1932

Abstract

Epigenetic control of gene expression programs is essential for normal organismal development and cellular function. Abrogation of epigenetic regulation is seen in many human diseases, including cancer and neuropsychiatric disorders, where it can affect disease etiology and progression. Abnormal epigenetic profiles can serve as biomarkers of disease states and predictors of disease outcomes. Therefore, epigenetics is a key area of clinical investigation in diagnosis, prognosis, and treatment. In this review, we give an overarching view of epigenetic mechanisms of human disease. Genetic mutations in genes that encode chromatin regulators can cause monogenic disease or are incriminated in polygenic, multifactorial diseases. Environmental stresses can also impact directly on chromatin regulation, and these changes can increase the risk of, or directly cause, disease. Finally, emerging evidence suggests that exposure to environmental stresses in older generations may predispose subsequent generations to disease in a manner that involves the transgenerational inheritance of epigenetic information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092518
2014-11-23
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092518.html?itemId=/content/journals/10.1146/annurev-genet-120213-092518&mimeType=html&fmt=ahah

Literature Cited

  1. Abidi FE, Cardoso C, Lossi AM, Lowry RB, Depetris D. 1.  et al. 2005. Mutation in the 5′ alternatively spliced region of the XNP/ATR-X gene causes Chudley-Lowry syndrome. Eur. J. Hum. Genet. 13:176–83 [Google Scholar]
  2. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A. 2.  et al. 1995. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry 52:258–66 [Google Scholar]
  3. Amatu A, Sartore-Bianchi A, Moutinho C, Belotti A, Bencardino K. 3.  et al. 2013. Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin. Cancer Res. 19:2265–72 [Google Scholar]
  4. Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ. 4.  et al. 2000. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann. Neurol. 47:670–79 [Google Scholar]
  5. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 5.  1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:185–88 [Google Scholar]
  6. Andersen TA, Troelsen KD, Larsen LA. 6.  2013. Of mice and men: molecular genetics of congenital heart disease. Cell. Mol. Life Sci. 71:1327–52 [Google Scholar]
  7. Archer TC, Pomeroy SL. 7.  2012. Medulloblastoma biology in the post-genomic era. Future Oncol. 8:1597–604 [Google Scholar]
  8. Ayoub MA, Angelicheva D, Vile D, Chandler D, Morar B. 8.  et al. 2012. Deleterious GRM1 mutations in schizophrenia. PLOS ONE 7:e32849 [Google Scholar]
  9. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF. 9.  et al. 2006. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8:532–38 [Google Scholar]
  10. Bagot RC, Zhang TY, Wen X, Nguyen TT, Nguyen HB. 10.  et al. 2012. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc. Natl. Acad. Sci. USA 109:Suppl. 217200–7 [Google Scholar]
  11. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y. 11.  et al. 2010. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–62 [Google Scholar]
  12. Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR. 12.  et al. 2012. Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J. Alzheimers Dis. 29:571–88 [Google Scholar]
  13. Balemans MC, Ansar M, Oudakker A, van Caam AP, Bakker B. 13.  et al. 2013. Reduced euchromatin histone methyltransferase 1 causes developmental delay, hypotonia, and cranial abnormalities associated with increased bone gene expression in Kleefstra syndrome mice. Dev. Biol. 386:395–407 [Google Scholar]
  14. Barlesi F, Giaccone G, Gallegos-Ruiz MI, Loundou A, Span SW. 14.  et al. 2007. Global histone modifications predict prognosis of resected non small-cell lung cancer. J. Clin. Oncol. 25:4358–64 [Google Scholar]
  15. Bartholdi D, Roelfsema JH, Papadia F, Breuning MH, Niedrist D. 15.  et al. 2007. Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J. Med. Genet. 44:327–33 [Google Scholar]
  16. Batsukh T, Pieper L, Koszucka AM, von Velsen N, Hoyer-Fender S. 16.  et al. 2010. CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. Hum. Mol. Genet. 19:2858–66 [Google Scholar]
  17. Bell JT, Spector TD. 17.  2011. A twin approach to unraveling epigenetics. Trends Genet. 27:116–25 [Google Scholar]
  18. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT. 18.  et al. 2013. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–72 [Google Scholar]
  19. Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG Jr. 19.  2005. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol. Cell 18:623–35 [Google Scholar]
  20. Benyshek DC, Johnston CS, Martin JF. 20.  2006. Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 49:1117–19 [Google Scholar]
  21. Betancur C. 21.  2011. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380:42–77 [Google Scholar]
  22. Bickmore WA. 22.  2013. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14:67–84 [Google Scholar]
  23. Bird A. 23.  2002. DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21 [Google Scholar]
