1932

Abstract

Transcription requires unwinding complementary DNA strands, generating torsional stress, and sensitizing the exposed single strands to chemical reactions and endogenous damaging agents. In addition, transcription can occur concomitantly with the other major DNA metabolic processes (replication, repair, and recombination), creating opportunities for either cooperation or conflict. Genetic modifications associated with transcription are a global issue in the small genomes of microorganisms in which noncoding sequences are rare. Transcription likewise becomes significant when one considers that most of the human genome is transcriptionally active. In this review, we focus specifically on the mutagenic consequences of transcription. Mechanisms of transcription-associated mutagenesis in microorganisms are discussed, as is the role of transcription in somatic instability of the vertebrate immune system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092015
2014-11-23
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092015.html?itemId=/content/journals/10.1146/annurev-genet-120213-092015&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilera A, Garcia-Muse T. 1.  2012. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46:115–24 [Google Scholar]
  2. Alexander MP, Begins KJ, Crall WC, Holmes MP, Lippert MJ. 2.  2013. High levels of transcription stimulate transversions at GC base pairs in yeast. Environ. Mol. Mutagen. 54:44–53 [Google Scholar]
  3. Arakawa H, Hauschild J, Buerstedde JM. 3.  2002. Requirement of the activation-induced deaminase (AID) gene for immunoglobulin gene conversion. Science 295:1301–6 [Google Scholar]
  4. Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. 4.  2009. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34:722–34 [Google Scholar]
  5. Basu U, Meng FL, Keim C, Grinstein V, Pefanis E. 5.  et al. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell 144:353–63 [Google Scholar]
  6. Beletskii A, Bhagwat AS. 6.  1996. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc. Natl. Acad. Sci. USA 93:13919–24Demonstrated that cytosine deamination is more frequent on the NTS in E. coli. [Google Scholar]
  7. Belotserkovskii BP, Mirkin SM, Hanawalt PC. 7.  2013. DNA sequences that interfere with transcription: implications for genome function and stability. Chem. Rev. 113:8620–37 [Google Scholar]
  8. Bemark M, Neuberger MS. 8.  2000. The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line. Oncogene 19:3404–10 [Google Scholar]
  9. Boiteux S, Jinks-Robertson S. 9.  2013. DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae. Genetics 193:1025–64 [Google Scholar]
  10. Bransteitter R, Pham P, Scharff MD, Goodman MF. 10.  2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100:4102–7 [Google Scholar]
  11. Burkala E, Reimers JM, Schmidt KH, Davis N, Wei P, Wright BE. 11.  2007. Secondary structures as predictors of mutation potential in the lacZ gene of Escherichia coli. Microbiology 153:2180–89 [Google Scholar]
  12. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM. 12.  et al. 2013. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494:366–70 [Google Scholar]
  13. Cerritelli SM, Crouch RJ. 13.  2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276:1494–505 [Google Scholar]
  14. Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. 14.  2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–30 [Google Scholar]
  15. Cho JE, Kim N, Li YC, Jinks-Robertson S. 15.  2013. Two distinct mechanisms of topoisomerase 1–dependent mutagenesis in yeast. DNA Repair 12:205–11 [Google Scholar]
  16. Datta A, Jinks-Robertson S. 16.  1995. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268:1616–19 [Google Scholar]
  17. Davis BD. 17.  1989. Transcriptional bias: a non-Lamarckian mechanism for substrate-induced mutations. Proc. Natl. Acad. Sci. USA 86:5005–9 [Google Scholar]
  18. de Morgan A, Brodsky L, Ronin Y, Nevo E, Korol A, Kashi Y. 18.  2010. Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. Microbiology 156:1758–71 [Google Scholar]
