1932

Abstract

Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121321-094136
2022-08-31
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-121321-094136.html?itemId=/content/journals/10.1146/annurev-genom-121321-094136&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akil O, Dyka F, Calvet C, Emptoz A, Lahlou G et al. 2019. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. PNAS 116:4496–501
    [Google Scholar]
  2. 2.
    Akil O, Seal RP, Burke K, Wang C, Alemi A et al. 2012. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–93
    [Google Scholar]
  3. 3.
    Al-Moyed H, Cepeda AP, Jung S, Moser T, Kugler S, Reisinger E. 2019. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol. Med. 11:9396
    [Google Scholar]
  4. 4.
    Alagramam KN, Stepanyan R, Jamesdaniel S, Chen DH, Davis RR. 2014. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health 16:400–9
    [Google Scholar]
  5. 5.
    Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE et al. 2016. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30:34–51
    [Google Scholar]
  6. 6.
    Askew C, Rochat C, Pan B, Asai Y, Ahmed H et al. 2015. Tmc gene therapy restores auditory function in deaf mice. Sci. Transl. Med. 7:295ra108
    [Google Scholar]
  7. 7.
    Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, Cheng AG 2015. Sensory hair cell development and regeneration: similarities and differences. Development 142:1561–71
    [Google Scholar]
  8. 8.
    Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB et al. 1995. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11:369–75
    [Google Scholar]
  9. 9.
    Azaiez H, Booth KT, Ephraim SS, Crone B, Black-Ziegelbein EA et al. 2018. Genomic landscape and mutational signatures of deafness-associated genes. Am. J. Hum. Genet. 103:484–97
    [Google Scholar]
  10. 10.
    Bademci G, Abad C, Cengiz FB, Seyhan S, Incesulu A et al. 2020. Long-range cis-regulatory elements controlling GDF6 expression are essential for ear development. J. Clin. Investig. 130:4213–17
    [Google Scholar]
  11. 11.
    Benkafadar N, Janesick A, Scheibinger M, Ling AH, Jan TA, Heller S 2021. Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Rep 34:108902
    [Google Scholar]
  12. 12.
    Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A et al. 2010. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28:1045–48
    [Google Scholar]
  13. 13.
    Botto C, Dalkara D, El-Amraoui A. 2021. Progress in gene editing tools and their potential for correcting mutations underlying hearing and vision loss. Front. . Genome Ed. 3:737632
    [Google Scholar]
  14. 14.
    Boucher S, Tai FWJ, Delmaghani S, Lelli A, Singh-Estivalet A et al. 2020. Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. PNAS 117:31278–89
    [Google Scholar]
  15. 15.
    Brockdorff N, Bowness JS, Wei G. 2020. Progress toward understanding chromosome silencing by Xist RNA. Genes Dev 34:733–44
    [Google Scholar]
  16. 16.
    Brownstein Z, Friedman LM, Shahin H, Oron-Karni V, Kol N et al. 2011. Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol 12:R89
    [Google Scholar]
  17. 17.
    Brownstein Z, Gulsuner S, Walsh T, Arrojo Martins FT, Taiber S et al. 2020. Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene ATOH1. Clin. Genet. 98:353–64
    [Google Scholar]
  18. 18.
    Budenz CL, Wong HT, Swiderski DL, Shibata SB, Pfingst BE, Raphael Y. 2015. Differential effects of AAV.BDNF and AAV.Ntf3 in the deafened adult guinea pig ear. Sci. Rep. 5:8619
    [Google Scholar]
  19. 19.
    Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW. 2015. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat. Commun. 6:8557
    [Google Scholar]
  20. 20.
    Cai B, Li Z, Ma M, Wang Z, Han P et al. 2017. LncRNA-Six1 encodes a micropeptide to activate Six1 in cis and is involved in cell proliferation and muscle growth. Front. Physiol. 8:230
    [Google Scholar]
  21. 21.
    Chai R, Kuo B, Wang T, Liaw EJ, Xia A et al. 2012. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. PNAS 109:8167–72
    [Google Scholar]
  22. 22.
    Chang Q, Wang J, Li Q, Kim Y, Zhou B et al. 2015. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol. Med. 7:1077–86
    [Google Scholar]
  23. 23.
    Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J. 2018. AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther 25:251–59
    [Google Scholar]
  24. 24.
    Chessum L, Matern MS, Kelly MC, Johnson SL, Ogawa Y et al. 2018. Helios is a key transcriptional regulator of outer hair cell maturation. Nature 563:696–700
    [Google Scholar]
  25. 25.
    Chien WW, Isgrig K, Roy S, Belyantseva IA, Drummond MC et al. 2016. Gene therapy restores hair cell stereocilia morphology in inner ears of deaf whirler mice. Mol. Ther. 24:17–25
    [Google Scholar]
  26. 26.
