1932

Abstract

Although it was definitely not obvious at first, consistent chromosomal translocations are major contributors to cellular transformation in some leukemias, lymphomas, sarcomas, prostate cancer, and other benign and malignant neoplasms. In the 50 years since the discovery of the Ph chromosome, the elucidation of recurring abnormalities has been an ongoing challenge that has evolved as new technologies allowed an ever more accurate definition of the precise changes in DNA resulting from these abnormalities. As we enter a new era of understanding enriched by gene expression studies, we still know little about the changes in the level of critical proteins, which may be the ultimate effectors of the genetic/epigenetic abnormalities in cancer.

Despite remarkable progress in identifying both obvious chromosome abnormalities and subtle changes in DNA such as mutations and small copy-number variations, the impact of this knowledge has been variable. The challenge for the future is to enhance our ability to translate these genetic changes into effective therapies for other malignant diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-082908-150144
2009-09-22
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/genom/10/1/annurev-genom-082908-150144.html?itemId=/content/journals/10.1146/annurev-genom-082908-150144&mimeType=html&fmt=ahah

Literature Cited

  1. Arthur DC, Bloomfield CD. 1.  1983. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood 61:994–98 [Google Scholar]
  2. Baek D, Villén J, Shin C, Camergo FD, Guggi SP, Bartel DP. 2.  2008. The impact of microRNAs on protein output. Nature 455:64–71 [Google Scholar]
  3. Bartel DP. 3.  2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97 [Google Scholar]
  4. Brandt L, Mitelman F, Nilsson PG. 4.  1983. Chromosome pattern and survival in acute nonlymphocytic leukaemia in relation to age and occupational exposure to potential mutagenic/carcinogenic agents. Scand. J. Haematol. 30:227–31 [Google Scholar]
  5. Cleary M. 5.  1993. A promiscuous oncogene in acute leukemia. N. Engl. J. Med. 13:958–59 [Google Scholar]
  6. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. 6.  1982. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79:7824–27 [Google Scholar]
  7. De Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A. 7.  et al. 1982. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765–67 [Google Scholar]
  8. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. 8.  1990. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347:558–61 [Google Scholar]
  9. Diaz MO, Ziemin-van der Poel S, Le Beau MM, Pitha P, Smith SD. 9.  et al. 1988. Homozygous deletion of the alpha- and beta-1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. USA 85:5259–63 [Google Scholar]
  10. Djabali M, Selleri L, Parry P, Bawer M, Young BD, Evans GA. 10.  1992. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nat. Genet. 2:113–18 [Google Scholar]
  11. Druker BJ, Guilhot F, O'Brien SG, Gathman I, Kantarjian H. 11.  et al. 2006. Five year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355:2408–17 [Google Scholar]
  12. Ferguson-Smith MA. 12.  2008. Cytogenetics and the evolution of medical genetics. Genet. Med. 10:553–59 [Google Scholar]
  13. 13. Fifth Int. Workshop on Chromosomes in Leukemia 1987. Correlation of chromosome abnormalities with histologic and immunologic characteristics in non-Hodgkin's lymphoma and adult T cell leukemia-lymphoma. Blood 70:1554–64 [Google Scholar]
  14. 14. First Int. Workshop on Chromosomes in Leukemia 1978. Chromosomes in acute nonlymphocytic leukemia. Brit. J. Haemat. 39:311–16 [Google Scholar]
  15. 15. First Int. Workshop on Chromosomes in Leukemia 1978. Chromosome in Ph1−—positive chronic granulocytic leukemia. Brit. J. Haemat. 39:305–309 [Google Scholar]
  16. Ford CE, Jacobs PA, Lajtha LG. 16.  1958. Human somatic chromosomes. Nature 181:1565–68 [Google Scholar]
  17. 17. Fourth International Workshop on Chromosomes in Leukemia 1984. Chromosomes in acute myelogenous leukemia. Cancer Genet. Cytogenet. 11:251–360 [Google Scholar]
  18. Gibbons B, MacCallum P, Watts E, Robatiner AZS, Webb D. 18.  et al. 1991. Near haploid acute lymphoblastic leukemia: seven new cases and a review of the literature. Leukemia 5:738–43 [Google Scholar]
  19. Gilbert CW, Muldal S, Lajtha LG, Rowley JD. 19.  1962. Time sequence of human chromosome duplication. Nature 195:869–73 [Google Scholar]
