1932

Abstract

One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant , and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-112618-043553
2021-11-23
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-112618-043553.html?itemId=/content/journals/10.1146/annurev-genet-112618-043553&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams IR, McLaren A 2002. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129:51155–64
    [Google Scholar]
  2. 2. 
    Agashe B, Prasad CK, Siddiqi I. 2002. Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129:163935–43
    [Google Scholar]
  3. 3. 
    Allen E, Xie Z, Gustafson AM, Carrington JC. 2005. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:2207–21
    [Google Scholar]
  4. 4. 
    Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S et al. 2010. Flower development. Arabidopsis Book 2010 8e0127
    [Google Scholar]
  5. 5. 
    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG et al. 2008. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. PNAS 105:3914976–80
    [Google Scholar]
  6. 6. 
    Armstrong SJ, Jones GH. 2003. Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J. Exp. Bot. 54:3801–10
    [Google Scholar]
  7. 7. 
    Bachelier JB, Friedman WE. 2011. Female gamete competition in an ancient angiosperm lineage. PNAS 108:3012360–65
    [Google Scholar]
  8. 8. 
    Balasubramanian S, Schneitz K. 2000. NOZZLE regulates proximal–distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development 127:194227–38
    [Google Scholar]
  9. 9. 
    Baltus AE, Menke DB, Hu Y-C, Goodheart ML, Carpenter AE et al. 2006. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat. Genet. 38:121430–34
    [Google Scholar]
  10. 10. 
    Barakate A, Orr J, Schreiber M, Colas I, Lewandowska D et al. 2021. Barley anther and meiocyte transcriptome dynamics in meiotic prophase I. Front. Plant Sci. 11:619404
    [Google Scholar]
  11. 11. 
    Bedinger PA, Fowler JE. 2009. The maize male gametophyte. Handbook of Maize: Its Biology JL Bennetzen, SC Hake 57–77 Berlin: Springer
    [Google Scholar]
  12. 12. 
    Bencivenga S, Simonini S, Benková E, Colombo L 2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:72886–97
    [Google Scholar]
  13. 13. 
    Benjamin KR, Zhang C, Shokat KM, Herskowitz I. 2003. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 17:121524–39
    [Google Scholar]
  14. 14. 
    Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:5591–602
    [Google Scholar]
  15. 15. 
    Bennett MD. 1971. The duration of meiosis. Proc. R. Soc. B 178: 1052.178277–99
    [Google Scholar]
  16. 16. 
    Bhatt AM, Canales C, Dickinson HG. 2001. Plant meiosis: the means to 1N. Trends Plant Sci 6:3114–21
    [Google Scholar]
  17. 17. 
    Bhola T, Kapuy O, Vinod PK 2018. Computational modelling of meiotic entry and commitment. Sci. Rep. 8:180
    [Google Scholar]
  18. 18. 
    Boateng KA, Yang X, Dong F, Owen HA, Makaroff CA 2008. SWI1 is required for meiotic chromosome remodeling events. Mol. Plant 1:4620–33
    [Google Scholar]
  19. 19. 
    Bolaños-Villegas P, De K, Pradillo M, Liu D, Makaroff CA. 2017. In favor of establishment: regulation of chromatid cohesion in plants. Front. Plant Sci. 8:846
    [Google Scholar]
  20. 20. 
    Bowles J, Feng C-W, Spiller C, Davidson T-L, Jackson A, Koopman P 2010. FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev. Cell 19:3440–49
    [Google Scholar]
  21. 21. 
    Bowles J, Knight D, Smith C, Wilhelm D, Richman J et al. 2006. Retinoid signaling determines germ cell fate in mice. Science 312:5773596–600
    [Google Scholar]
  22. 22. 
    Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S et al. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:82544–56
    [Google Scholar]
  23. 23. 
    Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:5479617–19
    [Google Scholar]
  24. 24. 
    Cairo G, Lacefield S. 2020. Establishing correct kinetochore-microtubule attachments in mitosis and meiosis. Essays Biochem 64:2277–87
    [Google Scholar]
  25. 25. 