  19. Deshpande AM, Newlon CS. 19.  1996. DNA replication fork pause sites dependent on transcription. Science 272:1030–33 [Google Scholar]
  20. Dickerson SK, Market E, Besmer E, Papavasiliou FN. 20.  2003. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197:1291–96 [Google Scholar]
  21. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. 21.  2004. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18:1618–29 [Google Scholar]
  22. Duquette ML, Pham P, Goodman MF, Maizels N. 22.  2005. AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogene 24:5791–98 [Google Scholar]
  23. Eddy J, Vallur AC, Varma S, Liu H, Reinhold WC. 23.  et al. 2011. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res. 39:4975–83 [Google Scholar]
  24. Bernstein BE, Birney E, Dunham I, Green ED. 24. ENCODE Proj. Consort et al. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74 [Google Scholar]
  25. Fix D, Canugovi C, Bhagwat AS. 25.  2008. Transcription increases methylmethane sulfonate-induced mutations in alkB strains of Escherichia coli. DNA Repair 7:1289–97 [Google Scholar]
  26. Fix DF, Glickman BW. 26.  1987. Asymmetric cytosine deamination revealed by spontaneous mutational specificity in an Ung- strain of Escherichia coli. Mol. Gen. Genet. 209:78–82 [Google Scholar]
  27. Fraenkel S, Mostoslavsky R, Novobrantseva TI, Pelanda R, Chaudhuri J. 27.  et al. 2007. Allelic “choice” governs somatic hypermutation in vivo at the immunoglobulin kappa-chain locus. Nat. Immunol. 8:715–22 [Google Scholar]
  28. Francino MP, Chao L, Riley MA, Ochman H. 28.  1996. Asymmetries generated by transcription-coupled repair in enterobacterial genes. Science 272:107–9 [Google Scholar]
  29. Francino MP, Ochman H. 29.  2001. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol. Biol. Evol. 18:1147–50 [Google Scholar]
  30. Frederico LA, Kunkel TA, Shaw BR. 30.  1990. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29:2532–37 [Google Scholar]
  31. Galhardo RS, Hastings PJ, Rosenberg SM. 31.  2007. Mutation as a stress response and the regulation of evolvability. Crit. Rev. Biochem. Mol. Biol. 42:399–435 [Google Scholar]
  32. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. 32.  2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292:1876–82 [Google Scholar]
  33. Gomez-Gonzalez B, Aguilera A. 33.  2007. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl. Acad. Sci. USA 104:8409–14Examined the interplay between transcription, R-loop formation, and AID expression in yeast. [Google Scholar]
  34. Gowrishankar J, Harinarayanan R. 34.  2004. Why is transcription coupled to translation in bacteria?. Mol. Microbiol. 54:598–603 [Google Scholar]
  35. Green P, Ewing B, Miller W, Thomas PJ. 35.  NISC Comp. Seq., Green ED 2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Genet. 33:514–17 [Google Scholar]
  36. Hanawalt PC, Spivak G. 36.  2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9:958–70 [Google Scholar]
  37. Harris RS, Sale JE, Petersen-Mahrt SK, Neuberger MS. 37.  2002. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12:435–38 [Google Scholar]
  38. Hartzog GA, Fu J. 38.  2013. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim. Biophys. Acta 1829:105–15 [Google Scholar]
  39. Heidenreich E. 39.  2007. Adaptive mutation in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 42:285–311 [Google Scholar]
  40. Helmrich A, Ballarino M, Nudler E, Tora L. 40.  2013. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20:412–18 [Google Scholar]
  41. Helmrich A, Ballarino M, Tora L. 41.  2011. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol. Cell 44:966–77 [Google Scholar]
  42. Hendriks G, Calleja F, Besaratinia A, Vrieling H, Pfeifer GP. 42.  et al. 2010. Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr. Biol. 20:170–75 [Google Scholar]
  43. Herman RK, Dworkin NB. 43.  1971. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J. Bacteriol. 106:543–50 [Google Scholar]
  44. Hicks WM, Kim M, Haber JE. 44.  2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82–85 [Google Scholar]
