1932

Abstract

Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-122414-034001
2016-01-03
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/marine/8/1/annurev-marine-122414-034001.html?itemId=/content/journals/10.1146/annurev-marine-122414-034001&mimeType=html&fmt=ahah

Literature Cited

  1. Allain V, Nicol S, Polovina J, Coll M, Olson R. et al. 2012. International workshop on opportunities for ecosystem approaches to fisheries management in the Pacific Ocean tuna fisheries. Rev. Fish Biol. Fish. 22:29–33 [Google Scholar]
  2. Allen SE, Vindeirinho C, Thomson RE, Foreman MGG, Mackas DL. 2001. Physical and biological processes over a submarine canyon during an upwelling event. Can. J. Fish. Aquat. Sci. 58:671–84 [Google Scholar]
  3. Ashjian CJ, Smith SL, Flagg CN, Idrisi N. 2002. Distribution, annual cycle, and vertical migration of acoustically derived biomass in the Arabian Sea during 1994–1995. Deep-Sea Res. II 49:2377–402 [Google Scholar]
  4. Axelsen BE, Anker NT, Fossum P, Kvamme C, Nøttestad L. 2001. Pretty patterns but a simple strategy: predator-prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Can. J. Zool. 79:1586–96 [Google Scholar]
  5. Axelsen BE, Nøttestad L, Ferno A, Johannessen A, Misund OA. 2000. “Await” in the pelagic: dynamic trade-off between reproduction and survival within a herring school splitting vertically during spawning. Mar. Ecol. Prog. Ser. 205:259–69 [Google Scholar]
  6. Bagoien E, Kaartvedt S, Aksnes DL, Eiane K. 2001. Vertical distribution and mortality of overwintering Calanus. Limnol. Oceanogr. 46:1494–510 [Google Scholar]
  7. Barham EG. 1966. Deep scattering layer migration and composition: observations from a diving saucer. Science 151:1399–403 [Google Scholar]
  8. Barraclough WE, Lebrasseur RJ, Kennedy OD. 1969. Shallow scattering layer in the subarctic Pacific Ocean: detection by high-frequency echo sounder. Science 166:611–13The first study to use active acoustics to study zooplankton distributions. [Google Scholar]
  9. Behagle N, du Buisson L, Josse E, Lebourges-Dhaussy A, Roudaut G, Menard F. 2014. Mesoscale features and micronekton in the Mozambique Channel: an acoustic approach. Deep-Sea Res. II 100:164–73 [Google Scholar]
  10. Benoit-Bird KJ. 2009. Dynamic 3-dimensional structure of thin zooplankton layers is impacted by foraging fish. Mar. Ecol. Prog. Ser. 396:61–76 [Google Scholar]
  11. Benoit-Bird KJ, Au WWL. 2002. Energy: converting from acoustic to biological resource units. J. Acoust. Soc. Am. 111:2070–75 [Google Scholar]
  12. Benoit-Bird KJ, Au WWL. 2004. Diel migration dynamics of an island-associated sound-scattering layer. Deep-Sea Res. I 51:707–19 [Google Scholar]
  13. Benoit-Bird KJ, Au WWL. 2009. Cooperative prey herding by the pelagic dolphin, Stenella longirostris. J. Acoust. Soc. Am. 125:125–37 [Google Scholar]
  14. Benoit-Bird KJ, Battaile BC, Heppell SA, Hoover B, Irons D. et al. 2013a. Prey patch patterns predict habitat use by top marine predators with diverse foraging strategies. PLOS ONE 8:e53348 [Google Scholar]
  15. Benoit-Bird KJ, Battaile BC, Nordstrom CA, Trites AW. 2013b. Foraging behavior of northern fur seals closely matches the hierarchical patch scales of prey. Mar. Ecol. Prog. Ser. 479:283–302 [Google Scholar]
  16. Benoit-Bird KJ, Dahood AD, Würsig B. 2009. Using active acoustics to compare predator-prey behavior of two marine mammal species. Mar. Ecol. Prog. Ser. 395:119–35 [Google Scholar]
  17. Benoit-Bird KJ, Gilly WF. 2012. Coordinated nocturnal behavior of foraging jumbo squid Dosidicus gigas. Mar. Ecol. Prog. Ser. 455:211–28 [Google Scholar]