    Cao L, Wang S, Venglat P, Zhao L, Cheng Y et al. 2018. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLOS Genet 14:3e1007230
    [Google Scholar]
  26. 26. 
    Cao X, Jacobsen SE. 2002. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12:131138–44
    [Google Scholar]
  27. 27. 
    Che L, Tang D, Wang K, Wang M, Zhu K et al. 2011. OsAM1 is required for leptotene-zygotene transition in rice. Cell Res 21:4654–65
    [Google Scholar]
  28. 28. 
    Chen HM, Futcher B, Leatherwood J. 2011. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover. PLOS ONE 6:10e26804
    [Google Scholar]
  29. 29. 
    Chu S, Herskowitz I 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1:5685–96
    [Google Scholar]
  30. 30. 
    Clifford DM, Stark KE, Gardner KE, Hoffmann-Benning S, Brush GS. 2005. Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of replication protein A phosphorylation. Cell Cycle 4:121826–33
    [Google Scholar]
  31. 31. 
    Costa S. 2016. Cell identity: a matter of lineage and neighbours. New Phytol 210:41155–58
    [Google Scholar]
  32. 32. 
    d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R 2009. Turning meiosis into mitosis. PLOS Biol 7:6e1000124Presents an elegant genetic system to prevent meiotic recombination and produce clonal gametes, an important step in the engineering of apomictic plants.
    [Google Scholar]
  33. 33. 
    Desvoyes B, Gutierrez C. 2020. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 39:19e105802
    [Google Scholar]
  34. 34. 
    Deyhle F, Sarkar AK, Tucker EJ, Laux T 2007. WUSCHEL regulates cell differentiation during anther development. Dev. Biol. 302:1154–59
    [Google Scholar]
  35. 35. 
    Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD et al. 2014. The transcriptome landscape of early maize meiosis. BMC Plant Biol 14:118
    [Google Scholar]
  36. 36. 
    Ebel C, Mariconti L, Gruissem W. 2004. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 429:6993776–80
    [Google Scholar]
  37. 37. 
    Endo Y, Iwakawa H, Tomari Y. 2013. Arabidopsis ARGONAUTE7 selects miR390 through multiple checkpoints during RISC assembly. EMBO Rep 14:7652–58
    [Google Scholar]
  38. 38. 
    Extavour CG, Akam M. 2003. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:245869–84
    [Google Scholar]
  39. 39. 
    Ferder IC, Fung L, Ohguchi Y, Zhang X, Lassen KG et al. 2019. Meiotic gatekeeper STRA8 suppresses autophagy by repressing Nr1d1 expression during spermatogenesis in mice. PLOS Genet. 15:5e1008084
    [Google Scholar]
  40. 40. 
    Flórez-Zapata NM, Reyes-Valdés MH, Martínez O 2016. Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genom. 17:490
    [Google Scholar]
  41. 41. 
    Foiani M, Nadjar-Boger E, Capone R, Sagee S, Hashimshoni T, Kassir Y. 1996. A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Mol. Gen. Genet. 253:3278–88
    [Google Scholar]
  42. 42. 
    Garcia-Aguilar M, Michaud C, Leblanc O, Grimanelli D. 2020. Inactivation of a DNA methylation pathway in maize reproductive organs results in apomixis-like phenotypes. Plant Cell 22:103249–67
    [Google Scholar]
  43. 43. 
    Gerton JL, Hawley RS. 2005. Homologous chromosome interactions in meiosis: diversity amidst conservation. Nat. Rev. Genet. 6:6477–87
    [Google Scholar]
  44. 44. 
    Goldberg RB, Beals TP, Sanders PM. 1993. Anther development: basic principles and practical applications. Plant Cell 5:101217–29
    [Google Scholar]
  45. 45. 
    Golubovskaya I, Avalkina N, Sheridan WF. 1997. New insights into the role of the maize ameiotic1 locus. Genetics 147:31339–50
    [Google Scholar]
  46. 46. 