    Clark JG. 1981. Uses and abuses of hearing loss classification. ASHA 23:493–500
    [Google Scholar]
  27. 27.
    Clough E, Barrett T. 2016. The Gene Expression Omnibus database. Methods Mol. Biol. 1418:93–110
    [Google Scholar]
  28. 28.
    Cremers CWRJ. 1995. Genetic hearing loss. Past and future. Clin. Otolaryngol. Allied Sci. 20:493–94
    [Google Scholar]
  29. 29.
    Czajkowski A, Mounier A, Delacroix L, Malgrange B. 2019. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell. Mol. Life Sci. 76:627–35
    [Google Scholar]
  30. 30.
    de Kok YJ, Merkx GF, van der Maarel SM, Huber I, Malcolm S et al. 1995. A duplication/paracentric inversion associated with familial X-linked deafness (DFN3) suggests the presence of a regulatory element more than 400 kb upstream of the POU3F4 gene. Hum. Mol. Genet. 4:2145–50
    [Google Scholar]
  31. 31.
    de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP et al. 1995. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267:685–88
    [Google Scholar]
  32. 32.
    Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D et al. 2015. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906
    [Google Scholar]
  33. 33.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–89
    [Google Scholar]
  34. 34.
    Dieter A, Keppeler D, Moser T. 2020. Towards the optical cochlear implant: optogenetic approaches for hearing restoration. EMBO Mol. Med. 12:e11618
    [Google Scholar]
  35. 35.
    Downie L, Halliday J, Lewis S, Lunke S, Lynch E et al. 2020. Exome sequencing in newborns with congenital deafness as a model for genomic newborn screening: the Baby Beyond Hearing project. Genet. Med. 22:937–44
    [Google Scholar]
  36. 36.
    Dulon D, Papal S, Patni P, Cortese M, Vincent PF et al. 2018. Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome. J. Clin. Investig. 128:3382–401
    [Google Scholar]
  37. 37.
    Duret L, Chureau C, Samain S, Weissenbach J, Avner P. 2006. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–55
    [Google Scholar]
  38. 38.
    Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes. Cell 149:515–24
    [Google Scholar]
  39. 39.
    Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S et al. 2015. RFX transcription factors are essential for hearing in mice. Nat. Commun. 6:8549
    [Google Scholar]
  40. 40.
    Emptoz A, Michel V, Lelli A, Akil O, Boutet de Monvel J et al. 2017. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. PNAS 114:9695–700
    [Google Scholar]
  41. 41.
    ENCODE Proj. Consort. Snyder MP, Gingeras TR, Moore JE, Weng Z et al. 2020. Perspectives on ENCODE. Nature 583:693–98
    [Google Scholar]
  42. 42.
    Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S et al. 1998. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351:394–98
    [Google Scholar]
  43. 43.
    Evsen L, Li X, Zhang S, Razin S, Doetzlhofer A. 2020. let-7 miRNAs inhibit CHD7 expression and control auditory-sensory progenitor cell behavior in the developing inner ear. Development 147:dev183384
    [Google Scholar]
  44. 44.
    Fan J, Jia L, Li Y, Ebrahim S, May-Simera H et al. 2017. Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. PNAS 114:E4271–80
    [Google Scholar]
  45. 45.
    Fettiplace R. 2017. Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr. Physiol. 7:1197–227
    [Google Scholar]
  46. 46.
    Frejo L, Gallego-Martinez A, Requena T, Martin-Sanz E, Amor-Dorado JC et al. 2018. Proinflammatory cytokines and response to molds in mononuclear cells of patients with Meniere disease. Sci. Rep. 8:5974
    [Google Scholar]
  47. 47.
    Friedman LM, Dror AA, Mor E, Tenne T, Toren G et al. 2009. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. PNAS 106:7915–20
    [Google Scholar]
  48. 48.
    Gagnon R. 1989. Stimulation of human fetuses with sound and vibration. Semin. Perinatol. 13:393–402
    [Google Scholar]
  49. 49.
    Gao X, Tao Y, Lamas V, Huang M, Yeh WH et al. 2018. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217–21
    [Google Scholar]
  50. 50.
    Geng R, Furness DN, Muraleedharan CK, Zhang J, Dabdoub A et al. 2018. The microRNA-183/96/182 cluster is essential for stereociliary bundle formation and function of cochlear sensory hair cells. Sci. Rep. 8:18022
    [Google Scholar]
  51. 51.
    Geng R, Omar A, Gopal SR, Chen DH, Stepanyan R et al. 2017. Modeling and preventing progressive hearing loss in Usher syndrome III. Sci. Rep. 7:13480
    [Google Scholar]
  52. 52.