  18. Benoit-Bird KJ, McManus MA. 2012. Bottom-up regulation of a pelagic community through spatial aggregations. Biol. Lett. 8:813–16 [Google Scholar]
  19. Benoit-Bird KJ, McManus MA. 2014. A critical time window for organismal interactions in a pelagic ecosystem. PLOS ONE 9:e97763 [Google Scholar]
  20. Bernard KS, Steinberg DK. 2013. Krill biomass and aggregation structure in relation to tidal cycle in a penguin foraging region off the Western Antarctic Peninsula. ICES J. Mar. Sci. 70:834–49 [Google Scholar]
  21. Bertrand A, Ballon M, Chaigneau A. 2010. Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLOS ONE 5:e10330 [Google Scholar]
  22. Bertrand A, Grados D, Colas F, Bertrand S, Capet X. et al. 2014. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5:5239 [Google Scholar]
  23. Bianchi D, Galbraith ED, Carozza DA, Mislan KAS, Stock CA. 2013. Intensification of open-ocean oxygen depletion by vertically migrating animals. Nat. Geosci. 6:545–48 [Google Scholar]
  24. Blaxter J, Hunter J. 1982. The biology of the clupeoid fishes. Adv. Mar. Biol. 20:1–223 [Google Scholar]
  25. Bograd SJ, Block BA, Costa DP, Godley BJ. 2010. Biologging technologies: new tools for conservation. Introduction. Endanger. Species Res. 10:1–7 [Google Scholar]
  26. Brierley AS, Cox MJ. 2010. Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr. Biol. 20:1758–62 [Google Scholar]
  27. Brierley AS, Fernandes PG. 2001. Diving depths of northern gannets: acoustic observations of Sula bassana from an autonomous underwater vehicle. Auk 118:529–34 [Google Scholar]
  28. Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW. et al. 2002. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–92A seminal early deployment of active acoustics on an autonomous underwater vehicle in an ecological study. [Google Scholar]
  29. Brodeur RD, Myers KW, Helle JH. 2003. Research conducted by the United States on the early ocean life history of Pacific salmon. North Pac. Anadromous Fish Comm. Bull. 3:89–121 [Google Scholar]
  30. Casini M, Rouyer T, Bartolino V, Larson N, Grygiel W. 2014. Density-dependence in space and time: opposite synchronous variations in population distribution and body condition in the Baltic sea sprat (Sprattus sprattus) over three decades. PLOS ONE 9:e92278 [Google Scholar]
  31. Cheriton OM, McManus MM, Holliday DV, Greenlaw CF, Donaghay PL, Cowles TJ. 2007. Effects of mesoscale physical processes on thin zooplankton layers at four sites along the west coast of the U.S. Estuaries Coasts 30:575–90 [Google Scholar]
  32. Cox MJ, Demer DA, Warren JD, Cutter GR, Brierley AS. 2009. Multibeam echosounder observations reveal interactions between Antarctic krill and air-breathing predators. Mar. Ecol. Prog. Ser. 378:199–209 [Google Scholar]
  33. Coyle KO. 1992. Murre foraging, epibenthic sound scattering and tidal advection over a shoal near St. George Island, Bering Sea. Mar. Ecol. Prog. Ser. 83:1–14 [Google Scholar]
  34. Croll DA, Marinovic B, Benson R, Chavez F, Black N. et al. 2005. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289:117–30 [Google Scholar]
  35. De Robertis A, Cokelet ED. 2012. Distribution of fish and macrozooplankton in ice-covered and open-water areas of the eastern Bering Sea. Deep-Sea Res. II65–70217–29
  36. De Robertis A, Schell C, Jaffe JS. 2003. Acoustic observations of the swimming behavior of the euphasiid Euphasia pacifica Hansen. ICES J. Mar. Sci. 60:885–98 [Google Scholar]
