1932

Abstract

The Human Genome Project not only provided the essential reference map for the human genome but also stimulated the development of technology and analytic tools to process massive quantities of genomic data. As a result of this project, new technologies for DNA sequencing have improved in efficiency and cost by more than a millionfold over the past decade, and these technologies can now be routinely applied at a cost of less than $5,000 per genome. Although the application of these technologies in cancer genomics research has continued to contribute to basic discoveries, opportunities for translating them for individual patients have also emerged. This is especially important in clinical cancer research, where genetic alterations in a patient's tumor may be matched to molecularly targeted therapies. In this review, we discuss the integration of cancer genomics and clinical oncology and the opportunity to deliver precision cancer medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-090413-025552
2014-08-31
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/genom/15/1/annurev-genom-090413-025552.html?itemId=/content/journals/10.1146/annurev-genom-090413-025552&mimeType=html&fmt=ahah

Literature Cited

  1. Arai Y, Totoki Y, Hosoda F, Shirota T, Hama N. 1.  et al. 2014. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59:1427–34 [Google Scholar]
  2. Awad MM, Katayama R, McTigue M, Liu W, Deng YL. 2.  et al. 2013. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 368:2395–401 [Google Scholar]
  3. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J. 3.  et al. 2004. The PIK3CA gene is mutated with high frequency in human breast cancers.. Cancer Biol. Ther. 3:772–75 [Google Scholar]
  4. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL. 4.  et al. 2012. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–9 [Google Scholar]
  5. Beadling C, Neff TL, Heinrich MC, Rhodes K, Thornton M. 5.  et al. 2013. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J. Mol. Diagn. 15:171–76 [Google Scholar]
  6. Besa EC. 6.  2014. Chronic myelogenous leukemia. Medscape, updated Mar. 24. http://emedicine.medscape.com/article/199425-overview#aw2aab6b2b3
  7. Bloomfield CD, Lindquist LL, Arthur D, McKenna RW, LeBien TW. 7.  et al. 1981. Chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Res. 41:4838–43 [Google Scholar]
  8. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P. 8.  et al. 2012. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 11:873–86 [Google Scholar]
  9. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D. 9.  et al. 2013. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3:224–37 [Google Scholar]
  10. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q. 10.  et al. 2011. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–78 [Google Scholar]
  11. Butrynski JE, D'Adamo DR, Hornick JL, Dal Cin P, Antonescu CR. 11.  et al. 2010. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363:1727–33 [Google Scholar]
  12. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL. 12.  et al. 2007. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439–44 [Google Scholar]
  13. Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G. 13.  et al. 2004. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol. 63:1236–42 [Google Scholar]
  14. Chang BY, Zapatka M, Barrientos JC, Li D, Steggerda S. 14.  et al. 2013. Use of tumor genomic profiling to reveal mechanisms of resistance to the BTK inhibitor ibrutinib in chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 31:Suppl.7014 (Abstr.) [Google Scholar]
  15. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P. 15.  et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16 [Google Scholar]
  16. Chen Y, Takita J, Choi YL, Kato M, Ohira M. 16.  et al. 2008. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–74 [Google Scholar]
  17. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J. 17.  et al. 2010. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363:1734–39 [Google Scholar]
  18. 18. Clin. Lung Cancer Genome Proj., Netw. Genomic Med 2013. A genomics-based classification of human lung tumors. Sci. Transl. Med. 5:209ra153 [Google Scholar]
  19. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M. 19.  et al. 2012. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2:227–35 [Google Scholar]
  20. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J. 20.  et al. 2002. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin. Cancer Res. 8:3034–38 [Google Scholar]
  21. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. 21.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  22. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM. 22.  et al. 2013. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368:1199–209 [Google Scholar]
  23. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR. 23.  et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40 [Google Scholar]
  24. Dietrich S, Glimm H, Andrulis M, von Kalle C, Ho AD, Zenz T. 24.  2012. BRAF inhibition in refractory hairy-cell leukemia. N. Engl. J. Med. 366:2038–40 [Google Scholar]