  24. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A. 24.  et al. 2013. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 3:512–19 [Google Scholar]
  25. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. 25.  2007. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ. Res. 100:520–26 [Google Scholar]
  26. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N. 26.  et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–25 [Google Scholar]
  27. Brun ME, Lana E, Rivals I, Lefranc G, Sarda P. 27.  et al. 2011. Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLOS ONE 6:e19464 [Google Scholar]
  28. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. 28.  2007. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97:435–39 [Google Scholar]
  29. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C. 29.  et al. 2001. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res. 7:2727–30 [Google Scholar]
  30. Campeau PM, Kim JC, Lu JT, Schwartzentruber JA, Abdul-Rahman OA. 30.  et al. 2012. Mutations in KAT6B, encoding a histone acetyltransferase, cause Genitopatellar syndrome. Am. J. Hum. Genet. 90:282–89 [Google Scholar]
  31. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M. 31.  1998. The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch. Gen. Psychiatry 55:67–74 [Google Scholar]
  32. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H. 32.  et al. 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–43 [Google Scholar]
  33. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE. 33.  et al. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–96 [Google Scholar]
  34. Challen GA, Goodell MA. 34.  2010. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp. Hematol. 38:403–16 [Google Scholar]
  35. Challen GA, Sun D, Jeong M, Luo M, Jelinek J. 35.  et al. 2012. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44:23–31 [Google Scholar]
  36. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ. 36.  2006. Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology 147:2909–15 [Google Scholar]
  37. Chan KM, Fang D, Gan H, Hashizume R, Yu C. 37.  et al. 2013. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27:985–90 [Google Scholar]
  38. Chen D, Zhang G. 38.  2001. Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp. Hematol. 29:971–80 [Google Scholar]
  39. Chen J, Evans AN, Liu Y, Honda M, Saavedra JM, Aguilera G. 39.  2012. Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J. Neuroendocrinol. 24:1055–64 [Google Scholar]
  40. Chen T, Ueda Y, Dodge JE, Wang Z, Li E. 40.  2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23:5594–605 [Google Scholar]
  41. Cherry AB, Daley GQ. 41.  2012. Reprogramming cellular identity for regenerative medicine. Cell 148:1110–22 [Google Scholar]
  42. Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G. 42.  et al. 2013. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34:2091–99 [Google Scholar]
  43. Clayton-Smith J, O'Sullivan J, Daly S, Bhaskar S, Day R. 43.  et al. 2011. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am. J. Hum. Genet. 89:675–81 [Google Scholar]
  44. Cote J, Quinn J, Workman JL, Peterson CL. 44.  1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60 [Google Scholar]
  45. David G, Abbas N, Stevanin G, Durr A, Yvert G. 45.  et al. 1997. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet. 17:65–70 [Google Scholar]
  46. Deaton AM, Bird A. 46.  2011. CpG islands and the regulation of transcription. Genes Dev. 25:1010–22 [Google Scholar]
  47. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S. 47.  et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:2289–301 [Google Scholar]
  48. Derosa BA, Van Baaren JM, Dubey GK, Vance JM, Pericak-Vance MA, Dykxhoorn DM. 48.  2012. Derivation of autism spectrum disorder–specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neurosci. Lett. 516:9–14 [Google Scholar]
  49. Desplats P, Spencer B, Coffee E, Patel P, Michael S. 49.  et al. 2011. α-Synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 286:9031–37 [Google Scholar]
  50. Eden A, Gaudet F, Waghmare A, Jaenisch R. 50.  2003. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455 [Google Scholar]
  51. Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B. 51.  et al. 2001. DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum. Mol. Genet. 10:2917–31 [Google Scholar]
  52. Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A. 52.  et al. 2010. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLOS ONE 5:e8887 [Google Scholar]
  53. Ernst C, Deleva V, Deng X, Sequeira A, Pomarenski A. 53.  et al. 2009. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch. Gen. Psychiatry 66:22–32 [Google Scholar]
  54. Esteller M, Corn PG, Baylin SB, Herman JG. 54.  2001. A gene hypermethylation profile of human cancer. Cancer Res. 61:3225–29 [Google Scholar]
  55. Fattaey AR, Helin K, Dembski MS, Dyson N, Harlow E. 55.  et al. 1993. Characterization of the retinoblastoma binding proteins RBP1 and RBP2. Oncogene 8:3149–56 [Google Scholar]
  56. Feinberg AP, Vogelstein B. 56.  1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92 [Google Scholar]