    Golubovskaya I, Grebennikova ZK, Avalkina NA, Sheridan WF. 1993. The role of the ameiotic1 gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135:41151–66
    [Google Scholar]
  47. 47. 
    Groß-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R et al. 2007. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLOS Biol 5:3e47
    [Google Scholar]
  48. 48. 
    Groß-Hardt R, Lenhard M, Laux T. 2002. WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:91129–38Presents elegant molecular engineering to reveal the necessity of the stem cell factor WUS for MMC development.
    [Google Scholar]
  49. 49. 
    Hamant O, Ma H, Cande WZ 2006. Genetics of meiotic prophase I in plants. Annu. Rev. Plant Biol. 57:267–302
    [Google Scholar]
  50. 50. 
    Harashima H, Sugimoto K. 2016. Integration of developmental and environmental signals into cell proliferation and differentiation through RETINOBLASTOMA-RELATED 1. Curr. Opin. Plant Biol. 29:95–103
    [Google Scholar]
  51. 51. 
    Harigaya Y, Yamamoto M. 2007. Molecular mechanisms underlying the mitosis-meiosis decision. Chromosome Res. 15:5523–37
    [Google Scholar]
  52. 52. 
    Hepworth SR, Friesen H. 1998. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation–specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:105750–61
    [Google Scholar]
  53. 53. 
    Hernández-Lagana E, Autran D 2020. H3.1 eviction marks female germline precursors in Arabidopsis. Plants 9:101322
    [Google Scholar]
  54. 54. 
    Hernández-Lagana E, Mosca G, Mendocilla-Sato E, Pires N, Frey A et al. 2021. Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium. eLife . 10:e66031Presents a powerful 3D image analysis providing morphological evidence for the canalization hypothesis of MMC specification.
    [Google Scholar]
  55. 55. 
    Hernández-Lagana E, Rodríguez-Leal D, Lúa J, Vielle-Calzada J-P 2016. A multigenic network of ARGONAUTE4 clade members controls early megaspore formation in Arabidopsis. Genetics 204:31045–56
    [Google Scholar]
  56. 56. 
    Hong L, Tang D, Zhu K, Wang K, Li M, Cheng Z 2012. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24:2577–88
    [Google Scholar]
  57. 57. 
    Hord CLH, Chen C, DeYoung BJ, Clark SE, Ma H 2006. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18:71667–80
    [Google Scholar]
  58. 58. 
    Ishiguro K, Matsuura K, Tani N, Takeda N, Usuki S et al. 2020. MEIOSIN directs the switch from mitosis to meiosis in mammalian germ cells. Dev. Cell 52:4429–45.e10
    [Google Scholar]
  59. 59. 
    Ito M, Takegami MH. 1982. Commitment of mitotic cells to meiosis during the G2 phase of premeiosis. Plant Cell Physiol 23:6943–52
    [Google Scholar]
  60. 60. 
    Jakoby M, Schnittger A. 2004. Cell cycle and differentiation. Curr. Opin. Plant Biol. 7:661–69
    [Google Scholar]
  61. 61. 
    Jan SZ, Vormer TL, Jongejan A, Röling MD, Silber SJ et al. 2017. Unraveling transcriptome dynamics in human spermatogenesis. Development 144:203659–73
    [Google Scholar]
  62. 62. 
    Jauvion V, Elmayan T, Vaucheret H. 2010. The conserved RNA trafficking proteins HPR1 and TEX1 are involved in the production of endogenous and exogenous small interfering RNA in Arabidopsis. Plant Cell 22:82697–709
    [Google Scholar]
  63. 63. 
    Jia G, Liu X, Owen HA, Zhao D 2008. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. PNAS 105:62220–25
    [Google Scholar]
  64. 64. 
    Joseph-Strauss D, Zenvirth D, Simchen G, Barkai N. 2007. Spore germination in Saccharomyces cerevisiae: global gene expression patterns and cell cycle landmarks. Genome Biol 8:11R241
    [Google Scholar]
  65. 65. 