  45. Hinnebusch AG. 45.  1992. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthesis enzymes in Saccharomyces cerevisiae. The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression EW Jones, JR Pringle, JR Broach 319–414 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  46. Hudson RE, Bergthorsson U, Ochman H. 46.  2003. Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res. 31:4517–22 [Google Scholar]
  47. Kanehiro Y, Todo K, Negishi M, Fukuoka J, Gan W. 47.  et al. 2012. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proc. Natl. Acad. Sci. USA 109:1216–21 [Google Scholar]
  48. Kim N, Abdulovic AL, Gealy R, Lippert MJ, Jinks-Robertson S. 48.  2007. Transcription-associated mutagenesis in yeast is directly proportional to the level of gene expression and influenced by the direction of DNA replication. DNA Repair 6:1285–96 [Google Scholar]
  49. Kim N, Cho JE, Li YC, Jinks-Robertson S. 49.  2013. RNA:DNA hybrids initiate quasi-palindrome-associated mutations in highly transcribed yeast DNA. PLoS Genet. 9:e1003924 [Google Scholar]
  50. Kim N, Jinks-Robertson S. 50.  2009. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature 459:1150–53Demonstrated increased incorporation of uracil into transcriptionally active yeast DNA. [Google Scholar]
  51. Kim N, Jinks-Robertson S. 51.  2010. Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 30:3206–15 [Google Scholar]
  52. Klapacz J, Bhagwat AS. 52.  2002. Transcription-dependent increase in multiple classes of base substitution mutations in Escherichia coli. J. Bacteriol. 184:6866–72 [Google Scholar]
  53. Klapacz J, Bhagwat AS. 53.  2005. Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Escherichia coli gene. DNA Repair 4:806–13 [Google Scholar]
  54. Kobayashi M, Sabouri Z, Sabouri S, Kitawaki Y, Pommier Y. 54.  et al. 2011. Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Proc. Natl. Acad. Sci. USA 108:19305–10 [Google Scholar]
  55. Korogodin VI, Korogodin VL, Fajszi C, Chepurnoy AI, Mikhova-Tsenova N, Simonyan NV. 55.  1991. On the dependence of spontaneous mutation rates on the functional state of genes. Yeast 7:105–17 [Google Scholar]
  56. Larijani M, Martin A. 56.  2012. The biochemistry of activation-induced deaminase and its physiological functions. Semin. Immunol. 24:255–63 [Google Scholar]
  57. Li G, Zan H, Xu Z, Casali P. 57.  2013. Epigenetics of the antibody response. Trends Immunol. 34:460–70 [Google Scholar]
  58. Li X, Manley JL. 58.  2006. Cotranscriptional processes and their influence on genome stability. Genes Dev. 20:1838–47 [Google Scholar]
  59. Lin Y, Hubert L Jr, Wilson JH. 59.  2009. Transcription destabilizes triplet repeats. Mol. Carcinog. 48:350–61 [Google Scholar]
  60. Lippert MJ, Chen Q, Liber HL. 60.  1998. Increased transcription decreases the spontaneous mutation rate at the thymidine kinase locus in human cells. Mutat. Res. 401:1–10 [Google Scholar]
  61. Lippert MJ, Freedman JA, Barber MA, Jinks-Robertson S. 61.  2004. Identification of a distinctive mutation spectrum associated with high levels of transcription in yeast. Mol. Cell. Biol. 24:4801–9 [Google Scholar]
  62. Lippert MJ, Kim N, Cho JE, Larson RP, Schoenly NE. 62.  et al. 2011. Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. Proc. Natl. Acad. Sci. USA 108:698–703Along with Reference 97, reported that Top1 is the major source of TAM in yeast. [Google Scholar]
  63. Liu LF, Wang JC. 63.  1987. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84:7024–27 [Google Scholar]
  64. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC. 64.  et al. 2008. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451:841–45 [Google Scholar]
  65. Masani S, Han L, Yu K. 64a.  2013. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol. Cell Biol. 33:1468–73 [Google Scholar]
  66. Merrikh H, Zhang Y, Grossman AD, Wang JD. 65.  2012. Replication-transcription conflicts in bacteria. Nat. Rev. Microbiol. 10:449–58 [Google Scholar]
  67. Morey NJ, Greene CN, Jinks-Robertson S. 66.  2000. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics 154:109–20 [Google Scholar]