    Gibson F, Walsh J, Mburu P, Varela A, Brown KA et al. 1995. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64
    [Google Scholar]
  53. 53.
    Gil N, Ulitsky I. 2020. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 21:102–17
    [Google Scholar]
  54. 54.
    Green GE, Scott DA, McDonald JM, Woodworth GG, Sheffield VC, Smith RJ. 1999. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 281:2211–16
    [Google Scholar]
  55. 55.
    Grosse SD, Ross DS, Dollard SC. 2008. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J. Clin. Virol. 41:57–62
    [Google Scholar]
  56. 56.
    Groves AK, Zhang KD, Fekete DM. 2013. The genetics of hair cell development and regeneration. Annu. Rev. Neurosci. 36:361–81
    [Google Scholar]
  57. 57.
    Gugel I, Ebner FH, Grimm F, Czemmel S, Paulsen F et al. 2020. Contribution of mTOR and PTEN to radioresistance in sporadic and NF2-associated vestibular schwannomas: a microarray and pathway analysis. Cancers 12:177
    [Google Scholar]
  58. 58.
    Guilford P, Ben Arab S, Blanchard S, Levilliers J, Weissenbach J et al. 1994. A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat. Genet. 6:24–28
    [Google Scholar]
  59. 59.
    Guo J, Ma X, Skidmore JM, Cimerman J, Prieskorn DM et al. 2021. GJB2 gene therapy and conditional deletion reveal developmental stage-dependent effects on inner ear structure and function. Mol. Ther. Methods Clin. Dev. 23:319–33
    [Google Scholar]
  60. 60.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y et al. 2013. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–89
    [Google Scholar]
  61. 61.
    Gyorgy B, Meijer EJ, Ivanchenko MV, Tenneson K, Emond F et al. 2019. Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of Usher syndrome 3A and transduces hair cells in a non-human primate. Mol. Ther. Methods Clin. Dev. 13:1–13
    [Google Scholar]
  62. 62.
    Gyorgy B, Nist-Lund C, Pan B, Asai Y, Karavitaki KD et al. 2019. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 25:1123–30
    [Google Scholar]
  63. 63.
    Gyorgy B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR et al. 2017. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol. Ther. 25:379–91
    [Google Scholar]
  64. 64.
    Hainer SJ, Fazzio TG. 2019. High-resolution chromatin profiling using CUT&RUN. Curr. Protoc. Mol. Biol. 126:e85
    [Google Scholar]
  65. 65.
    Hardisty-Hughes RE, Parker A, Brown SD 2010. A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nat. Protoc. 5:177–90
    [Google Scholar]
  66. 66.
    Henikoff S, Henikoff JG, Ahmad K 2021. Simplified epigenome profiling using antibody-tethered tagmentation. Bio. Protoc. 11:e4043
    [Google Scholar]
  67. 67.
    Hertzano R, Elkon R, Kurima K, Morrisson A, Chan SL et al. 2011. Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLOS Genet 7:e1002309
    [Google Scholar]
  68. 68.
    Hertzano R, Gwilliam K, Rose K, Milon B, Matern MS. 2021. Cell type-specific expression analysis of the inner ear: a technical report. Laryngoscope 131:Suppl. 5S1–16
    [Google Scholar]
  69. 69.
    Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R et al. 2004. Transcription profiling of inner ears from Pou4f3ddl/ddl identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum. Mol. Genet. 13:2143–53
    [Google Scholar]
  70. 70.
    Hezroni H, Ben-Tov Perry R, Meir Z, Housman G, Lubelsky Y, Ulitsky I 2017. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biol 18:162
    [Google Scholar]
  71. 71.
    Hoa M, Olszewski R, Li X, Taukulis I, Gu S et al. 2020. Characterizing adult cochlear supporting cell transcriptional diversity using single-cell RNA-seq: validation in the adult mouse and translational implications for the adult human cochlea. Front. Mol. Neurosci. 13:13
    [Google Scholar]
  72. 72.
    Hrabe de Angelis MH, Flaswinkel H, Fuchs H, Rathkolb B, Soewarto D et al. 2000. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat. Genet. 25:444–47
    [Google Scholar]
  73. 73.
    Huyghe A, Van den Ackerveken P, Sacheli R, Prevot PP, Thelen N et al. 2015. MicroRNA-124 regulates cell specification in the cochlea through modulation of Sfrp4/5. Cell Rep 13:31–42
    [Google Scholar]
  74. 74.
    Jacques BE, Puligilla C, Weichert RM, Ferrer-Vaquer A, Hadjantonakis AK et al. 2012. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Development 139:4395–404
    [Google Scholar]
  75. 75.
    Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. 2021. Cell-type identity of the avian cochlea. Cell Rep 34:108900
    [Google Scholar]
  76. 76.
    Jen HI, Hill MC, Tao L, Sheng K, Cao W et al. 2019. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 8:e44328
    [Google Scholar]
  77. 77.
    Karemaker ID, Vermeulen M. 2018. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol 36:952–65
    [Google Scholar]
  78. 78.
    Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN et al. 1997. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83
    [Google Scholar]
  79. 79.
    Kim MA, Cho HJ, Bae SH, Lee B, Oh SK et al. 2016. Methionine sulfoxide reductase B3-targeted in utero gene therapy rescues hearing function in a mouse model of congenital sensorineural hearing loss. Antioxid. Redox Signal. 24:590–602
    [Google Scholar]
  80. 80.
    Kim MA, Kim SH, Ryu N, Ma JH, Kim YR et al. 2019. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 9:7184–99
    [Google Scholar]
  81. 81.
    Kimura H. 2013. Histone modifications for human epigenome analysis. J. Hum. Genet. 58:439–45
    [Google Scholar]
  82. 82.
    Koffler T, Ushakov K, Avraham KB 2015. Genetics of hearing loss: syndromic. Otolaryngol. Clin. N. Am. 48:1041–61
    [Google Scholar]
  83. 83.
    Koffler-Brill T, Taiber S, Anaya A, Bordeynik-Cohen M, Rosen E et al. 2021. Identification and characterization of key long non-coding RNAs in the mouse cochlea. RNA Biol 18:1160–69
    [Google Scholar]
  84. 84.
    Kolla L, Kelly MC, Mann ZF, Anaya-Rocha A, Ellis K et al. 2020. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat. Commun. 11:2389
    [Google Scholar]
  85. 85.
    Korrapati S, Taukulis I, Olszewski R, Pyle M, Gu S et al. 2019. Single cell and single nucleus RNA-seq reveal cellular heterogeneity and homeostatic regulatory networks in adult mouse stria vascularis. Front. Mol. Neurosci. 12:316
    [Google Scholar]
  86. 86.
    Korver AM, Smith RJ, Van Camp G, Schleiss MR, Bitner-Glindzicz MA et al. 2017. Congenital hearing loss. Nat. Rev. Dis. Primers 3:16094
    [Google Scholar]
  87. 87.
    Kros CJ, Steyger PS. 2019. Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb. . Perspect. Med. 9:a033548
    [Google Scholar]
  88. 88.
    Ku YC, Renaud NA, Veile RA, Helms C, Voelker CC et al. 2014. The transcriptome of utricle hair cell regeneration in the avian inner ear. J. Neurosci. 34:3523–35
    [Google Scholar]
  89. 89.
    Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM et al. 2002. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat. Genet 30:277–84
    [Google Scholar]
  90. 90.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  91. 91.
    Le TN, Straatman LV, Lea J, Westerberg B. 2017. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J. Otolaryngol. Head Neck Surg. 46:41
    [Google Scholar]
  92. 92.
    Leake PA, Rebscher SJ, Dore C, Akil O. 2019. AAV-mediated neurotrophin gene therapy promotes improved survival of cochlear spiral ganglion neurons in neonatally deafened cats: comparison of AAV2-hBDNF and AAV5-hGDNF. J. Assoc. Res. Otolaryngol. 20:341–61
    [Google Scholar]
  93. 93.
    Lee S, Song JJ, Beyer LA, Swiderski DL, Prieskorn DM et al. 2020. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci. Rep. 10:21397
    [Google Scholar]
  94. 94.
    Lentz JJ, Pan B, Ponnath A, Tran CM, Nist-Lund C et al. 2020. Direct delivery of antisense oligonucleotides to the middle and inner ear improves hearing and balance in Usher mice. Mol. Ther. 28:2662–76
    [Google Scholar]
  95. 95.
    Lentz JJ, Savas S, Ng SS, Athas G, Deininger P, Keats B. 2005. The USH1C 216G→A splice-site mutation results in a 35-base-pair deletion. Hum. Genet. 116:225–27
    [Google Scholar]
  96. 96.
    Leon PE, Raventos H, Lynch E, Morrow J, King MC. 1992. The gene for an inherited form of deafness maps to chromosome 5q31. PNAS 89:5181–84
    [Google Scholar]
  97. 97.
    Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. 2020. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis. Models Mech. 14:dmm047225
    [Google Scholar]
  98. 98.
    Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH et al. 2009. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat. Genet. 41:614–18
    [Google Scholar]
  99. 99.