    Juliano C, Wessel G. 2010. Developmental biology. Versatile germline genes. Science 329:5992640–41
    [Google Scholar]
  66. 66. 
    Katahira J. 2012. mRNA export and the TREX complex. Biochim. Biophys. Acta Gene Regul. Mech. 1819:6507–13
    [Google Scholar]
  67. 67. 
    Kelliher T, Walbot V. 2012. Hypoxia triggers meiotic fate acquisition in maize. Science 337:6092345–48Demonstrates that hypoxia induces meiocyte differentiation in maize anthers.
    [Google Scholar]
  68. 68. 
    Kelliher T, Walbot V. 2014. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. Plant J 77:4639–52
    [Google Scholar]
  69. 69. 
    Khan A, Garbelli A, Grossi S, Florentin A, Batelli G et al. 2014. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. Plant J 79:128–43
    [Google Scholar]
  70. 70. 
    Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:773791–95Combines the overexpression of BABY BOOM 1 with a system to circumvent meiosis (seeRef. 32) to allow the engineering of apomictic plants; however, the development of these plants still relies on the production of endosperm triggered by fertilization.
    [Google Scholar]
  71. 71. 
    Kidner C, Sundaresan V, Roberts K, Dolan L. 2000. Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211:2191–99
    [Google Scholar]
  72. 72. 
    Kitamura K, Katayama S, Dhut S, Sato M, Watanabe Y et al. 2001. Phosphorylation of Mei2 and Ste11 by Pat1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14–3–3 protein in fission yeast. Dev. Cell 1:3389–99
    [Google Scholar]
  73. 73. 
    Kojima ML, de Rooij DG, Page DC 2019. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. eLife 8:e43738
    [Google Scholar]
  74. 74. 
    Koltunow AM. 1993. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:101425–37
    [Google Scholar]
  75. 75. 
    Koltunow AM, Bicknell RA, Chaudhury AM. 1995. Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108:41345–52
    [Google Scholar]
  76. 76. 
    Komiya R, Ohyanagi H, Niihama M, Watanabe T, Nakano M et al. 2014. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J 78:3385–97
    [Google Scholar]
  77. 77. 
    Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC 2006. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. PNAS 103:82474–79
    [Google Scholar]
  78. 78. 
    Laux T, Mayer KFX, Berger J, Jürgens G, Genetik L, München L 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. 9687–96
  79. 79. 
    Lehmann R. 2012. Germline stem cells: origin and destiny. Cell Stem Cell 10:6729–39
    [Google Scholar]
  80. 80. 
    Li H, Clagett-Dame M. 2009. Vitamin A deficiency blocks the initiation of meiosis of germ cells in the developing rat ovary in vivo. Biol. Reprod. 81:5996–1001
    [Google Scholar]
  81. 81. 
    Li J, Dukowic-Schulze S, Lindquist IE, Farmer AD, Kelly B et al. 2015. The plant-specific protein FEHLSTART controls male meiotic entry, initializing meiotic synchronization in Arabidopsis. Plant J 84:4659–71
    [Google Scholar]
  82. 82. 
    Li LC, Qin GJ, Tsuge T, Hou XH, Ding MY et al. 2008. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytol 179:3751–64
    [Google Scholar]
  83. 83. 
    Li SB, Xie ZZ, Hu CG, Zhang JZ. 2016. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 7:47
    [Google Scholar]
  84. 84. 
    Li X, Lian H, Zhao Q, He Y. 2019. MicroRNA166 monitors SPOROCYTELESS/NOZZLE for building of the anther internal boundary. Plant Physiol 181:1208–20
    [Google Scholar]
  85. 85. 
    Lieber D, Lora J, Schrempp S, Lenhard M, Laux T. 2011. Arabidopsis WIH1 and WIH2 genes act in the transition from somatic to reproductive cell fate. Curr. Biol. 21:121009–17
    [Google Scholar]
  86. 86. 
    Lora J, Herrero M, Tucker MR, Hormaza JI 2017. The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. New Phytol 216:2495–509
    [Google Scholar]
  87. 87. 