  57. Fernandez AF, Assenov Y, Martin-Subero JI, Balint B, Siebert R. 57.  et al. 2012. A DNA methylation fingerprint of 1628 human samples. Genome Res. 22:407–19 [Google Scholar]
  58. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F. 58.  et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl. Acad. Sci. USA 102:10604–9 [Google Scholar]
  59. Francis D, Diorio J, Liu D, Meaney MJ. 59.  1999. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–58 [Google Scholar]
  60. Franklin TB, Russig H, Weiss IC, Graff J, Linder N. 60.  et al. 2010. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68:408–15 [Google Scholar]
  61. Frost B, Hemberg M, Lewis J, Feany MB. 61.  2014. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17:357–66 [Google Scholar]
  62. Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K. 62.  et al. 1997. Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J. Gerontol. A Biol. Sci. Med. Sci. 52:M117–25 [Google Scholar]
  63. Gershon A, Sudheimer K, Tirouvanziam R, Williams LM, O'Hara R. 63.  2013. The long-term impact of early adversity on late-life psychiatric disorders. Curr. Psychiatry Rep. 15:352 [Google Scholar]
  64. Gibbons RJ, Higgs DR. 64.  2000. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97:204–12 [Google Scholar]
  65. Gibbons RJ, Picketts DJ, Villard L, Higgs DR. 65.  1995. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80:837–45 [Google Scholar]
  66. Gibbons RJ, Suthers GK, Wilkie AO, Buckle VJ, Higgs DR. 66.  1992. X-linked α-thalassemia/mental retardation (ATR-X) syndrome: localization to Xq12-q21.31 by X inactivation and linkage analysis. Am. J. Hum. Genet. 51:1136–49 [Google Scholar]
  67. Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP. 67.  et al. 2012. Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90:110–18 [Google Scholar]
  68. Goncalves TF, Goncalves AP, Fintelman Rodrigues N, dos Santos JM, Pimentel MM, Santos-Reboucas CB. 68.  2014. KDM5C mutational screening among males with intellectual disability suggestive of X-linked inheritance and review of the literature. Eur. J. Med. Genet. 57:138–44 [Google Scholar]
  69. Hagberg B, Aicardi J, Dias K, Ramos O. 69.  1983. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann. Neurol. 14:471–79 [Google Scholar]
  70. Hales CN, Barker DJ. 70.  1992. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601 [Google Scholar]
  71. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B. 71.  et al. 2011. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68:1095–102 [Google Scholar]
  72. Hare EH, Moran PA. 72.  1979. Raised parental age in psychiatric patients: evidence for the constitutional hypothesis. Br. J. Psychiatry 134:169–77 [Google Scholar]
  73. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM. 73.  et al. 2005. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J. Neurosci. 25:372–83 [Google Scholar]
  74. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M. 74.  et al. 2011. Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer 128:574–86 [Google Scholar]
  75. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ. 75.  et al. 2008. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 105:17046–49 [Google Scholar]
  76. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW. 76.  et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet 39:311–18 [Google Scholar]
  77. Hernandez DG, Nalls MA, Gibbs JR, Arepalli S, van der Brug M. 77.  et al. 2011. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20:1164–72 [Google Scholar]
  78. Hess JL. 78.  2004. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med. 10:500–7 [Google Scholar]
  79. Hood RL, Lines MA, Nikkel SM, Schwartzentruber J, Beaulieu C. 79.  et al. 2012. Mutations in SRCAP, encoding SNF2-related CREBBP activator protein, cause Floating-Harbor syndrome. Am. J. Hum. Genet. 90:308–13 [Google Scholar]
  80. Hoyer J, Ekici AB, Endele S, Popp B, Zweier C. 80.  et al. 2012. Haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a frequent cause of intellectual disability. Am. J. Hum. Genet. 90:565–72 [Google Scholar]
  81. Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA. 81.  et al. 2007. p53 is regulated by the lysine demethylase LSD1. Nature 449:105–8 [Google Scholar]
  82. Illingworth RS, Bird AP. 82.  2009. CpG islands: a rough guide. FEBS Lett. 583:1713–20 [Google Scholar]
  83. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. 83.  2001. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–77 [Google Scholar]
  84. Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM. 84.  et al. 2007. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27:1889–903 [Google Scholar]
  85. Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M. 85.  et al. 2007. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–88 [Google Scholar]
  86. Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F. 86.  et al. 1993. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2:731–35 [Google Scholar]
  87. Jensen LR, Amende M, Gurok U, Moser B, Gimmel V. 87.  et al. 2005. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am. J. Hum. Genet. 76:227–36 [Google Scholar]