  37. Diachok O. 2000. Absorption spectroscopy: a new approach to estimation of biomass. Fish. Res. 47:231–44 [Google Scholar]
  38. Doney SC, Steinberg DK. 2013. Marine biogeochemistry: the ups and downs of ocean oxygen. Nat. Geosci. 6:515–16 [Google Scholar]
  39. Dragesund O, Olsen S. 1965. On the possibility of estimating year-class strength by measuring echo-abundance of 0-group fish. Rep. Nor. Fish. Mar. Investig. 13:47–75An early quantitative application of acoustics to stock assessment that formalized echo integration. [Google Scholar]
  40. Duffy JE, Amaral-Zettler LA, Fautin DG, Paulay G, Rynearson TA. et al. 2013. Envisioning a marine biodiversity observation network. BioScience 63:350–61 [Google Scholar]
  41. Edwards RL, Livingstone R Jr. 1960. Observations of the behavior of the porpoise Delphinus delphis. Science 132:35–36The earliest acoustic observations of marine mammals. [Google Scholar]
  42. Elton CS. 1927. Animal Ecology Chicago: Univ. Chicago Press
  43. Enright JT. 1979. The why and when of up and down. Limnol. Oceanogr. 24:788–91 [Google Scholar]
  44. Escobar-Flores P, O'Driscoll RL, Montgomery JC. 2013. Acoustic characterization of pelagic fish distribution across the South Pacific Ocean. Mar. Ecol. Prog. Ser. 490:169–83 [Google Scholar]
  45. Fernandes PG, Gerlotto F, Holliday DV, Nakken O, Simmonds EJ. 2002. Acoustic applications in fisheries science: the ICES contribution. ICES Mar. Sci. Symp. 215:483–92 [Google Scholar]
  46. Fielding S, Watkins JL, Trathan PN, Enderlein P, Waluda CM. et al. 2014. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71:2578–88 [Google Scholar]
  47. Foote KG, Vestnes G, MacLennan DN, Simmonds EJ. 1987. Calibration of acoustic instruments for fish density estimation: a practical guide Coop. Res. Rep. 144, ICES, Copenhagen, Den.
  48. Frank KT, Petrie B, Choi JS, Leggett WC. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308:1621–23 [Google Scholar]
  49. Friedlaender AS, Goldbogen JA, Hazen EL, Calambokidis J, Southall BL. 2014. Feeding performance by sympatric blue and fin whales exploiting a common prey resource. Mar. Mamm. Sci. 31:345–54 [Google Scholar]
  50. Friedlaender AS, Johnston DW, Fraser WR, Burns J, Patrick NH, Costa DP. 2011. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula. Deep-Sea Res. II 58:1729–40 [Google Scholar]
  51. Friedlaender AS, Lawson GL, Halpin PN. 2009. Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula. Mar. Mamm. Sci. 25:402–15 [Google Scholar]
  52. Gauthier S, Rose GA. 2002a. Acoustic observation of diel vertical migration and shoaling behaviour in Atlantic redfishes. J. Fish. Biol. 61:1135–53 [Google Scholar]
  53. Gauthier S, Rose GA. 2002b. An hypothesis on endogenous hydrostasis in Atlantic redfish (Sebastes spp.). Fish. Res. 58:227–30 [Google Scholar]
  54. Genin A. 2004. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J. Mar. Syst. 50:3–20 [Google Scholar]
  55. Genin A, Haury L, Greenblatt P. 1988. Interactions of migrating zooplankton with shallow topography: predation by rockfishes and intensification of patchiness. Deep-Sea Res. 35:151–75 [Google Scholar]
  56. Genin A, Jaffe JS, Reef R, Richter C, Franks PJS. 2005. Swimming against the flow: a mechanism of zooplankton aggregation. Science 308:860–62 [Google Scholar]
  57. Gerlotto F, Jones E, Bez N, Reid DG. 2010. When good neighbours become good friends: observing small scale structures in fish aggregations using multibeam sonar. Aquat. Living Resour. 23:143–51 [Google Scholar]