  68. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 67.  2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–63 [Google Scholar]
  69. Nagaoka H, Muramatsu M, Yamamura N, Kinoshita K, Honjo T. 68.  2002. Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Sμ region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J. Exp. Med. 195:529–34 [Google Scholar]
  70. Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T. 69.  et al. 2003. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302:2137–40Demonstrated that AID coimmuno-precipitates with RNAP II. [Google Scholar]
  71. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. 70.  et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  72. Palombo F, Kohfeldt E, Calcagnile A, Nehls P, Dogliotti E. 71.  1992. N-methyl-N-nitrosourea-induced mutation in human cells: effects of the transcriptional activity of the target gene. J. Mol. Biol. 223:587–94 [Google Scholar]
  73. Papantonis A, Cook PR. 72.  2013. Transcription factories: genome organization and gene regulation. Chem. Rev. 113:8683–705 [Google Scholar]
  74. Park C, Qian W, Zhang J. 73.  2012. Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 13:1123–29 [Google Scholar]
  75. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A. 74.  et al. 1998. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95:11816–21 [Google Scholar]
  76. Paul S, Million-Weaver S, Chattopadhyay S, Sokurenko E, Merrikh H. 75.  2013. Accelerated gene evolution through replication-transcription conflicts. Nature 495:512–15Documented the evolutionary consequences of transcription-replication conflicts in bacteria. [Google Scholar]
  77. Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I. 76.  et al. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143:122–33 [Google Scholar]
  78. Peterlin BM, Price DH. 77.  2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297–305 [Google Scholar]
  79. Polak P, Querfurth R, Arndt PF. 78.  2010. The evolution of transcription-associated biases of mutations across vertebrates. BMC Evol. Biol. 10:187 [Google Scholar]
  80. Prado F, Aguilera A. 79.  2005. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24:1267–76 [Google Scholar]
  81. Pybus C, Pedraza-Reyes M, Ross CA, Martin H, Ona K. 80.  et al. 2010. Transcription-associated mutation in Bacillus subtilis cells under stress. J. Bacteriol. 192:3321–28 [Google Scholar]
  82. Reimers JM, Schmidt KH, Longacre A, Reschke DK, Wright BE. 81.  2004. Increased transcription rates correlate with increased reversion rates in leuB and argH Escherichia coli auxotrophs. Microbiology 150:1457–66 [Google Scholar]
  83. Roberts SA, Gordenin DA. 82.  2014. Clustered and genome-wide transient mutagenesis in human cancers: hypermutation without permanent mutators or loss of fitness. BioEssays 36:382–93 [Google Scholar]
  84. Roberts SA, Sterling J, Thompson C, Harris S, Mav D. 83.  et al. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46:424–35 [Google Scholar]
  85. Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA. 84.  et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7:1640–48 [Google Scholar]
  86. Samaranayake M, Bujnicki JM, Carpenter M, Bhagwat AS. 85.  2006. Evaluation of molecular models for the affinity maturation of antibodies: roles of cytosine deamination by AID and DNA repair. Chem. Rev. 106:700–19 [Google Scholar]
  87. Savic DJ, Kanazir DT. 86.  1972. The effect of a histidine operator-constitutive mutation on UV-induced mutability within the histidine operon of Salmonella typhimurium. Mol. Gen. Genet. 118:45–50 [Google Scholar]
  88. Schmidt KH, Reimers JM, Wright BE. 87.  2006. The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol. Microbiol. 60:1251–61 [Google Scholar]
  89. Shen HM, Tanaka A, Bozek G, Nicolae D, Storb U. 88.  2006. Somatic hypermutation and class switch recombination in Msh6−/−Ung−/− double-knockout mice. J. Immunol. 177:5386–92 [Google Scholar]
  90. Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. 89.  2012. Functions and regulation of the APOBEC family of proteins. Semin. Cell Dev. Biol. 23:258–68 [Google Scholar]