  20. Golomb HM, Alimena G, Rowley JD, Vardiman JW, Testa JR, Sovik C. 20.  1982. Correlation of occupation and karyotype in adults with acute nonlymphocytic leukemia. Blood 60:404–11 [Google Scholar]
  21. Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC. 21.  et al. 1995. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 92:4917–21 [Google Scholar]
  22. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin AJ. 22.  et al. 1996. Oligomerization of the ABL tyrosine kinase by the ETS protein TEL in human leukemia. Mol. Cell. Biol. 16:4107–16 [Google Scholar]
  23. Greaves MF, Wiemels J. 23.  2003. Origins of chromosome translocations in childhood leukaemia. Nat. Rev. Cancer 3:639–49 [Google Scholar]
  24. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. 24.  1984. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99 [Google Scholar]
  25. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G. 25.  et al. 1992. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71:701–8 [Google Scholar]
  26. Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A. 26.  et al. 1983. Localization of the c-ab1 oncogene adjacent to a translocation breakpoint in chronic myelocytic leukaemia. Nature 306:239–42 [Google Scholar]
  27. Kobayashi H, Montgomery KT, Bohlander SK, Adra CN, Lim BL. 27.  et al. 1994. Fluorescence in situ hybridization mapping of translocations and deletions involving the short arm of human chromosome 12 in malignant hematologic diseases. Blood 84:3473–82 [Google Scholar]
  28. Le Beau MM, Larson RA, Bitter MA, Vardiman JW, Golomb HM, Rowley JD. 28.  1983. Association of inv(16)(p13q22) with abnormal marrow eosinophils in acute myelomonocytic leukemia: a unique cytogenetic-clinicopathologic association. N. Engl. J. Med. 309:630–36 [Google Scholar]
  29. Lejeune J, Gautier M, Turpin R. 29.  1959. Les chromosomes sométiques de neuf enfants mongoliens. C. R. Acad. Sci. 248:1721 [Google Scholar]
  30. Li Z, Lu J, Sun M, Mi S, Zhang H. 30.  et al. 2008. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc. Natl. Acad. Sci. USA 105:4015535–40 [Google Scholar]
  31. Lichter P, Tang C-JC, Call K, Hermanson G, Evans GA. 31.  et al. 1990. High resolution mapping of human chromosome 11 by hybridization with cosmid clones. Science 247:64–69 [Google Scholar]
  32. McKeithan TW, Shima EA, Le Beau MM, Minowada J, Rowley JD, Diaz MO. 32.  1986. Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3′ side of c-myc. Proc. Natl. Acad. Sci. USA 83:6636–40 [Google Scholar]
  33. McKusick VA. 33.  2006. A 60-year tale of spots, maps and genes. Annu. Rev. Genomics Hum. Genet. 7:1–27 [Google Scholar]
  34. Mi S, Lu J, Sun M, Li Z, Zhang H. 34.  et al. 2007. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 104:5019971–76 [Google Scholar]
  35. Mitelman F, Johansson B, Mertens F. 35.  2008. Mitelman Database of Chromosome Aberrations in Cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman
  36. Mitelman F, Levan G. 36.  1978. Clustering of aberrations to specific chromosomes in human neoplasms. III. Incidence and geographic distribution of chromosome aberrations in 856 cases. Hereditas 89:207–32 [Google Scholar]
  37. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S. 37.  et al. 2007. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 110:4445–54 [Google Scholar]
  38. Muldal S, Gilbert CW, Lajtha LG, Lindsten J, Rowley JD, Fraccaro M. 38.  1963. Tritiated thymidine incorporation in an isochromosome for the long arm of the X chromosome in man. Lancet I:861–63 [Google Scholar]
  39. Onodera N, McCabe NR, Nachman J, Johnson FL, Le Beau MM. 39.  et al. 1992. Hyperdiploidy arising from near-haploidy in childhood acute lymphoblastic leukemia. Genes Chrom. Cancer 4:331–36 [Google Scholar]
  40. Piu C-H, Raimondi SC, Dodge RK, Rivera GK, Fuchs LAH. 40.  et al. 1989. Prognostic importance of structural chromosomal abnormalities in children with hyperdiploid (>50 chromosomes) acute lymphoblastic leukemia. Blood 73:1963–67 [Google Scholar]
  41. Rowley JD. 41.  1973. A new consistent chromosomal abnormality in chronic myelogenous leukemia. Nature 243:290–93 [Google Scholar]
  42. Rowley JD. 42.  1973. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 16:109–12 [Google Scholar]
  43. Rowley JD. 43.  1981. Down syndrome and acute leukemia: Increased risk may be due to trisomy 21. Lancet II1020–22
  44. Rowley JD. 44.  2008. Chromosomal translocations: revisited yet again. Blood 112:2183–89 [Google Scholar]