  88. Jenuwein T, Allis CD. 88.  2001. Translating the histone code. Science 293:1074–80 [Google Scholar]
  89. Jin B, Tao Q, Peng J, Soo HM, Wu W. 89.  et al. 2008. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum. Mol. Genet. 17:690–709 [Google Scholar]
  90. Jones WD, Dafou D, McEntagart M, Woollard WJ, Elmslie FV. 90.  et al. 2012. De novo mutations in MLL cause Wiedemann-Steiner syndrome. Am. J. Hum. Genet. 91:358–64 [Google Scholar]
  91. Johnston H, Kneer J, Chackalaparampil I, Yaciuk P, Chrivia J. 91.  1999. Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein. J. Biol. Chem 274:16370–76 [Google Scholar]
  92. Jowaed A, Schmitt I, Kaut O, Wullner U. 92.  2010. Methylation regulates α-synuclein expression and is decreased in Parkinson's disease patients' brains. J. Neurosci. 30:6355–59 [Google Scholar]
  93. Jurkowska RZ, Jurkowski TP, Jeltsch A. 93.  2011. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12:206–22 [Google Scholar]
  94. Kaati G, Bygren LO, Edvinsson S. 94.  2002. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur. J. Hum. Genet. 10:682–88 [Google Scholar]
  95. Kang HJ, Kim JM, Stewart R, Kim SY, Bae KY. 95.  et al. 2013. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 44:23–28 [Google Scholar]
  96. Katsurano M, Niwa T, Yasui Y, Shigematsu Y, Yamashita S. 96.  et al. 2012. Early-stage formation of an epigenetic field defect in a mouse colitis model, and non-essential roles of T- and B-cells in DNA methylation induction. Oncogene 31:342–51 [Google Scholar]
  97. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A. 97.  et al. 2010. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch. Gen. Psychiatry 67:258–67 [Google Scholar]
  98. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM. 98.  et al. 2012. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124:439–47 [Google Scholar]
  99. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W. 99.  et al. 2008. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am. J. Hum. Genet. 83:511–19 [Google Scholar]
  100. Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM. 100.  et al. 2006. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79:370–77 [Google Scholar]
  101. Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G. 101.  et al. 2009. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 46:598–606 [Google Scholar]
  102. Kleefstra T, Kramer JM, Neveling K, Willemsen MH, Koemans TS. 102.  et al. 2012. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet. 91:73–82 [Google Scholar]
  103. Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA. 103.  et al. 2011. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43:595–600 [Google Scholar]
  104. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC. 104.  et al. 2013. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 16:33–41 [Google Scholar]
  105. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC. 105.  et al. 2011. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 108:14566–71 [Google Scholar]
  106. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M. 106.  et al. 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–43 [Google Scholar]
  107. Kohli RM, Zhang Y. 107.  2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–79 [Google Scholar]
  108. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P. 108.  et al. 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:471–75 [Google Scholar]
  109. Krumm N, O'Roak BJ, Shendure J, Eichler EE. 109.  2013. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 37:95–105 [Google Scholar]
  110. Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T. 110.  et al. 2002. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30:365–66 [Google Scholar]
  111. Labonte B, Suderman M, Maussion G, Navaro L, Yerko V. 111.  et al. 2012. Genome-wide epigenetic regulation by early-life trauma. Arch. Gen. Psychiatry 69:722–31 [Google Scholar]
  112. Laird A, Thomson JP, Harrison DJ, Meehan RR. 112.  2013. 5-hydroxymethylcytosine profiling as an indicator of cellular state. Epigenomics 5:655–69 [Google Scholar]
  113. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK. 113.  et al. 2007. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–94 [Google Scholar]
  114. Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S. 114.  et al. 2005. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42:780–86 [Google Scholar]
  115. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA. 115.  et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501 [Google Scholar]
  116. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M. 116.  et al. 2012. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am. J. Hum. Genet. 90:119–24 [Google Scholar]
  117. Lee MG, Villa R, Trojer P, Norman J, Yan KP. 117.  et al. 2007. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–50 [Google Scholar]
  118. Lee RS, Tamashiro KL, Yang X, Purcell RH, Harvey A. 118.  et al. 2010. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151:4332–43 [Google Scholar]