  58. Gerlotto F, Soria M, Freon P. 1999. From two dimensions to three: the use of multibeam sonar for a new approach in fisheries acoustics. Can. J. Fish. Aquat. Sci. 56:6–12A seminal study applying multibeam sonar to the water column and the problem of fish schooling. [Google Scholar]
  59. Godø OR, Handegard NO, Browman HI, Macaulay GJ, Kaartvedt S. et al. 2014. Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scales on which they occur. ICES J. Mar. Sci. 71:2357–69 [Google Scholar]
  60. Greene CH, Meyer-Gutbrod EL, McGarry LP, Hufnagle LC, Chu DZ. et al. 2014. A wave glider approach to fisheries acoustics: transforming how we monitor the nation's commercial fisheries in the 21st century. Oceanography 27:4168–74 [Google Scholar]
  61. Greene CH, Wiebe PH, Burczynski J, Youngbluth MJ. 1988. Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank. Science 241:359–61 [Google Scholar]
  62. Greenlaw CF, Johnson RK. 1982. Physical and acoustical properties of zooplankton. J. Acoust. Soc. Am. 72:1706–10 [Google Scholar]
  63. Gutierrez M, Swartzman G, Bertrand A, Bertrand S. 2007. Anchovy (Engraulis ringens) and sardine (Sardinops sagax) spatial dynamics and aggregation patterns in the Humboldt Current ecosystem, Peru, from 1983–2003. Fish. Oceanogr. 16:155–68 [Google Scholar]
  64. Haeckel EH. 1866. Generelle Morphologie der Organismen allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: Allgemeine Entwickelungsgeschichte der Organismen kritische Gründzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begründet durch die Descendenz-Theorie Berlin: Verlag von Georg Reimer
  65. Hairston N, Smith F, Slobodkin L. 1960. Community structure, population control, and competition. Am. Nat. 94:421–24 [Google Scholar]
  66. Halldorsson O. 1983. On the behaviour of the Icelandic summer spawning herring(C. harengus L.) during echo surveying and depth dependence of acoustic target strength in situ ICES CM 1983/H:36, ICES Pelagic Fish Comm., Copenhagen, Den. [Google Scholar]
  67. Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjostheim DB, Couzin ID. 2012. The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22:1213–17 [Google Scholar]
  68. Handegard NO, du Buisson L, Brehmer P, Chalmers SJ, Robertis A. et al. 2013. Towards an acoustic-based coupled observation and modelling system for monitoring and predicting ecosystem dynamics of the open ocean. Fish Fish. 14:605–15 [Google Scholar]
  69. Handegard NO, Pedersen G, Brix O. 2009. Estimating tail-beat frequency using split-beam echosounders. ICES J. Mar. Sci. 66:1252–56 [Google Scholar]
  70. Haury LR, Briscoe MG, Orr MH. 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature 278:312–17 [Google Scholar]
  71. Haury LR, McGowan JA, Wiebe PH. 1978. Patterns and processes in the time-space scales of plankton distributions. Spatial Pattern in Plankton Communities JH Steele 277–327 New York: Plenum [Google Scholar]
  72. Hazen EL, Friedlaender AS, Thompson MA, Ware CR, Weinrich MT. et al. 2009. Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Mar. Ecol. Prog. Ser. 395:75–89 [Google Scholar]
  73. Hernández-León S, Almeida C, Yebra L, Arístegui J. 2002. Lunar cycle of zooplankton biomass in subtropical waters: biogeochemical implications. J. Plankton Res. 24:935–39 [Google Scholar]
  74. Hodgson WC. 1951. Echo-sounding and the pelagic fisheries. Fish. Investig. Ser. II 174 London: Minst. Agric. Fish. FoodThe study that introduced the first echo sounders designed for biological targets. [Google Scholar]
  75. Hodgson WC, Fridriksson A. 1955. Report on echo-sounding and ASDIC for fishing purposes Rapp. P.-V. Réun. 139, ICES, Copenhagen, Den.