    Lezirovitz K, Vieira-Silva GA, Batissoco AC, Levy D, Kitajima JP et al. 2020. A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58. Hum. Mol. Genet 29:1520–36
    [Google Scholar]
  100. 100.
    Liu H, Pecka JL, Zhang Q, Soukup GA, Beisel KW, He DZ. 2014. Characterization of transcriptomes of cochlear inner and outer hair cells. J. Neurosci. 34:11085–95
    [Google Scholar]
  101. 101.
    Lu N, Chen Y, Wang Z, Chen G, Lin Q et al. 2013. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein. Biochem. Biophys. Res. Commun. 430:700–5
    [Google Scholar]
  102. 102.
    Lush ME, Diaz DC, Koenecke N, Baek S, Boldt H et al. 2019. scRNA-Seq reveals distinct stem cell populations that drive hair cell regeneration after loss of Fgf and Notch signaling. eLife 8:e44431
    [Google Scholar]
  103. 103.
    Ma L, Sun H, Mao X. 2020. Transcriptome sequencing of cochleae from constant-frequency and frequency-modulated echolocating bats. Sci. Data 7:341
    [Google Scholar]
  104. 104.
    Maass JC, Gu R, Cai T, Wan YW, Cantellano SC et al. 2016. Transcriptomic analysis of mouse cochlear supporting cell maturation reveals large-scale changes in notch responsiveness prior to the onset of hearing. PLOS ONE 11:e0167286
    [Google Scholar]
  105. 105.
    Manji SS, Sorensen BS, Klockars T, Lam T, Hutchison W, Dahl HH. 2006. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear. J. Neurosci. Res. 83:181–90
    [Google Scholar]
  106. 106.
    Matern MS, Milon B, Lipford EL, McMurray M, Ogawa Y et al. 2020. GFI1 functions to repress neuronal gene expression in the developing inner ear hair cells. Development 147:dev186015
    [Google Scholar]
  107. 107.
    Matern MS, Vijayakumar S, Margulies Z, Milon B, Song Y et al. 2017. Gfi1Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci. Rep. 7:42079
    [Google Scholar]
  108. 108.
    McInturff S, Burns JC, Kelley MW. 2018. Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers. Biol. Open 7:bio038083
    [Google Scholar]
  109. 109.
    Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F et al. 2001. MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am. J. Hum. Genet. 69:635–40
    [Google Scholar]
  110. 110.
    Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F et al. 2009. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat. Genet. 41:609–13
    [Google Scholar]
  111. 111.
    Milon B, Shulman ED, So KS, Cederroth CR, Lipford EL et al. 2021. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep 36:109758
    [Google Scholar]
  112. 112.
    Miwa T, Minoda R, Ise M, Yamada T, Yumoto E. 2013. Mouse otocyst transuterine gene transfer restores hearing in mice with connexin 30 deletion-associated hearing loss. Mol. Ther. 21:1142–50
    [Google Scholar]
  113. 113.
    Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ et al. 2013. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69
    [Google Scholar]
  114. 114.
    Mol. Otolaryngol. Renal Res. Lab. Univ. Iowa. 2021. Deafness Variation Database Accessed Dec. 12. http://deafnessvariationdatabase.org
  115. 115.
    Morton CC, Nance WE. 2006. Newborn hearing screening—a silent revolution. N. Engl. J. Med. 354:2151–64
    [Google Scholar]
  116. 116.
    Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A et al. 2022. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol. Ther. 30:519–33
    [Google Scholar]
  117. 117.
    Nakano Y, Jahan I, Bonde G, Sun X, Hildebrand MS et al. 2012. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse. PLOS Genet 8:e1002966
    [Google Scholar]
  118. 118.
    Nist-Lund CA, Pan B, Patterson A, Asai Y, Chen T et al. 2019. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat. Commun. 10:236
    [Google Scholar]
  119. 119.
    Oestreicher D, Picher MM, Rankovic V, Moser T, Pangrsic T. 2021. Cabp2-gene therapy restores inner hair cell calcium currents and improves hearing in a DFNB93 mouse model. Front. Mol. Neurosci. 14:689415
    [Google Scholar]
  120. 120.
    Ohlemiller KK, Jones SM, Johnson KR. 2016. Application of mouse models to research in hearing and balance. J. Assoc. Res. Otolaryngol. 17:493–523
    [Google Scholar]
  121. 121.
    Oishi N, Duscha S, Boukari H, Meyer M, Xie J et al. 2015. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death. Cell Death Dis 6:e1763
    [Google Scholar]
  122. 122.
    Orvis J, Gottfried B, Kancherla J, Adkins RS, Song Y et al. 2021. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat. Methods 18:843–44
    [Google Scholar]
  123. 123.