    Luna R, Jimeno S, Marín M 2005. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol. Cell 18:711–22
    [Google Scholar]
  88. 88. 
    MacLean G, Li H, Metzger D, Chambon P, Petkovich M 2007. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 148:104560–67
    [Google Scholar]
  89. 89. 
    Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN et al. 2011. Synthetic clonal reproduction through seeds. Science 331:6019876
    [Google Scholar]
  90. 90. 
    Mark M, Jacobs H, Oulad-Abdelghani M, Dennefeld C, Féret B et al. 2008. STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. J. Cell Sci. 117:184025–32
    [Google Scholar]
  91. 91. 
    Marston AL. 2014. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 196:131–63
    [Google Scholar]
  92. 92. 
    Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15:394–408
    [Google Scholar]
  93. 93. 
    Mendes MA, Petrella R, Cucinotta M, Vignati E, Gatti S et al. 2020. The RNA-dependent DNA methylation pathway is required to restrict SPOROCYTELESS/NOZZLE expression to specify a single female germ cell precursor in Arabidopsis. Development 147:23dev194274Connects two previously identified key regulators in MMC specification by showing that the expression of SPL/NZZ is restricted by the RdDM pathway, and finds that the MADS-box factor STK directly induces the expression of RdDM components.
    [Google Scholar]
  94. 94. 
    Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA et al. 2003. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130:143309–18
    [Google Scholar]
  95. 95. 
    Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M 2015. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 66:297–327
    [Google Scholar]
  96. 96. 
    Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A et al. 2001. SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15:141859–71
    [Google Scholar]
  97. 97. 
    Merlini L, Dudin O, Martin SG 2013. Mate and fuse: how yeast cells do it. Open Biol. 3:3130008
    [Google Scholar]
  98. 98. 
    Miyazaki S, Sato Y, Asano T, Nagamura Y, Nonomura KI. 2015. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3′-UTR. Plant Mol. Biol. 89:3293–307
    [Google Scholar]
  99. 99. 
    Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE et al. 2008. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:1128–41
    [Google Scholar]
  100. 100. 
    Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O et al. 2000. Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex. Plant Reprod. 12:4209–18
    [Google Scholar]
  101. 101. 
    Nan G-L, Ronceret A, Wang RC, Fernandes JF, Cande Z, Walbot V 2011. Global transcriptome analysis of two ameiotic1 alleles in maize anthers: defining steps in meiotic entry and progression through prophase I. BMC Plant Biol. 11:120
    [Google Scholar]
  102. 102. 
    Naumova TN. 2008. Apomixis and amphimixis in flowering plants. Cytol. Genet. 42:351–63
    [Google Scholar]
  103. 103. 
    Neiman AM. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. . Mol. Biol. Rev. 69:4565–84
    [Google Scholar]
  104. 104. 
    Neiman AM. 2011. Sporulation in the budding yeast Saccharomyces cerevisiae. . Genetics 189:3737–65
    [Google Scholar]
  105. 105. 
    Niu C, Guo J, Shen X, Ma S, Xia M et al. 2020. Meiotic gatekeeper STRA8 regulates cell cycle by interacting with SETD8 during spermatogenesis. J. Cell. Mol. Med. 24:4194–211
    [Google Scholar]
  106. 106. 
    Nogler GA 1984. Gametophytic apomixis. Embryology of Angiosperms BM Johri 475–518 Berlin/Heidelberg: Springer
    [Google Scholar]
  107. 107. 
    Nonomura K-I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A et al. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15:81728–39
    [Google Scholar]
  108. 108. 
    Nonomura K-I, Morohoshi A, Nakano M, Eiguchi M, Miyao A et al. 2007. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19:82583–94
    [Google Scholar]
  109. 109. 
    Nonomura KI, Eiguchi M, Nakano M, Takashima K, Komeda N et al. 2011. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L.). PLOS Genet. 7:1e1001265
    [Google Scholar]
  110. 110. 