  91. Sohail A, Klapacz J, Samaranayake M, Ullah A, Bhagwat AS. 90.  2003. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31:2990–94 [Google Scholar]
  92. Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E. 91.  et al. 2012. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47:980–86 [Google Scholar]
  93. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. 92.  2010. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 6:e1000810 [Google Scholar]
  94. Storb U. 93.  2014. Why does somatic hypermutation by AID require transcription of its target genes?. Adv. Immunol. 122:253–77 [Google Scholar]
  95. Storb U, Shen HM, Michael N, Kim N. 94.  2001. Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. Philos. Trans. R. Soc. Lond. B 356:13–19 [Google Scholar]
  96. Strathern JN, Shafer B, McGill CB. 95.  1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140:965–72 [Google Scholar]
  97. Takahashi T, Burguiere-Slezak G, Van der Kemp PA, Boiteux S. 96.  2011. Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 108:692–97Along with Reference 62, reported that Top1 is the major source of TAM in yeast. [Google Scholar]
  98. Wang JC. 97.  2002. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3:430–40 [Google Scholar]
  99. Wang X, Fan M, Kalis S, Wei L, Scharff MD. 98.  2014. A source of the single-stranded DNA substrate for activation-induced deaminase during somatic hypermutation. Nat. Commun. 5:4137 [Google Scholar]
  100. Westover KD, Bushnell DA, Kornberg RD. 99.  2004. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014–16 [Google Scholar]
  101. Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ. 100.  2013. R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat. Commun. 4:2115 [Google Scholar]
  102. Woo CJ, Martin A, Scharff MD. 101.  2003. Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin. Immunity 19:479–89 [Google Scholar]
  103. Wright BE. 102.  1996. The effect of the stringent response on mutation rates in Escherichia coli K-12. Mol. Microbiol. 19:213–19 [Google Scholar]
  104. Wright BE. 103.  2004. Stress-directed adaptive mutations and evolution. Mol. Microbiol. 52:643–50 [Google Scholar]
  105. Wright BE, Longacre A, Reimers JM. 104.  1999. Hypermutation in derepressed operons of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 96:5089–94 [Google Scholar]
  106. Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W. 105.  2003. Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol. Microbiol. 48:429–41 [Google Scholar]
  107. Wright BE, Schmidt KH, Davis N, Hunt AT, Minnick MF. 106.  2008. II. Correlations between secondary structure stability and mutation frequency during somatic hypermutation. Mol. Immunol. 45:3600–8 [Google Scholar]
  108. Wright BE, Schmidt KH, Hunt AT, Lodmell JS, Minnick MF, Reschke DK. 107.  2011. The roles of transcription and genotoxins underlying p53 mutagenesis in vivo. Carcinogenesis 32:1559–67 [Google Scholar]
  109. Wright BE, Schmidt KH, Minnick MF, Davis N. 108.  2008. I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation. Mol. Immunol. 45:3589–99 [Google Scholar]
  110. Xue K, Rada C, Neuberger MS. 109.  2006. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2−/− ung−/− mice. J. Exp. Med. 203:2085–94 [Google Scholar]
  111. Yamaguchi Y, Shibata H, Handa H. 111.  2013. Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond. Biochim. Biophys. Acta 1829:98–104 [Google Scholar]
  112. Yamane A, Resch W, Kuo N, Kuchen S, Li Z. 112.  et al. 2011. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 12:62–69 [Google Scholar]
  113. Yu K, Roy D, Bayramyan M, Haworth IS, Lieber MR. 113.  2005. Fine-structure analysis of activation-induced deaminase accessibility to class switch region R-loops. Mol. Cell. Biol. 25:1730–36 [Google Scholar]
  114. Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, Saini N. 114.  et al. 2012. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol. Cell 48:254–65 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092015
Loading
/content/journals/10.1146/annurev-genet-120213-092015
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error