109.  et al. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–75 [Google Scholar]
  110. Shiao MS, Khil P, Camerini-Otero RD, Shiroishi T, Moriwaki K. 110.  et al. 2007. Origins of new male germ-line functions from X-derived autosomal retrogenes in the mouse. Mol. Biol. Evol. 24:2242–53 [Google Scholar]
  111. Shiu PK, Raju NB, Zickler D, Metzenberg RL. 111.  2001. Meiotic silencing by unpaired DNA. Cell 107:905–16 [Google Scholar]
  112. Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A. 112.  et al. 2012. RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev. 26:2737–48 [Google Scholar]
  113. Sin HS, Ichijima Y, Koh E, Namiki M, Namekawa SH. 113.  2012. Human postmeiotic sex chromatin and its impact on sex chromosome evolution. Genome Res. 22:827–36 [Google Scholar]
  114. Sin HS, Namekawa SH. 114.  2013. The great escape: active genes on inactive sex chromosomes and their evolutionary implications. Epigenetics 8:887–92 [Google Scholar]
  115. Solari AJ. 115.  1964. The morphology and ultrastructure of the sex vesicle in the mouse. Exp. Cell Res. 36:160–68 [Google Scholar]
  116. Solari AJ, Bianchi NO. 116.  1975. The synaptic behaviour of the X and Y chromosomes in the marsupial Monodelphis dimidiata. Chromosoma 52:11–25 [Google Scholar]
  117. Solari AJ, Tres LL. 117.  1967. The ultrastructure of the human sex vesicle. Chromosoma 22:16–31 [Google Scholar]
  118. Song R, Ro S, Michaels JD, Park C, McCarrey JR, Yan W. 118.  2009. Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat. Genet. 41:488–93 [Google Scholar]
  119. Takada Y, Isono K, Shinga J, Turner JM, Kitamura H. 119.  et al. 2007. Mammalian Polycomb Scmh1 mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes. Development 134:579–90 [Google Scholar]
  120. Takagi N, Sasaki M. 120.  1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–42 [Google Scholar]
  121. Taketo T, Naumova AK. 121.  2013. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse. Chromosoma 122:337–49 [Google Scholar]
  122. Tarsounas M, Morita T, Pearlman RE, Moens PB. 122.  1999. RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J. Cell Biol. 147:207–20 [Google Scholar]
  123. Turner JM. 123.  2007. Meiotic sex chromosome inactivation. Development 134:1823–31 [Google Scholar]
  124. Turner JM, Aprelikova O, Xu X, Wang R, Kim S. 124.  et al. 2004. BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr. Biol. 14:2135–42 [Google Scholar]
  125. Turner JM, Mahadevaiah SK, Benavente R, Offenberg HH, Heyting C, Burgoyne PS. 125.  2000. Analysis of male meiotic “sex body” proteins during XY female meiosis provides new insights into their functions. Chromosoma 109:426–32 [Google Scholar]
  126. Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS. 126.  2006. Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev. Cell 10:521–29 [Google Scholar]
  127. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X. 127.  et al. 2005. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat. Genet. 37:41–47 [Google Scholar]
  128. Urena F, Solari AJ. 128.  1970. Three dimensional reconstruction of the X-Y pair during pachytene in the rat (Rattus norvegicus). Chromosoma 30:258–68 [Google Scholar]
  129. Vallender EJ, Lahn BT. 129.  2004. How mammalian sex chromosomes acquired their peculiar gene content. BioEssays 26:159–69 [Google Scholar]
  130. van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P. 130.  et al. 2007. Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat. Genet. 39:251–58 [Google Scholar]
  131. Viera A, Rufas JS, Martinez I, Barbero JL, Ortega AL, Suja JA. 131.  2009. DK2 is required for proper homologous pairing, recombination and sex-body formation during male mouse meiosis. J. Cell Sci. 122:2149–59 [Google Scholar]
  132. Vigodner M, Morris PL. 132.  2005. Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev. Biol. 282:480–92 [Google Scholar]
  133. Wang PJ. 133.  2004. X chromosomes, retrogenes and their role in male reproduction. Trends Endocrinol. Metab. 15:79–83 [Google Scholar]
  134. Wang PJ, McCarrey JR, Yang F, Page DC. 134.  2001. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27:422–26 [Google Scholar]
  135. Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. 135.  2004. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 14:1861–69 [Google Scholar]
  136. Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J. 136.  et al. 2012. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and -dependent mechanisms. Genes Dev. 26:958–73 [Google Scholar]
  137. Xu X, Aprelikova O, Moens P, Deng CX, Furth PA. 137.  2003. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130:2001–12 [Google Scholar]
  138. Yan W, McCarrey JR. 138.  2009. Sex chromosome inactivation in the male. Epigenetics 4:452–56 [Google Scholar]
  139. Yang F, Gell K, van der Heijden GW, Eckardt S, Leu NA. 139.  et al. 2008. Meiotic failure in male mice lacking an X-linked factor. Genes Dev. 22:682–91 [Google Scholar]
  140. Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C. 140.  2002. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296:1115–18 [Google Scholar]
  141. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. 141.  2000. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5:73–83 [Google Scholar]
  142. Zickler D, Kleckner N. 142.  1999. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33:603–754 [Google Scholar]
/content/journals/10.1146/annurev-genet-112414-055145
Loading
/content/journals/10.1146/annurev-genet-112414-055145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error