    Nowack MK, Harashima H, Dissmeyer N, Zhao X, Bouyer D et al. 2012. Genetic framework of cyclin-dependent kinase function in Arabidopsis. Dev. Cell 22:51030–40
    [Google Scholar]
  111. 111. 
    Ohkura H. 2015. Meiosis: an overview of key differences from mitosis. Cold Spring Harb. Perspect. Biol. 7:51–15
    [Google Scholar]
  112. 112. 
    Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D et al. 2010. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:7288628–32Demonstrates that the RdDM pathway plays a key role in restricting gametic fate to designated MMCs; in the absence of this pathway, sporophytic cells develop into megaspores without undergoing meiosis, thus generating diploid gametophytes in diploid plants.
    [Google Scholar]
  113. 113. 
    Otero S, Desvoyes B, Peiró R, Gutierrez C 2016. Histone H3 dynamics reveal domains with distinct proliferation potential in the Arabidopsis root. Plant Cell 28:61361–71
    [Google Scholar]
  114. 114. 
    Otsubo Y, Yamamoto M. 2012. Signaling pathways for fission yeast sexual differentiation at a glance. J. Cell Sci. 125:122789–93
    [Google Scholar]
  115. 115. 
    Ozias-Akins P, van Dijk PJ. 2007. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41:509–37
    [Google Scholar]
  116. 116. 
    Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324:59351684–89
    [Google Scholar]
  117. 117. 
    Pak J, Segall J. 2002. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell. Biol. 22:186417–29
    [Google Scholar]
  118. 118. 
    Palovaara J, de Zeeuw T, Weijers D. 2016. Tissue and organ initiation in the plant embryo: a first time for everything. Annu. Rev. Cell Dev. Biol. 32:47–75
    [Google Scholar]
  119. 119. 
    Pawlowski WP, Sheehan MJ, Ronceret A. 2007. In the beginning: the initiation of meiosis. BioEssays 29:6511–14
    [Google Scholar]
  120. 120. 
    Pawlowski WP, Wang C-JR, Golubovskaya IN, Szymaniak JM, Shi L et al. 2009. Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. PNAS 106:93603–8
    [Google Scholar]
  121. 121. 
    Pinto SC, Mendes MA, Coimbra S, Tucker MR 2019. Revisiting the female germline and its expanding toolbox. Trends Plant Sci. 24:5455–67
    [Google Scholar]
  122. 122. 
    Prusicki MA, Keizer EM, van Rosmalen RP, Komaki S, Seifert F et al. 2019. Live cell imaging of meiosis in Arabidopsis thaliana. eLife 8:e42834
    [Google Scholar]
  123. 123. 
    Qin Y, Zhao L, Skaggs MI, Andreuzza S, Tsukamoto T et al. 2014. ACTIN-RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in Arabidopsis. Plant Cell 26:41612–28
    [Google Scholar]
  124. 124. 
    Raverdeau M, Gely-Pernot A, Féret B, Dennefeld C, Benoit G et al. 2012. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. PNAS 109:4116582–87
    [Google Scholar]
  125. 125. 
    Ravi M, Marimuthu MP, Siddiqi I. 2008. Gamete formation without meiosis in Arabidopsis. Nature 451:71821121–24
    [Google Scholar]
  126. 126. 
    Ren L, Tang D, Zhao T, Zhang F, Liu C et al. 2018. OsSPL regulates meiotic fate acquisition in rice. New Phytol 218:2789–803
    [Google Scholar]
  127. 127. 
    Rustici G, Mata J, Kivinen K, Lió P, Penkett CJ et al. 2004. Periodic gene expression program of the fission yeast cell cycle. Nat. Genet. 36:8809–17
    [Google Scholar]
  128. 128. 
    Savidan Y 2001. Gametophytic apomixis. Current Trends in the Embryology of Angiosperms SS Bhojwani, WY Soh 419–33 Berlin: Springer
    [Google Scholar]
  129. 129. 
    Savidan Y, Carman JG, Dresselhaus T 2001. The Flowering of Apomixis: From Mechanisms to Genetic Engineering Mexico City: CIMMYT
  130. 130. 