  76. Holliday DV. 1974. Doppler structure in echoes from schools of pelagic fish. J. Acoust. Soc. Am. 55:1313–22 [Google Scholar]
  77. Holliday DV. 1977. Extracting bio-physical information from the acoustic signatures of marine organisms. Oceanic Sound Scattering Prediction NR Andersen, BJ Zahuranec 619–24 New York: PlenumAn influential study introducing mathematical inversions for biological information from acoustic frequency responses. [Google Scholar]
  78. Hollowed AB, Barbeaux SJ, Cokelet ED, Farley E, Kotwicki S. et al. 2012. Effects of climate variations on pelagic ocean habitats and their role in structuring forage fish distributions in the Bering Sea. Deep-Sea Res II 65–70:230–50 [Google Scholar]
  79. Horne JK. 2000. Acoustic approaches to remote species identification. Fish. Oceanogr. 9:356–71 [Google Scholar]
  80. Hoving H-J, Gilly WF, Markaida U, Benoit-Bird KJ, Brown ZW. et al. 2013. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Change Biol. 19:2089–103 [Google Scholar]
  81. Ianson D, Allen SE, Mackas DL, Trevorrow MV, Benfield MC. 2011. Response of Euphausia pacifica to small-scale shear in turbulent flow over a sill in a fjord. J. Plankton Res. 33:1679–95 [Google Scholar]
  82. Ichii T, Katayama K, Obitsu N, Ishii H, Naganobu M. 1998. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: relationship to environmental parameters. Deep-Sea Res. I 45:1235–62 [Google Scholar]
  83. Iida K, Takahashi R, Tang Y, Mukai T, Sato M. 2006. Observation of marine animals using underwater acoustic camera. Jpn. J. Appl. Phys. 45:4875 [Google Scholar]
  84. Irigoien X, Klevjer T, Rostad A, Martinez U, Acuna J. et al. 2014. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5:3271 [Google Scholar]
  85. Jagannathan S, Bertsatos I, Symonds D, Chen T, Nia HT. et al. 2009. Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems. Mar. Ecol. Prog. Ser. 395:137–60 [Google Scholar]
  86. Jech JM, Michaels WL. 2006. A multifrequency method to classify and evaluate fisheries acoustics data. Can. J. Fish. Aquat. Sci. 63:2225–35 [Google Scholar]
  87. Jiang SN, Dickey TD, Steinberg DK, Madin LP. 2007. Temporal variability of zooplankton biomass from ADCP backscatter time series data at the Bermuda Testbed Mooring site. Deep-Sea Res. I 54:608–36 [Google Scholar]
  88. Johansen GO, Godo OR, Skogen MD, Torkelsen T. 2009. Using acoustic technology to improve the modelling of the transportation and distribution of juvenile gadoids in the Barents Sea. ICES J. Mar. Sci. 66:1048–54 [Google Scholar]
  89. Johnson MW. 1948. Sound as a tool in marine ecology, from data on biological noises and the deep scattering layer. J. Mar. Res. 7:443–58 [Google Scholar]
  90. Josse E, Bach P, Dagorn L. 1998. Simultaneous observations of tuna movements and their prey by sonic tracking and acoustic surveys. Hydrobiologia 371:61–69 [Google Scholar]
  91. Kaartvedt S. 2000. Life history of Calanus finmarchicus in the Norwegian Sea in relation to planktivorous fish. ICES J. Mar. Sci. 57:1819–24 [Google Scholar]
  92. Kaartvedt S, Melle W, Knutsen T, Skjoldal HR. 1996. Vertical distribution of fish and krill beneath water of varying optical properties. Mar. Ecol. Prog. Ser. 136:51–58 [Google Scholar]
  93. Kaltenberg AM, Benoit-Bird KJ. 2009. Diel behavior of sardine and anchovy schools in the California Current System. Mar. Ecol. Prog. Ser. 394:247–62 [Google Scholar]
  94. Kaltenberg AM, Emmett RL, Benoit-Bird KJ. 2010. Timing of forage fish seasonal appearance in the Columbia River plume and link to ocean conditions. Mar. Ecol. Prog. Ser. 419:171–84 [Google Scholar]