  25. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC. 25.  et al. 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–10 [Google Scholar]
  26. Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT. 26.  et al. 2012. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18:1472–82 [Google Scholar]
  27. Downing JR, Wilson RK, Zhang J, Mardis ER, Pui CH. 27.  et al. 2012. The Pediatric Cancer Genome Project. Nat. Genet. 44:619–22 [Google Scholar]
  28. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E. 28.  et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:1031–37 [Google Scholar]
  29. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM. 29.  et al. 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2:561–66 [Google Scholar]
  30. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C. 30.  et al. 2013. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45:478–86 [Google Scholar]
  31. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J. 31.  et al. 2011. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS ONE 6:e20351 [Google Scholar]
  32. El-Osta H, Hong D, Wheler J, Fu S, Naing A. 32.  et al. 2011. Outcomes of research biopsies in phase I clinical trials: the MD Anderson Cancer Center experience. Oncologist 16:1292–98 [Google Scholar]
  33. Ellis MJ, Perou CM. 33.  2013. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov. 3:27–34 [Google Scholar]
  34. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H. 34.  et al. 2011. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208:1389–401 [Google Scholar]
  35. Flaherty KT, McArthur G. 35.  2010. BRAF, a target in melanoma: implications for solid tumor drug development. Cancer 116:4902–13 [Google Scholar]
  36. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA. 36.  et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:809–19 [Google Scholar]
  37. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C. 37.  et al. 2012. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med. 367:107–14 [Google Scholar]
  38. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR. 38.  et al. 2013. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31:1023–31 [Google Scholar]
  39. Frei E III, Karon M, Levin RH, Freireich EJ, Taylor RJ. 39.  et al. 1965. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 26:642–56 [Google Scholar]
  40. Gainor JF, Shaw AT. 40.  2013. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol. 31:3987–96 [Google Scholar]
  41. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP. 41.  et al. 2012. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30:1033–36 [Google Scholar]
  42. Garraway LA, Lander ES. 42.  2013. Lessons from the cancer genome. Cell 153:17–37 [Google Scholar]
  43. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. 43.  et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92 [Google Scholar]
  44. Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM. 44.  et al. 2012. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–43 [Google Scholar]
  45. Green ED, Guyer MS, Manolio TA, Peterson JL. 45.  2011. Charting a course for genomic medicine from base pairs to bedside. Nature 470:204–13 [Google Scholar]
  46. Greenlee RT, Goodman MT, Lynch CF, Platz CE, Havener LA, Howe HL. 46.  2010. The occurrence of rare cancers in U.S. adults, 1995–2004. Public Health Rep. 125:28–43 [Google Scholar]
  47. Hammerman PS, Sos ML, Ramos AH, Xu C, Dutt A. 47.  et al. 2011. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 1:78–89 [Google Scholar]
  48. Hanahan D, Weinberg RA. 48.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  49. Harbinski F, Craig VJ, Sanghavi S, Jeffery D, Liu L. 49.  et al. 2012. Rescue screens with secreted proteins reveal compensatory potential of receptor tyrosine kinases in driving cancer growth. Cancer Discov. 2:948–59 [Google Scholar]
  50. Ho DD, Bieniasz PD. 50.  2008. HIV-1 at 25. Cell 133:561–65 [Google Scholar]
  51. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M. 51.  et al. 2012. A landscape of driver mutations in melanoma. Cell 150:251–63 [Google Scholar]
  52. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN. 52.  et al. 2012. Genome sequencing identifies a basis for everolimus sensitivity. Science 338:221 [Google Scholar]
  53. Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D. 53.  et al. 2013. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 3:1364–77 [Google Scholar]
  54. Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C. 54.  et al. 2013. Oncogenic ERBB3 mutations in human cancers. Cancer Cell 23:603–17 [Google Scholar]
  55. Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G. 55.  et al. 2013. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 3:1020–29 [Google Scholar]
  56. Kaiser J. 56.  2013. Rare cancer successes spawn “exceptional” research efforts. Science 340:263 [Google Scholar]
  57. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B. 57.  et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333–39 [Google Scholar]
  58. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ. 58.  et al. 2012. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4:120ra17 [Google Scholar]