    Schmidt A, Wuest SE, Vijverberg K, Baroux C, Kleen D, Grossniklaus U 2011. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLOS Biol 9:9e1001155
    [Google Scholar]
  131. 131. 
    Schneitz K, Hülskamp M, Kopczak SD, Pruitt RE. 1997. Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development 124:71367–76
    [Google Scholar]
  132. 132. 
    Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M et al. 2009. Endogenous tasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLOS ONE 4:6e5980
    [Google Scholar]
  133. 133. 
    She W, Baroux C. 2015. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front. Plant Sci. 6:294
    [Google Scholar]
  134. 134. 
    She W, Grimanelli D, Rutowicz K, Whitehead MWJ, Puzio M et al. 2013. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140:194008–19
    [Google Scholar]
  135. 135. 
    Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, Golubovskaya IN. 1996. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142:31009–20
    [Google Scholar]
  136. 136. 
    Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V 2000. The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:1197–207
    [Google Scholar]
  137. 137. 
    Singh M, Goel S, Meeley RB, Dantec C, Parrinello H et al. 2011. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23:2443–58
    [Google Scholar]
  138. 138. 
    Sipiczki M. 2000. Where does fission yeast sit on the tree of life?. Genome Biol 1:21–4
    [Google Scholar]
  139. 139. 
    Smith HE, Su SS, Neigeborn L, Driscoll SE, Mitchell AP. 1990. Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:126103–13
    [Google Scholar]
  140. 140. 
    Spillane C, Steimer A, Grossniklaus U. 2001. Apomixis in agriculture: the quest for clonal seeds. Sex. Plant Reprod. 14:4179–87
    [Google Scholar]
  141. 141. 
    Su Z, Wang N, Hou Z, Li B, Li D et al. 2020. Regulation of female germline specification via small RNA mobility in Arabidopsis. Plant Cell 32:92842–54
    [Google Scholar]
  142. 142. 
    Su Z, Zhao L, Zhao Y, Li S, Won SY et al. 2017. The THO complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr. Biol. 27:111597–609.e2
    [Google Scholar]
  143. 143. 
    Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamamoto M. 1991. Schizosaccharomyces pombe ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev 5:111990–99
    [Google Scholar]
  144. 144. 
    Sun Y, Wang X, Pan L, Xie F, Dai B et al. 2021. Plant egg cell fate determination depends on its exact position in female gametophyte. PNAS 118:8e2017488118
    [Google Scholar]
  145. 145. 
    Takaso T, Bouman F. 1986. Ovule and seed ontogeny in Gnetum gnemon L. Bot. Mag. Tokyo 99:3241–66
    [Google Scholar]
  146. 146. 
    Terceros GC, Resentini F, Cucinotta M, Manrique S, Colombo L, Mendes MA 2020. The importance of cytokinins during reproductive development in Arabidopsis and beyond. Int. J. Mol. Sci. 21:218161
    [Google Scholar]
  147. 147. 
    Valuchova S, Mikulkova P, Pecinkova J, Klimova J, Krumnikl M et al. 2020. Imaging plant germline differentiation within Arabidopsis flowers by light sheet microscopy. eLife 9:e52546
    [Google Scholar]
  148. 148. 
    Verdugo A, Vinod PK, Tyson JJ, Novak B 2013. Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol 3:3120179
    [Google Scholar]
  149. 149. 
    Vijayan A, Tofanelli R, Strauss S, Cerrone L, Wolny A et al. 2021. A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife 10:e63262
    [Google Scholar]
  150. 150. 
    Walbot V, Egger RL. 2016. Pre-meiotic anther development: cell fate specification and differentiation. Annu. Rev. Plant Biol. 67:365–95
    [Google Scholar]
  151. 151. 
    Wang C-JR, Nan G-L, Kelliher T, Timofejeva L, Vernoud V et al. 2012. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development 139:142594–603Demonstrates that cell position is crucial for cell fate determination within the anther by providing evidence that MAC1 is secreted from the AR to repress AR fate in surrounding cells.