  95. Kimura K. 1929. On the detection of fish groups by an acoustic method. J. Imp. Fish. Inst. Tokyo 24:451–58 [Google Scholar]
  96. Kloser RJ. 1996. Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer. ICES J. Mar. Sci. 53:407–13 [Google Scholar]
  97. Kloser RJ, Ryan TE, Young JW, Lewis ME. 2009. Acoustic observations of micronekton fish on the scale of an ocean basin: potential and challenges. ICES J. Mar. Sci. 66:998–1006 [Google Scholar]
  98. Kokubun N, Iida K, Mukai T. 2008. Distribution of murres (Uria spp.) and their prey south of St. George Island in the southeastern Bering Sea during the summers of 2003–2005. Deep-Sea Res. II 55:1827–36 [Google Scholar]
  99. Korneliussen RJ, Diner N, Ona E, Berger L, Fernandes PG. 2008. Proposals for the collection of multifrequency acoustic data. ICES J. Mar. Sci. 65:982–94 [Google Scholar]
  100. Krebs CJ. 1972. Ecology: The Experimental Analysis of Distribution and Abundance New York: Harper & Row
  101. Kringel K, Jumars PA, Holliday D. 2003. A shallow scattering layer: high-resolution acoustic analysis of nocturnal vertical migration from the seabed. Limnol. Oceanogr. 48:1223–34 [Google Scholar]
  102. Lavery AC, Chu DZ, Moum JN. 2010a. Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J. Mar. Sci. 67:379–94 [Google Scholar]
  103. Lavery AC, Chu DZ, Moum JN. 2010b. Observations of broadband acoustic backscattering from nonlinear internal waves: assessing the contribution from microstructure. IEEE J. Ocean. Eng. 35:695–709 [Google Scholar]
  104. Lavery AC, Wiebe PH, Stanton TK, Lawson GL, Benfield MC, Copley N. 2007. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122:3304–26 [Google Scholar]
  105. Lawson GL, Wiebe PH, Ashjian CJ, Stanton TK. 2008. Euphausiid distribution along the Western Antarctic Peninsula—part B: distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep-Sea Res. II 55:432–54 [Google Scholar]
  106. Lebourges-Dhaussy A, Huggett J, Ockhuis S, Roudaut G, Josse E, Verheye H. 2014. Zooplankton size and distribution within mesoscale structures in the Mozambique Channel: a comparative approach using the TAPS acoustic profiler, a multiple net sampler and ZooScan image analysis. Deep-Sea Res. II 100:136–52 [Google Scholar]
  107. Levin SA. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–67 [Google Scholar]
  108. Lindeman RL. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399–417 [Google Scholar]
  109. Machias A, Tsimenides N. 1995. Biological factors affecting the swimbladder volume of sardine (Sardina pilchardus). Mar. Biol. 123:859–67 [Google Scholar]
  110. Mackas DL, Kieser R, Saunders M, Yelland DR, Brown RM, Moore DF. 1997. Aggregation of euphausiids and Pacific hake (Merluccius productus) along the outer continental shelf off Vancouver Island. Can. J. Fish. Aquat. Sci. 54:2080–96 [Google Scholar]
  111. Makris NC, Ratilal P, Jagannathan S, Gong Z, Andrews M. et al. 2009. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323:1734–37 [Google Scholar]
  112. McClatchie S, Thorne RE, Grimes P, Hanchet S. 2000. Ground truth and target identification for fisheries acoustics. Fish. Res. 47:173–91 [Google Scholar]
  113. Menge BA, Chan F, Dudas S, Eerkes-Medrano D, Grorud-Colvert K. et al. 2009. Terrestrial ecologists ignore aquatic literature: asymmetry in citation breadth in ecological publications and implications for generality and progress in ecology. J. Exp. Mar. Biol. Ecol. 377:93–100 [Google Scholar]
  114. Moline MA, Benoit-Bird KJ, O'Gorman D, Robbins IC. 2015. Integration of scientific echosounders with an adaptable autonomous vehicle to extend our understanding of animals from the surface to the bathypelagic. J. Ocean. Atmos. Technol. In press. doi: 10.1175/JTECH-D-15-0035.1