  119. Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P. 119.  et al. 2007. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum. Mutat. 28:732–38 [Google Scholar]
  120. Leoyklang P, Suphapeetiporn K, Srichomthong C, Tongkobpetch S, Fietze S. 120.  et al. 2013. Disorders with similar clinical phenotypes reveal underlying genetic interaction: SATB2 acts as an activator of the UPF3B gene. Hum. Genet. 132:1383–93 [Google Scholar]
  121. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S. 121.  et al. 2013. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–61 [Google Scholar]
  122. Li Y, Trojer P, Xu CF, Cheung P, Kuo A. 122.  et al. 2009. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J. Biol. Chem. 284:34283–95 [Google Scholar]
  123. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. 123.  2005. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135:1382–86 [Google Scholar]
  124. Lim DH, Maher ER. 124.  2010. Genomic imprinting syndromes and cancer. Adv. Genet. 70:145–75 [Google Scholar]
  125. Lin W, Cao J, Liu J, Beshiri ML, Fujiwara Y. 125.  et al. 2011. Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. Proc. Natl. Acad. Sci. USA 108:13379–86 [Google Scholar]
  126. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D. 126.  et al. 1997. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–62 [Google Scholar]
  127. Lopez-Atalaya JP, Gervasini C, Mottadelli F, Spena S, Piccione M. 127.  et al. 2012. Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein-Taybi syndrome. J. Med. Genet. 49:66–74 [Google Scholar]
  128. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. 128.  2003. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–41 [Google Scholar]
  129. Lu H, Liu X, Deng Y, Qing H. 129.  2013. DNA methylation, a hand behind neurodegenerative diseases. Front. Aging Neurosci. 5:85 [Google Scholar]
  130. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A. 130.  et al. 1999. A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J. Biol. Chem. 274:15633–45 [Google Scholar]
  131. Lu T, Jackson MW, Wang B, Yang M, Chance MR. 131.  et al. 2010. Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proc. Natl. Acad. Sci. USA 107:46–51 [Google Scholar]
  132. Lyall K, Schmidt RJ, Hertz-Picciotto I. 132.  2014. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int. J. Epidemiol. 43:443–64 [Google Scholar]
  133. Madzo J, Liu H, Rodriguez A, Vasanthakumar A, Sundaravel S. 133.  et al. 2014. Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep. 6:231–44 [Google Scholar]
  134. Mallery DL, Tanganelli B, Colella S, Steingrimsdottir H, van Gool AJ. 134.  et al. 1998. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome. Am. J. Hum. Genet. 62:77–85 [Google Scholar]
  135. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW. 135.  et al. 2010. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–39 [Google Scholar]
  136. Martins-Taylor K, Schroeder DI, LaSalle JM, Lalande M, Xu RH. 136.  2012. Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics 7:71–82 [Google Scholar]
  137. Masliah E, Dumaop W, Galasko D, Desplats P. 137.  2013. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8:1030–38 [Google Scholar]
  138. Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. 138.  2009. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLOS ONE 4:e6617 [Google Scholar]
  139. McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonte B. 139.  et al. 2009. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12:342–48 [Google Scholar]
  140. Meins M, Lehmann J, Gerresheim F, Herchenbach J, Hagedorn M. 140.  et al. 2005. Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome. J. Med. Genet. 42:e12 [Google Scholar]
  141. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O. 141.  et al. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31:1133–36 [Google Scholar]
  142. Meng J, Li Y, Camarillo C, Yao Y, Zhang Y. 142.  et al. 2014. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-β toxicity. PLOS ONE 9:e85570 [Google Scholar]
  143. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D. 143.  et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24 [Google Scholar]
  144. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL. 144.  et al. 2011. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476:298–303 [Google Scholar]
  145. Mueller BR, Bale TL. 145.  2008. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28:9055–65 [Google Scholar]
  146. Muller-Tidow C, Klein HU, Hascher A, Isken F, Tickenbrock L. 146.  et al. 2010. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116:3564–71 [Google Scholar]
  147. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y. 147.  et al. 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12:1559–66 [Google Scholar]
  148. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 148.  2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503 [Google Scholar]
  149. Naumova OY, Lee M, Koposov R, Szyf M, Dozier M, Grigorenko EL. 149.  2012. Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev. Psychopathol. 24:143–55 [Google Scholar]
  150. Nebbioso A, Carafa V, Benedetti R, Altucci L. 150.  2012. Trials with “epigenetic” drugs: an update. Mol. Oncol. 6:657–82 [Google Scholar]