  59. Konstantinopoulos PA, Papavassiliou AG. 59.  2011. Seeing the future of cancer-associated transcription factor drug targets. JAMA 305:2349–50 [Google Scholar]
  60. Koo GC, Tan SY, Tang T, Poon SL, Allen GE. 60.  et al. 2012. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov. 2:591–97 [Google Scholar]
  61. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A. 61.  et al. 2012. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119:1963–71 [Google Scholar]
  62. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B. 62.  et al. 2010. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363:1693–703 [Google Scholar]
  63. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K. 63.  et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18 [Google Scholar]
  64. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD. 64.  et al. 2012. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4:162ra54 [Google Scholar]
  65. Liao RG, Jung J, Tchaicha J, Wilkerson MD, Sivachenko A. 65.  et al. 2013. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 73:5195–205 [Google Scholar]
  66. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A. 66.  et al. 2012. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18:382–84 [Google Scholar]
  67. Lito P, Rosen N, Solit DB. 67.  2013. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19:1401–9 [Google Scholar]
  68. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA. 68.  et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350:2129–39 [Google Scholar]
  69. Malaney P, Nicosia SV, Davé V. 69.  2014. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 344:1–12 [Google Scholar]
  70. Mardis ER. 70.  2011. A decade's perspective on DNA sequencing technology. Nature 470:198–203 [Google Scholar]
  71. Meric-Bernstam F, Farhangfar C, Mendelsohn J, Mills GB. 71.  2013. Building a personalized medicine infrastructure at a major cancer center. J. Clin. Oncol. 31:1849–57 [Google Scholar]
  72. Meyerson M, Gabriel S, Getz G. 72.  2010. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11:685–96 [Google Scholar]
  73. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T. 73.  et al. 2013. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–12 [Google Scholar]
  74. Nakano H, Yamamoto F, Neville C, Evans D, Mizuno T, Perucho M. 74.  1984. Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc. Natl. Acad. Sci. USA 81:71–75 [Google Scholar]
  75. Nardella C, Lunardi A, Patnaik A, Cantley LC, Pandolfi PP. 75.  2011. The APL paradigm and the “co-clinical trial” project. Cancer Discov. 1:108–16 [Google Scholar]
  76. 76. Natl. Res. Counc. Comm. Framew. Dev. New Taxon. Dis 2011. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: Natl. Acad. Press
  77. Nowell PC, Hungerford D. 77.  1960. A minute chromosome in human chronic granulocytic leukemia. Science 132:1497 (Abstr.) [Google Scholar]
  78. Ocana A, Amir E, Vera-Badillo F, Seruga B, Tannock IF. 78.  2013. Phase III trials of targeted anticancer therapies: redesigning the concept. Clin. Cancer Res. 19:4931–40 [Google Scholar]
  79. Olson EM, Lin NU, Krop IE, Winer EP. 79.  2011. The ethical use of mandatory research biopsies. Nat. Rev. Clin. Oncol. 8:620–25 [Google Scholar]
  80. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H. 80.  et al. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–500 [Google Scholar]
  81. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA. 81.  et al. 2011. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 29:2046–51 [Google Scholar]
  82. Pao W, Girard N. 82.  2011. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12:175–80 [Google Scholar]
  83. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A. 83.  et al. 1997. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387:188–91 [Google Scholar]
  84. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS. 84.  et al. 2000. Molecular portraits of human breast tumours. Nature 406:747–52 [Google Scholar]
  85. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R. 85.  et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–3 [Google Scholar]
  86. Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S. 86.  et al. 2014. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J. Mol. Diagn. 16:56–67 [Google Scholar]
  87. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR. 87.  et al. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–5 [Google Scholar]
  88. Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C. 88.  et al. 2006. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin. Cancer Res. 12:6652–62 [Google Scholar]
  89. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y. 89.  et al. 2012. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22:153–66 [Google Scholar]
  90. Robinson DR, Kalyana-Sundaram S, Wu YM, Shanker S, Cao X. 90.  et al. 2011. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med. 17:1646–51 [Google Scholar]
  91. Robinson DR, Wu Y-M, Vats P, Su F, Lonigro RJ. 91.  et al. 2013. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45:1446–51 [Google Scholar]