  115. Nøttestad L, Axelsen BE. 1999. Herring schooling manoeuvres in response to killer whale attacks. Can. J. Zool. 77:1540–46 [Google Scholar]
  116. Nøttestad L, Ferno A, Axelson BE. 2002a. Digging in the deep: killer whales' advanced hunting tactic. Polar Biol. 25:939–41 [Google Scholar]
  117. Nøttestad L, Ferno A, Mackinson S, Pitcher TJ, Misund OA. 2002b. How whales influence herring school dynamics in a cold front area of the Norwegian Sea. ICES J. Mar. Sci. 59:393–400 [Google Scholar]
  118. Oliver MJ, Irwin A, Moline MA, Fraser W, Patterson D. et al. 2013. Adelie penguin foraging location predicted by tidal regime switching. PLOS ONE 8:e55163 [Google Scholar]
  119. Pershing AJ, Wiebe PH, Manning JP, Copley NJ. 2001. Evidence for vertical circulation cells in the well-mixed area of Georges Bank and their biological implications. Deep-Sea Res. II 48:283–310 [Google Scholar]
  120. Petitgas P, Reid D, Carrera P, Iglesias M, Georgakarakos S. et al. 2001. On the relation between schools, clusters of schools, and abundance in pelagic fish stocks. ICES J. Mar. Sci. 58:1150–60 [Google Scholar]
  121. Plueddemann AJ, Pinkel R. 1989. Characterization of the patterns of diel migration using a doppler sonar. Deep-Sea Res. 36:509–30 [Google Scholar]
  122. Priddle J, Whitehouse MJ, Ward P, Shreeve RS, Brierley AS. et al. 2003. Biogeochemistry of a Southern Ocean plankton ecosystem: using natural variability in community composition to study the role of metazooplankton in carbon and nitrogen cycles. J. Geophys. Res. Oceans 108:8082 [Google Scholar]
  123. Pujiana K, Moum JN, Smyth WD, Warner SJ. 2015. Distinguishing ichthyogenic turbulence from geophysical turbulence. J. Geophys. Res. Oceans 120:3792–804 [Google Scholar]
  124. Radenac MH, Plimpton PE, Lebourges-Dhaussy A, Commien L, McPhaden MJ. 2010. Impact of environmental forcing on the acoustic backscattering strength in the equatorial Pacific: diurnal, lunar, intraseasonal, and interannual variability. Deep-Sea Res. I 57:1314–28 [Google Scholar]
  125. Reilly T, Fraser H, Fryer R, Clarke J, Greenstreet S. 2013. Interpreting variation in fish-based food web indicators: the importance of “bottom-up limitation” and “top-down control” processes. ICES J. Mar. Sci. 71:406–16 [Google Scholar]
  126. Ressler PH, Brodeur RD, Peterson WT, Pierce SD, Vance PM. et al. 2005. The spatial distribution of euphausiid aggregations in the Northern California Current during August 2000. Deep-Sea Res. II 52:89–108 [Google Scholar]
  127. Ressler PH, De Robertis A, Warren JD, Smith JN, Kotwicki S. 2012. Developing an acoustic survey of euphausiids to understand trophic interactions in the Bering Sea ecosystem. Deep-Sea Res. II 65:184–95 [Google Scholar]
  128. Roberts PL, Jaffe JS. 2007. Multiple angle acoustic classification of zooplankton. J. Acoust. Soc. Am. 121:2060–70 [Google Scholar]
  129. Rose GA. 1993. Cod spawning on a migration highway in the north-west Atlantic. Nature 366:458–61 [Google Scholar]
  130. Rostad A, Kaartvedt S. 2013. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder. Limnol. Oceanogr. 58:1985–97 [Google Scholar]
  131. Santora JA, Sydeman WJ, Messie M, Chai F, Chao Y. et al. 2013. Triple check: observations verify structural realism of an ocean ecosystem model. Geophys. Res. Lett. 40:1367–72 [Google Scholar]
  132. Simard Y, Deladurantaye R, Therriault JC. 1986. Aggregation of euphausiids along a coastal shelf in an upwelling environment. Mar. Ecol. Prog. Ser. 32:203–15 [Google Scholar]