  151. Neugebauer R, Hoek HW, Susser E. 151.  1999. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. J. Am. Med. Assoc. 282:455–62 [Google Scholar]
  152. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ. 152.  et al. 2010. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42:790–93 [Google Scholar]
  153. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. 153.  2010. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–66 [Google Scholar]
  154. Ng SF, Lin RC, Maloney CA, Youngson NA, Owens JA, Morris MJ. 154.  2014. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 28:1830–41 [Google Scholar]
  155. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A. 155.  et al. 2001. Rb targets histone H3 methylation and HP1 to promoters. Nature 412:561–65 [Google Scholar]
  156. Nishi M, Horii-Hayashi N, Sasagawa T. 156.  2014. Effects of early life adverse experiences on the brain: implications from maternal separation models in rodents. Front. Neurosci. 8:166 [Google Scholar]
  157. Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S. 157.  et al. 2009. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat. Cell Biol. 11:172–82 [Google Scholar]
  158. Nishiyama M, Skoultchi AI, Nakayama KI. 158.  2012. Histone H1 recruitment by CHD8 is essential for suppression of the Wnt-β-catenin signaling pathway. Mol. Cell. Biol. 32:501–12 [Google Scholar]
  159. Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W. 159.  2009. Methylation status and neurodegenerative markers in Parkinson disease. Clin. Chem. 55:1852–60 [Google Scholar]
  160. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. 160.  2008. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106 [Google Scholar]
  161. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. 161.  2002. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296:1132–36 [Google Scholar]
  162. Okano M, Bell DW, Haber DA, Li E. 162.  1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–57 [Google Scholar]
  163. Ounap K, Puusepp-Benazzouz H, Peters M, Vaher U, Rein R. 163.  et al. 2012. A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability. Eur. J. Med. Genet. 55:178–84 [Google Scholar]
  164. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L. 164.  et al. 2012. A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151:221–32 [Google Scholar]
  165. Painter RC, Roseboom TJ, Bleker OP. 165.  2005. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod. Toxicol. 20:345–52 [Google Scholar]
  166. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A. 166.  et al. 2014. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46:166–70 [Google Scholar]
  167. Parsons DW, Li M, Zhang X, Jones S, Leary RJ. 167.  et al. 2011. The genetic landscape of the childhood cancer medulloblastoma. Science 331:435–39 [Google Scholar]
  168. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K. 168.  et al. 2006. Sex-specific, male-line transgenerational responses in humans. Eur. J. Hum. Genet. 14:159–66 [Google Scholar]
  169. Perroud N, Paoloni-Giacobino A, Prada P, Olie E, Salzmann A. 169.  et al. 2011. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl. Psychiatry 1:e59 [Google Scholar]
  170. Perroud N, Salzmann A, Prada P, Nicastro R, Hoeppli ME. 170.  et al. 2013. Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl. Psychiatry 3:e207 [Google Scholar]
  171. Peters SL, Hlady RA, Opavska J, Klinkebiel D, Pirruccello SJ. 171.  et al. 2013. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia 28:1138–45 [Google Scholar]
  172. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC. 172.  et al. 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376:348–51 [Google Scholar]
  173. Poppe B, Vandesompele J, Schoch C, Lindvall C, Mrozek K. 173.  et al. 2004. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood 103:229–35 [Google Scholar]
  174. Pronier E, Almire C, Mokrani H, Vasanthakumar A, Simon A. 174.  et al. 2011. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118:2551–55 [Google Scholar]
  175. Provencal N, Suderman MJ, Guillemin C, Massart R, Ruggiero A. 175.  et al. 2012. The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J. Neurosci. 32:15626–42 [Google Scholar]
  176. Qiao Y, Liu X, Harvard C, Hildebrand MJ, Rajcan-Separovic E. 176.  et al. 2008. Autism-associated familial microdeletion of Xp11.22. Clin. Genet. 74:134–44 [Google Scholar]
  177. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF. 177.  1994. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–44 [Google Scholar]
  178. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M. 178.  et al. 2011. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1:e21 [Google Scholar]
  179. Rando OJ. 179.  2012. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22:148–55 [Google Scholar]
  180. Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J. 180.  et al. 2006. Advancing paternal age and autism. Arch. Gen. Psychiatry 63:1026–32 [Google Scholar]
  181. Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA. 181.  1990. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–90 [Google Scholar]