    Pan B, Akyuz N, Liu XP, Asai Y, Nist-Lund C et al. 2018. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99:736–53.e6
    [Google Scholar]
  124. 124.
    Pan B, Askew C, Galvin A, Heman-Ackah S, Asai Y et al. 2017. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol 35:264–72
    [Google Scholar]
  125. 125.
    Patel M, Hu Z, Bard J, Jamison J, Cai Q, Hu BH. 2013. Transcriptome characterization by RNA-Seq reveals the involvement of the complement components in noise-traumatized rat cochleae. Neuroscience 248:1–16
    [Google Scholar]
  126. 126.
    Perl K, Shamir R, Avraham KB 2018. Computational analysis of mRNA expression profiling in the inner ear reveals candidate transcription factors associated with proliferation, differentiation, and deafness. Hum. Genom. 12:30
    [Google Scholar]
  127. 127.
    Petitpre C, Wu H, Sharma A, Tokarska A, Fontanet P et al. 2018. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nat. Commun 9:3691
    [Google Scholar]
  128. 128.
    Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A et al. 1998. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–47
    [Google Scholar]
  129. 129.
    Purcell PL, Deep NL, Waltzman SB, Roland JT Jr., Cushing SL et al. 2021. Cochlear implantation in infants: why and how. Trends Hear 25:23312165211031751
    [Google Scholar]
  130. 130.
    Ramirez-Gordillo D, Powers TR, van Velkinburgh JC, Trujillo-Provencio C, Schilkey F, Serrano EE. 2015. RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM® genes for hereditary disorders of hearing and balance. BMC Res. Notes 8:691
    [Google Scholar]
  131. 131.
    Rankovic V, Vogl C, Dorje NM, Bahader I, Duque-Afonso CJ et al. 2020. Overloaded adeno-associated virus as a novel gene therapeutic tool for otoferlin-related deafness. Front. Mol. Neurosci. 13:600051
    [Google Scholar]
  132. 132.
    Ranum PT, Goodwin AT, Yoshimura H, Kolbe DL, Walls WD et al. 2019. Insights into the biology of hearing and deafness revealed by single-cell RNA sequencing. Cell Rep 26:3160–71.e3
    [Google Scholar]
  133. 133.
    Raphael Y, Altschuler RA. 2003. Structure and innervation of the cochlea. Brain Res. Bull. 60:397–422
    [Google Scholar]
  134. 134.
    Rehman AU, Bird JE, Faridi R, Shahzad M, Shah S et al. 2016. Mutational spectrum of MYO15A and the molecular mechanisms of DFNB3 human deafness. Hum. Mutat. 37:991–1003
    [Google Scholar]
  135. 135.
    Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET et al. 2010. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am. J. Hum. Genet. 86:378–88
    [Google Scholar]
  136. 136.
    Resendes BL, Robertson NG, Szustakowski JD, Resendes RJ, Weng Z, Morton CC. 2002. Gene discovery in the auditory system: characterization of additional cochlear-expressed sequences. J. Assoc. Res. Otolaryngol. 3:45–53
    [Google Scholar]
  137. 137.
    Richardson GP, de Monvel JB, Petit C. 2011. How the genetics of deafness illuminates auditory physiology. Annu. Rev. Physiol. 73:311–34
    [Google Scholar]
  138. 138.
    Roberts KA, Abraira VE, Tucker AF, Goodrich LV, Andrews NC. 2012. Mutation of Rubie, a novel long non-coding RNA located upstream of Bmp4, causes vestibular malformation in mice. PLOS ONE 7:e29495
    [Google Scholar]
  139. 139.
    Robson MI, Ringel AR, Mundlos S. 2019. Regulatory landscaping: how enhancer-promoter communication is sculpted in 3D. Mol. Cell 74:1110–22
    [Google Scholar]
  140. 140.
    Rodriguez-de la Rosa L, Sanchez-Calderon H, Contreras J, Murillo-Cuesta S, Falagan S et al. 2015. Comparative gene expression study of the vestibular organ of the Igf1 deficient mouse using whole-transcript arrays. Hear. Res. 330:62–77
    [Google Scholar]
  141. 141.
    Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC et al. 2006. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–89
    [Google Scholar]
  142. 142.
    Ruben RJ. 1991. The history of the genetics of hearing impairment. Ann. N.Y. Acad. Sci. 630:6–15
    [Google Scholar]
  143. 143.
    Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I et al. 2014. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genom 15:484
    [Google Scholar]
  144. 144.
    Sacheli R, Nguyen L, Borgs L, Vandenbosch R, Bodson M et al. 2009. Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene Expr. Patterns 9:364–70
    [Google Scholar]
  145. 145.