  133. Sourisseau M, Simard Y, Saucier FJ. 2006. Krill aggregation in the St. Lawrence system, and supply of krill to the whale feeding grounds in the estuary from the gulf. Mar. Ecol. Prog. Ser. 314:257–70 [Google Scholar]
  134. Stanton TK, Chu DZ, Jech JM, Irish JD. 2010. New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. ICES J. Mar. Sci. 67:365–78 [Google Scholar]
  135. Steele JH. 1991. Can ecological theory cross the land-sea boundary?. J. Theor. Biol. 153:425–36 [Google Scholar]
  136. Stommel H. 1963. Varieties of oceanographic experience. Science 139:572–76 [Google Scholar]
  137. Sund O. 1935. Echo sounding in fisheries research. Nature 135:953The first in situ observation of marine fish distribution (cod, Gadus morhua). [Google Scholar]
  138. Swartzman G, Stuetzle W, Kulman K, Powojowski M. 1994. Relating the distribution of pollock schools in the Bering Sea to environmental factors. ICES J. Mar. Sci. 51:481–92 [Google Scholar]
  139. Thompson CH, Love RH. 1996. Determination of fish size distributions and areal densities using broadband low-frequency measurements. ICES J. Mar. Sci. 53:197–201 [Google Scholar]
  140. Trenkel VM, Ressler PH, Jech M, Giannoulaki M, Taylor C. 2011. Underwater acoustics for ecosystem-based management: state of the science and proposals for ecosystem indicators. Mar. Ecol. Prog. Ser. 442:285–301 [Google Scholar]
  141. Turner DR, Owens NJP. 1995. A biogeochemical study in the Bellingshausen Sea: overview of the STERNA 1992 expedition. Deep-Sea Res. II 42:907–32 [Google Scholar]
  142. Urmy SS, Horne JK, Barbee DH. 2012. Measuring the vertical distributional variability of pelagic fauna in Monterey Bay. ICES J. Mar. Sci. 69:184–96 [Google Scholar]
  143. Utne-Palm AC, Salvanes AGV, Currie B, Kaartvedt S, Nilsson GE. et al. 2010. Trophic structure and community stability in an overfished ecosystem. Science 329:333–36 [Google Scholar]
  144. Viscido SV, Parrish JK, Grünbaum D. 2004. Individual behavior and emergent properties of fish schools: a comparison of observation and theory. Mar. Ecol. Prog. Ser. 273:239–49 [Google Scholar]
  145. Warren JD, Stanton TK, Wiebe PH, Seim HE. 2003. Inference of biological and physical parameters in an internal wave using multiple-frequency, acoustic-scattering data. ICES J. Mar. Sci. 60:1033–46 [Google Scholar]
  146. Weber LH, Elsayed SZ, Hampton I. 1986. The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa. Deep-Sea Res. 33:1327–43 [Google Scholar]
  147. Weber TC, Peña H, Jech JM. 2009. Consecutive acoustic observations of an Atlantic herring school in the Northwest Atlantic. ICES J. Mar. Sci. 66:1270–77 [Google Scholar]
  148. White T. 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33:71–86 [Google Scholar]
  149. Wiebe PH, Mountain DG, Stanton TK, Greene CH, Lough G. et al. 1996. Acoustical study of the spatial distribution of plankton on Georges Bank and the relationship between volume backscattering strength and the taxonomic composition of the plankton. Deep-Sea Res. II 43:1971–2001 [Google Scholar]
  150. Zhou M, Dorland RD. 2004. Aggregation and vertical migration behavior of Euphausia superba. Deep-Sea Res. II 51:2119–37 [Google Scholar]
  151. Zwolinski JP, Demer DA. 2012. A cold oceanographic regime with high exploitation rates in the Northeast Pacific forecasts a collapse of the sardine stock. PNAS 109:4175–80 [Google Scholar]
/content/journals/10.1146/annurev-marine-122414-034001
Loading
/content/journals/10.1146/annurev-marine-122414-034001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error