  182. Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF. 182.  et al. 2006. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 66:8462–9468 [Google Scholar]
  183. Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D. 183.  et al. 2005. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am. J. Hum. Genet. 76:572–80 [Google Scholar]
  184. Ronan JL, Wu W, Crabtree GR. 184.  2013. From neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14:347–59 [Google Scholar]
  185. Roth TL, Lubin FD, Funk AJ, Sweatt JD. 185.  2009. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65:760–69 [Google Scholar]
  186. Rotili D, Mai A. 186.  2011. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer 2:663–79 [Google Scholar]
  187. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE. 187.  et al. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419:407–11 [Google Scholar]
  188. Schaefer A, Sampath SC, Intrator A, Min A, Gertler TS. 188.  et al. 2009. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64:678–91 [Google Scholar]
  189. Schulmann K, Sterian A, Berki A, Yin J, Sato F. 189.  et al. 2005. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 24:4138–48 [Google Scholar]
  190. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E. 190.  et al. 2012. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–31 [Google Scholar]
  191. Schwarz D, Varum S, Zemke M, Scholer A, Baggiolini A. 191.  et al. 2014. Ezh2 is required for neural crest-derived cartilage and bone formation. Development 141:867–77 [Google Scholar]
  192. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H. 192.  et al. 2009. Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol. 174:1619–28 [Google Scholar]
  193. Seligson DB, Horvath S, Shi T, Yu H, Tze S. 193.  et al. 2005. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–66 [Google Scholar]
  194. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR. 194.  et al. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–53 [Google Scholar]
  195. Siebert JR, Graham JM Jr, MacDonald C. 195.  1985. Pathologic features of the CHARGE association: support for involvement of the neural crest. Teratology 31:331–36 [Google Scholar]
  196. Simmons RA, Templeton LJ, Gertz SJ. 196.  2001. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50:2279–86 [Google Scholar]
  197. Smith AK, Conneely KN, Kilaru V, Mercer KB, Weiss TE. 197.  et al. 2011. Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B:700–8 [Google Scholar]
  198. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT. 198.  et al. 2012. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–37 [Google Scholar]
  199. Stuwe E, Toth KF, Aravin AA. 199.  2014. Small but sturdy: small RNAs in cellular memory and epigenetics. Genes Dev. 28:423–31 [Google Scholar]
  200. Susser ES, Lin SP. 200.  1992. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch. Gen. Psychiatry 49:983–88 [Google Scholar]
  201. Taki T, Sako M, Tsuchida M, Hayashi Y. 201.  1997. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89:3945–50 [Google Scholar]
  202. Tan M, Luo H, Lee S, Jin F, Yang JS. 202.  et al. 2011. X Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–28 [Google Scholar]
  203. Tan YY, Wu L, Zhao ZB, Wang Y, Xiao Q. 203.  et al. 2013. Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson's disease patients. Parkinsonism Relat. Disord. 20:308–13 [Google Scholar]
  204. Tarpey PS, Raymond FL, Nguyen LS, Rodriguez J, Hackett A. 204.  et al. 2007. Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat. Genet. 39:1127–33 [Google Scholar]
  205. Teng YC, Lee CF, Li YS, Chen YR, Hsiao PW. 205.  et al. 2013. Histone demethylase RBP2 promotes lung tumorigenesis and cancer metastasis. Cancer Res. 73:4711–21 [Google Scholar]
  206. Thompson BA, Tremblay V, Lin G, Bochar DA. 206.  2008. CHD8 is an ATP-dependent chromatin remodeling factor that regulates β-catenin target genes. Mol. Cell. Biol. 28:3894–904 [Google Scholar]
  207. Thompson RF, Fazzari MJ, Niu H, Barzilai N, Simmons RA, Greally JM. 207.  2010. Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J. Biol. Chem. 285:15111–18 [Google Scholar]
  208. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E. 208.  et al. 1996. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384:567–70 [Google Scholar]
  209. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y. 209.  et al. 2012. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat. Genet. 44:376–78 [Google Scholar]
  210. Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M. 210.  et al. 2005. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am. J. Hum. Genet. 77:442–53 [Google Scholar]
  211. Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E. 211.  et al. 2012. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat. Genet. 44:445–49; S1 [Google Scholar]
  212. Vance KW, Ponting CP. 212.  2014. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 30:348–55 [Google Scholar]
  213. Varier RA, Timmers HT. 213.  2011. Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta 1815:75–89 [Google Scholar]