    Scheffer DI, Shen J, Corey DP, Chen ZY. 2015. Gene expression by mouse inner ear hair cells during development. J. Neurosci. 35:6366–80
    [Google Scholar]
  146. 146.
    Schilder AGM, Su MP, Blackshaw H, Lustig L, Staecker H et al. 2019. Hearing protection, restoration, and regeneration: an overview of emerging therapeutics for inner ear and central hearing disorders. Otol. Neurotol 40:559–70
    [Google Scholar]
  147. 147.
    Schrauwen I, Hasin-Brumshtein Y, Corneveaux JJ, Ohmen J, White C et al. 2016. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hear. Res 333:266–74
    [Google Scholar]
  148. 148.
    Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP et al. 2006. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation 113:783–90
    [Google Scholar]
  149. 149.
    Shashikant T, Ettensohn CA. 2019. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol 151:219–35
    [Google Scholar]
  150. 150.
    Shearer AE, Shen J, Amr S, Morton CC, Smith RJ (Newborn Hear. Screen. Work. Group Natl. Coord. Cent. Reg. Genet. Netw.). 2019. A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children. Genet. Med. 21:2614–30
    [Google Scholar]
  151. 151.
    Shi F, Hu L, Edge AS. 2013. Generation of hair cells in neonatal mice by β-catenin overexpression in Lgr5-positive cochlear progenitors. PNAS 110:13851–56
    [Google Scholar]
  152. 152.
    Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. 2018. Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–46.e17
    [Google Scholar]
  153. 153.
    Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F et al. 2005. GJB2 mutations and degree of hearing loss: a multicenter study. Am. J. Hum. Genet. 77:945–57
    [Google Scholar]
  154. 154.
    Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I et al. 2009. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev. Biol. 328:328–41
    [Google Scholar]
  155. 155.
    Su Z, Xiong H, Pang J, Lin H, Lai L et al. 2019. LncRNA AW112010 promotes mitochondrial biogenesis and hair cell survival: implications for age-related hearing loss. Oxid. Med. Cell Longev. 2019:6150148
    [Google Scholar]
  156. 156.
    Sun S, Babola T, Pregernig G, So KS, Nguyen M et al. 2018. Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell 174:1247–63.e15
    [Google Scholar]
  157. 157.
    Taiber S, Cohen R, Yizhar-Barnea O, Sprinzak D, Holt JR, Avraham KB 2021. Neonatal AAV gene therapy rescues hearing in a mouse model of SYNE4 deafness. EMBO Mol. Med. 13:e13259
    [Google Scholar]
  158. 158.
    Takumi Y, Nishio SY, Mugridge K, Oguchi T, Hashimoto S et al. 2014. Gene expression pattern after insertion of dexamethasone-eluting electrode into the guinea pig cochlea. PLOS ONE 9:e110238
    [Google Scholar]
  159. 159.
    Tao L, Segil N. 2015. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis in sensory hair cells in the mouse inner ear. Front. Cell. Neurosci. 9:190
    [Google Scholar]
  160. 160.
    Tao L, Yu HV, Llamas J, Trecek T, Wang X et al. 2021. Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Dev. Cell 56:2471–85.e5
    [Google Scholar]
  161. 161.
    Tertrais M, Bouleau Y, Emptoz A, Belleudy S, Sutton RB et al. 2019. Viral transfer of mini-otoferlins partially restores the fast component of exocytosis and uncovers ultrafast endocytosis in auditory hair cells of otoferlin knock-out mice. J. Neurosci. 39:3394–411
    [Google Scholar]
  162. 162.
    Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y et al. 2021. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLOS Biol 19:e3001445
    [Google Scholar]
  163. 163.
    Usami S, Nishio S. 2022. The genetic etiology of hearing loss in Japan revealed by the social health insurance-based genetic testing of 10K patients. Hum. Genet. 141:665–81
    [Google Scholar]
  164. 164.
    Ushakov K, Koffler-Brill T, Aviv R, Perl K, Ulitsky I, Avraham KB. 2017. Genome-wide identification and expression profiling of long non-coding RNAs in auditory and vestibular systems. Sci. Rep. 7:8637
    [Google Scholar]
  165. 165.
    Van Camp G, Smith RJH. 2021. Hereditary Hearing Loss Homepage Updated Aug. 30, accessed Dec. 12. http://hereditaryhearingloss.org
  166. 166.
    Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB et al. 2017. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ 24:2054–65
    [Google Scholar]
  167. 167.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:1304–51
    [Google Scholar]
  168. 168.
    Verdoodt D, Peeleman N, Van Camp G, Van Rompaey V, Ponsaerts P. 2021. Transduction efficiency and immunogenicity of viral vectors for cochlear gene therapy: a systematic review of preclinical animal studies. Front. Cell. Neurosci. 15:728610
    [Google Scholar]
  169. 169.
    Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A et al. 2000. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat. Genet 26:51–55
    [Google Scholar]
  170. 170.
    Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB et al. 2004. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet 36:955–57
    [Google Scholar]
  171. 171.
    Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H et al. 2002. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat. Genet 30:257–58
    [Google Scholar]
  172. 172.
    Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER et al. 1998. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–51
    [Google Scholar]
  173. 173.
    Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM et al. 2020. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res 48:5065–80
    [Google Scholar]
  174. 174.
    Wang Q, Xiang J, Sun J, Yang Y, Guan J et al. 2019. Nationwide population genetic screening improves outcomes of newborn screening for hearing loss in China. Genet. Med. 21:2231–38
    [Google Scholar]
  175. 175.
    Wasser J, Ari-Even Roth D, Herzberg O, Lerner-Geva L, Rubin L 2019. Assessing and monitoring the impact of the national newborn hearing screening program in Israel. Isr. J. Health Policy Res. 8:30
    [Google Scholar]
  176. 176.
    Watson CJ, Lies SM, Minich RR, Tempel BL. 2014. Changes in cochlear PMCA2 expression correlate with the maturation of auditory sensitivity. J. Assoc. Res. Otolaryngol. 15:543–54
    [Google Scholar]
  177. 177.
    Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F et al. 1995. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61
    [Google Scholar]
  178. 178.
    Weston MD, Pierce ML, Jensen-Smith HC, Fritzsch B, Rocha-Sanchez S et al. 2011. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Dev. Dyn. 240:808–19
    [Google Scholar]
  179. 179.
    Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE et al. 2021. Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. eLife 10:e60108
    [Google Scholar]
  180. 180.
    Wiwatpanit T, Lorenzen SM, Cantu JA, Foo CZ, Hogan AK et al. 2018. Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 563:691–95
    [Google Scholar]
  181. 181.
    Wu J, Solanes P, Nist-Lund C, Spataro S, Shubina-Oleinik O et al. 2021. Single and dual vector gene therapy with AAV9-PHP.B rescues hearing in Tmc1 mutant mice. Mol. Ther. 29:973–88
    [Google Scholar]
  182. 182.
    Yang S, Cai Q, Vethanayagam RR, Wang J, Yang W, Hu BH 2016. Immune defense is the primary function associated with the differentially expressed genes in the cochlea following acoustic trauma. Hear. Res. 333:283–94
    [Google Scholar]
  183. 183.
    Yao Q, Wang L, Mittal R, Yan D, Richmond MT et al. 2020. Transcriptomic analyses of inner ear sensory epithelia in zebrafish. Anat. Rec. 303:527–43
    [Google Scholar]
  184. 184.
    Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M et al. 1999. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat. Genet. 21:363–69
    [Google Scholar]
  185. 185.
    Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA et al. 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12:eaay9101
    [Google Scholar]
  186. 186.
    Yerkes RM. 1907. The Dancing Mouse: A Study in Animal Behavior New York: Macmillan
  187. 187.
    Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C et al. 2018. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci. Rep. 8:17348
    [Google Scholar]
  188. 188.
    Yoshimura H, Shibata SB, Ranum PT, Moteki H, Smith RJH. 2019. Targeted allele suppression prevents progressive hearing loss in the mature murine model of human TMC1 deafness. Mol. Ther. 27:681–90
    [Google Scholar]
  189. 189.
    Yu HV, Tao L, Llamas J, Wang X, Nguyen JD et al. 2021. POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. PNAS 118:e2105137118
    [Google Scholar]
  190. 190.
    Yu Q, Wang Y, Chang Q, Wang J, Gong S et al. 2014. Virally expressed connexin26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71–80
    [Google Scholar]
  191. 191.
    Yu Y, Liao L, Shao B, Su X, Shuai Y et al. 2017. Knockdown of microRNA Let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy. Mol. Ther. 25:480–93
    [Google Scholar]
  192. 192.
    Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L et al. 1997. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum. Mol. Genet. 6:1605–9
    [Google Scholar]
  193. 193.
    Zhao Y, Liu P, Zhang N, Chen J, Landegger LD et al. 2018. Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. PNAS 115:E2077–84
    [Google Scholar]
  194. 194.
    Zheng G, Zhu Z, Zhu K, Wei J, Jing Y, Duan M. 2013. Therapeutic effect of adeno-associated virus (AAV)-mediated ADNF-9 expression on cochlea of kanamycin-deafened guinea pigs. Acta Oto-Laryngol 133:1022–29
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121321-094136
Loading
/content/journals/10.1146/annurev-genom-121321-094136
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error