  92. Romano E, Pradervand S, Paillusson A, Weber J, Harshman K. 92.  et al. 2013. Identification of multiple mechanisms of resistance to vemurafenib in a patient with BRAF V600E-mutated cutaneous melanoma successfully rechallenged after progression. Clin. Cancer Res. 19:5749–57 [Google Scholar]
  93. Rowley JD. 93.  1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–93 [Google Scholar]
  94. Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K. 94.  et al. 2000. Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin. Cancer Res. 6:1038–45 [Google Scholar]
  95. Ryan CJ, Tindall DJ. 95.  2011. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J. Clin. Oncol. 29:3651–58 [Google Scholar]
  96. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M. 96.  1984. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223:661–64 [Google Scholar]
  97. Sato T, Clevers H. 97.  2013. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–94 [Google Scholar]
  98. Sawyers CL. 98.  2008. The cancer biomarker problem. Nature 452:548–52 [Google Scholar]
  99. Sharma MR, Schilsky RL. 99.  2011. Role of randomized phase III trials in an era of effective targeted therapies. Nat. Rev. Clin. Oncol. 9:208–14 [Google Scholar]
  100. Shi H, Moriceau G, Kong X, Lee MK, Lee H. 100.  et al. 2012. Melanoma whole-exome sequencing identifies V600EBRAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3:724 [Google Scholar]
  101. Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA. 101.  et al. 2013. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15:607–22 [Google Scholar]
  102. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y. 102.  et al. 2007. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–66 [Google Scholar]
  103. Sordella R, Bell DW, Haber DA, Settleman J. 103.  2004. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305:1163–67 [Google Scholar]
  104. Sotiriou C, Piccart MJ. 104.  2007. Taking gene-expression profiling to the clinic: When will molecular signatures become relevant to patient care?. Nat. Rev. Cancer 7:545–53 [Google Scholar]
  105. Sparano JA, Paik S. 105.  2008. Development of the 21-gene assay and its application in clinical practice and clinical trials. J. Clin. Oncol. 26:721–28 [Google Scholar]
  106. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C. 106.  et al. 2012. The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–4 [Google Scholar]
  107. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR. 107.  et al. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–4 [Google Scholar]
  108. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S. 108.  et al. 2012. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18:378–81 [Google Scholar]
  109. Tamborero D, Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Kandoth C. 109.  et al. 2013. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3:2650 [Google Scholar]
  110. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE. 110.  et al. 1995. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med. 332:1393–98 [Google Scholar]
  111. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S. 111.  et al. 2012. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9:338–50 [Google Scholar]
  112. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W. 112.  et al. 2011. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364:2305–15 [Google Scholar]
  113. Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L. 113.  et al. 2011. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3:94ra72 [Google Scholar]
  114. Toy W, Shen Y, Won H, Green B, Sakr RA. 114.  et al. 2013. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45:1439–45 [Google Scholar]
  115. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R. 115.  et al. 1995. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9:401–6 [Google Scholar]
  116. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. 116.  2013. Cancer genome landscapes. Science 339:1546–58 [Google Scholar]
  117. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A. 117.  et al. 2011. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29:3085–96 [Google Scholar]
  118. Wang XS, Shankar S, Dhanasekaran SM, Ateeq B, Sasaki AT. 118.  et al. 2011. Characterization of KRAS rearrangements in metastatic prostate cancer. Cancer Discov. 1:35–43 [Google Scholar]
  119. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA. 119.  et al. 2013. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45:1113–20 [Google Scholar]
  120. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B. 120.  et al. 2013. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3:636–47 [Google Scholar]
  121. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC. 121.  et al. 2011. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat. Genet. 43:932–39 [Google Scholar]
  122. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL. 122.  et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–63 [Google Scholar]
/content/journals/10.1146/annurev-genom-090413-025552
Loading
/content/journals/10.1146/annurev-genom-090413-025552
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error