    [Google Scholar]
  152. 152. 
    Wang Y, Copenhaver GP. 2018. Meiotic recombination: mixing it up in plants. Annu. Rev. Plant Biol. 69:577–609
    [Google Scholar]
  153. 153. 
    Watanabe Y, Shinozaki-Yabana S, Chikashige Y, Hiraoka Y, Yamamoto M. 1997. Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386:187–90
    [Google Scholar]
  154. 154. 
    Wei B, Zhang J, Pang C, Yu H, Guo D et al. 2015. The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Res 25:1121–34
    [Google Scholar]
  155. 155. 
    Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ. 2016. Nutrient control of yeast gametogenesis is mediated by TORC1, PKA and energy availability. PLOS Genet. 12:6e1006075
    [Google Scholar]
  156. 156. 
    Wijnker E, Schnittger A. 2013. Control of the meiotic cell division program in plants. Plant Reprod 26:3143–58
    [Google Scholar]
  157. 157. 
    Wilkins AS, Holliday R. 2009. The evolution of meiosis from mitosis. Genetics 181:13–12
    [Google Scholar]
  158. 158. 
    Wylie C. 1999. Germ cells. Cell 96:2165–74
    [Google Scholar]
  159. 159. 
    Xing S, Zachgo S. 2008. ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J 53:5790–801
    [Google Scholar]
  160. 160. 
    Yang C, Hamamura Y, Sofroni K, Böwer F, Stolze SC et al. 2019. SWITCH 1/DYAD is a novel WINGS APART-LIKE antagonist that maintains sister chromatid cohesion in meiosis. Nat. Commun. 10:1755
    [Google Scholar]
  161. 161. 
    Yang L, Qian X, Chen M, Fei Q, Meyers BC et al. 2016. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiol. 171:32085–100
    [Google Scholar]
  162. 162. 
    Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC et al. 2003. TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:122792–804
    [Google Scholar]
  163. 163. 
    Yang WC, Ye D, Xu J, Sundaresan V. 1999. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13:162108–17
    [Google Scholar]
  164. 164. 
    Yao X, Yang H, Zhu Y, Xue J, Wang T et al. 2018. The canonical E2Fs are required for germline development in Arabidopsis. Front. Plant Sci. 9:638
    [Google Scholar]
  165. 165. 
    Yoshikawa M, Peragine A, Park MY, Poethig RS. 2005. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:182164–75
    [Google Scholar]
  166. 166. 
    Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D 2014. Chromosome segregation in plant meiosis. Front. Plant Sci. 5:279
    [Google Scholar]
  167. 167. 
    Zhao DZ, Wang GF, Speal B, Ma H. 2002. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev 16:152021–31
    [Google Scholar]
  168. 168. 
    Zhao L, He J, Cai H, Lin H, Li Y et al. 2014. Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. Plant J 80:4615–28
    [Google Scholar]
  169. 169. 
    Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA et al. 2017. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science 356:6336eaaf6532Uncovers a regulatory cascade starting with the MMC-specific expression of CDK inhibitors of KRP type that blocks the activity of CDKA;1 in the designated meiocyte, thereby reducing inhibitory phosphorylation on RBR1, and shows that active RBR1 directly represses the stem cell factor WUS and thus terminates self-renewal and stem cell–like behavior of the designated meiocyte.
    [Google Scholar]
  170. 170. 
    Zhao X, de Palma J, Oane R, Gamuyao R, Luo M et al. 2008. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54:3375–87
    [Google Scholar]
  171. 171. 
    Zhao Y. 2012. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5:2334–38
    [Google Scholar]
  172. 172. 
    Zheng Y, Wang D, Ye S, Chen W, Li G et al. 2020. Auxin guides germ cell specification in Arabidopsis anthers. PNAS 118:22e2101492118
    [Google Scholar]
  173. 173. 
    Zickler D, Kleckner N. 2015. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7:6a016626
    [Google Scholar]
/content/journals/10.1146/annurev-genet-112618-043553
Loading
/content/journals/10.1146/annurev-genet-112618-043553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error