  45. Rowley JD. 45.  2002. International Workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: report from an International Workshop. Genes Chromosomes Cancer 33:4329–423 [Google Scholar]
  46. Rowley JD, Alimena G, Garson OM, Hagemeijer A, Mitelman F, Prigogina EL. 46.  1982. A collaborative study of the relationship of the morphologic type of acute nonlymphocytic leukemia with patient age and karyotype. Blood 59:1013–22 [Google Scholar]
  47. Rowley JD, Blaisdell RK, Jacobson LO. 47.  1966. Chromosome studies in preleukemia. I. Aneuploidy of group C chromosomes in three patients. Blood 27:782–99 [Google Scholar]
  48. Rowley JD, Diaz MO, Espinosa R III, Patel YD, van Melle E. 48.  et al. 1990. Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: identification of 11q23 translocation breakpoints with a yeast artificial chromosome. Proc. Natl. Acad. Sci. USA 87:9358–62 [Google Scholar]
  49. Rowley JD, Golomb HM, Vardiman JW. 49.  1977. Nonrandom chromosomal abnormalities in acute nonlymphocytic leukemia in patients treated for Hodgkin's disease and non-Hodgkin lymphomas. Blood 50:759–70 [Google Scholar]
  50. Rowley JD, Muldal S, Gilbert CW, Lajtha LG, Lindsten J. 50.  et al. 1963. Synthesis of deoxyribonucleic acid on X chromosomes of an XXXXY male. Nature 197:251–52 [Google Scholar]
  51. Rowley JD, Muldal S, Lindsten J, Gilbert CW. 51.  1964. H3thymidine uptake by a ring X chromosome in a human female. Proc. Natl. Acad. Sci. USA 51:779–86 [Google Scholar]
  52. Rowley JD, Olney HJ. 52.  2002. International Workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 33:4331–45 [Google Scholar]
  53. Rowley JD, Potter D. 53.  1976. Chromosomal banding patterns in acute nonlymphocytic leukemia. Blood 47:705–21 [Google Scholar]
  54. Sanz MA, Grimwade D, Tallman MS, Lowenbug B, Feneux P. 54.  et al. September 23, 2008. Guidelines on the management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European Leukemia Net. Blood http://bloodjournal.hematologylibrary.org/cgi/content/abstract/blood-2008-04-150250v1
  55. 55. Second Int. Workshop on Chromosomes in Leukemia 1980. Cancer Res. 404826–27
  56. 56. Second Int. Workshop on Chromosomes in Leukemia 1980. Cancer Genet. Cytogenet. 289–113
  57. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 57.  2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63 [Google Scholar]
  58. 58. Sixth Int. Workshop on Chromosomes in Leukemia 1989. The clinical significance of karyotype in acute myelogenous leukemia. Cancer Genet. Cytogenet. 40:203–15 [Google Scholar]
  59. 59. Sixth Int. Workshop on Chromosomes in Leukemia 1994. Long-term survival in acute myelogenous second follow-up of the Fourth Workshop on chromosomes in leukemia. Cancer Genet. Cytogenet. 73:1–7 [Google Scholar]
  60. Taub R, Kirsch I, Morton C, Lenoir G, Swan D. 60.  et al. 1982. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. USA 79:7837–41 [Google Scholar]
  61. 61. Third Int. Workshop on Chromosomes in Leukemia 1981. Chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Genet. Cytogenet. 4:96–142 [Google Scholar]
  62. Thirman MJ, Gill HJ, Burnett RC, Mbangkollo D, McCabe NR. 62.  et al. 1993. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 329:909–14 [Google Scholar]
  63. Tkachuk DC, Kohler S, Cleary ML. 63.  1992. Involvement of a homology of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71:691–700 [Google Scholar]
  64. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R. 64.  et al. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–48 [Google Scholar]
  65. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. 65.  1984. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–99 [Google Scholar]
  66. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. 66.  1985. Clustering of breakpoints on chromosome 11 in human B-cell lymphoma and leukemias with the t(11;14) chromosome translocation. Nature 315:340–43 [Google Scholar]
  67. Wang ZY, Chen Z. 67.  2008. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–15 [Google Scholar]
  68. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R III, Patel YD. 68.  et al. 1991. Identification of a gene (MLL) which spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl. Acad. Sci. USA 88:10735–39 [Google Scholar]
/content/journals/10.1146/annurev-genom-082908-150144
Loading
/content/journals/10.1146/annurev-genom-082908-150144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error