  214. Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT. 214.  et al. 2013. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 23:558–64 [Google Scholar]
  215. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB. 215.  et al. 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36:955–57 [Google Scholar]
  216. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F. 216.  et al. 2012. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151:206–20 [Google Scholar]
  217. Wang SC, Oelze B, Schumacher A. 217.  2008. Age-specific epigenetic drift in late-onset Alzheimer's disease. PLOS ONE 3e2698
  218. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S. 218.  et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7:847–54 [Google Scholar]
  219. Weaver IC, Meaney MJ, Szyf M. 219.  2006. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl. Acad. Sci. USA 103:3480–85 [Google Scholar]
  220. Weber CM, Henikoff S. 220.  2014. Histone variants: dynamic punctuation in transcription. Genes Dev. 28:672–82 [Google Scholar]
  221. Webster MJ, Knable MB, O'Grady J, Orthmann J, Weickert CS. 221.  2002. Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol. Psychiatry 7:985–9424 [Google Scholar]
  222. Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y. 222.  et al. 2014. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl. Acad. Sci. USA 111:1873–78 [Google Scholar]
  223. Williams EC, Zhong X, Mohamed A, Li R, Liu Y. 223.  et al. 2014. Mutant astrocytes differentiated from Rett syndrome patients: Specific iPSCs have adverse effects on wild type neurons. Hum. Mol. Genet. 23:2968–80 [Google Scholar]
  224. Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G. 224.  et al. 2010. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am. J. Hum. Genet. 87:219–28 [Google Scholar]
  225. Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL. 225.  2011. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol. Aging 32:1923.e1–.e8 [Google Scholar]
  226. Wright A, Dyck PJ. 226.  1995. Hereditary sensory neuropathy with sensorineural deafness and early-onset dementia. Neurology 45:560–62 [Google Scholar]
  227. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS. 227.  et al. 2012. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44:251–53 [Google Scholar]
  228. Xiang Y, Zhu Z, Han G, Ye X, Xu B. 228.  et al. 2007. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl. Acad. Sci. USA 104:19226–31 [Google Scholar]
  229. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N. 229.  et al. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–91 [Google Scholar]
  230. Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S. 230.  et al. 1996. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–60 [Google Scholar]
  231. Yamaguchi R, Nakagawa Y, Liu YJ, Fujisawa Y, Sai S. 231.  et al. 2010. Effects of maternal high-fat diet on serum lipid concentration and expression of peroxisomal proliferator-activated receptors in the early life of rat offspring. Horm. Metab. Res. 42:821–25 [Google Scholar]
  232. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA. 232.  et al. 2007. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25:801–12 [Google Scholar]
  233. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y. 233.  et al. 2010. Array-based genomic resequencing of human leukemia. Oncogene 29:3723–31 [Google Scholar]
  234. Yates JA, Menon T, Thompson BA, Bochar DA. 234.  2010. Regulation of HOXA2 gene expression by the ATP-dependent chromatin remodeling enzyme CHD8. FEBS Lett. 584:689–93 [Google Scholar]
  235. Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. 235.  2012. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149:1461–73 [Google Scholar]
  236. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J. 236.  et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–23 [Google Scholar]
  237. Zannas AS, West AE. 237.  2013. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience 264:157–70 [Google Scholar]
  238. Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H. 238.  2001. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution?. Trends Genet. 17:697–701 [Google Scholar]
  239. Zeng J, Ge Z, Wang L, Li Q, Wang N. 239.  et al. 2010. The histone demethylase RBP2 is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology 138:981–92 [Google Scholar]
  240. Zhang TY, Hellstrom IC, Bagot RC, Wen X, Diorio J, Meaney MJ. 240.  2010. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J. Neurosci. 30:13130–37 [Google Scholar]
  241. Zhao X, Chen A, Yan X, Zhang Y, He F. 241.  et al. 2014. Down-regulation of RUNX1/CBFβ by MLL fusion proteins enhances HSC self-renewal.. Blood 123:1729–38 [Google Scholar]
  242. Zhu B, Reinberg D. 242.  2011. Epigenetic inheritance: uncontested?. Cell Res. 21:435–41 [Google Scholar]
  243. Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D. 243.  et al. 2012. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 44:636–38 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092518
Loading
/content/journals/10.1146/annurev-genet-120213-092518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error