1932

Abstract

Tailor-made additives (TMAs) have found a role in crystal morphology engineering and control by specific binding to crystal surfaces through stereo-chemical recognition. The utility of TMAs, however, has been largely limited to crystal growth from solutions. In this review, we illustrate examples where TMAs have been used to influence the growth of crystals during cooling of their melts. In solution, the crystal growth driving force is governed by solute supersaturation, which corresponds to the deviation from equilibrium. In growth from melts, however, undercooling is the important thermodynamic parameter responsible for crystallization outcomes, a key difference that can influence the manner in which TMAs affect growth kinetics, crystal morphology, nucleation, enantioselective surface recognition, and the determination of the absolute sense of polar axes. When the crystallization driving force in a melt is small and diffusion is comparatively high, TMAs can exert their influence on well-faceted single crystals with the stereochemical richness observed in solution growth. Under high supercooling, where the driving force is large, ensembles of crystals can grow radially, masking stereochemical information and requiring new optical tools for understanding the influence of TMAs on emerging crystals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-112946
2023-07-03
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-081720-112946.html?itemId=/content/journals/10.1146/annurev-matsci-081720-112946&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ulrich J, Nyvlt J. 2008. Admixtures in Crystallization New York: Wiley
  2. 2.
    Buckley HE. 1951. Crystal Growth New York: Wiley
  3. 3.
    Sangwal K. 2007. Additives and Crystallization Processes: From Fundamentals to Applications New York: Wiley
  4. 4.
    Kelley MP, Chow JK, Kahr B. 1994. Critical evaluation of dyes and crystal growth inhibitors. Mol. Cryst. Liq. Cryst. 242:201–14
    [Google Scholar]
  5. 5.
    Buckley HE. 1933. Systematic habit-variation in KClO3 crystals produced by dyes. Z. Krist. 85:58–73
    [Google Scholar]
  6. 6.
    Buckley HE. 1934. Molecular configuration and its relation to modification of crystal-growth. Z. Krist. 88:381–410
    [Google Scholar]
  7. 7.
    Buckley HE. 1938–1939. Some problems connected with crystal-growth. Mem. Proc. Manch. Lit. Philos. Soc. 83:31–46
    [Google Scholar]
  8. 8.
    Buckley HE. 1951. Studies in the growth and habit modification of crystals. Mem. Proc. Manch. Lit. Philos. Soc. 88:381–410
    [Google Scholar]
  9. 9.
    Kahr B, Gurney RW. 2001. Dyeing crystals. Chem. Rev. 101:893–951
    [Google Scholar]
  10. 10.
    Kahr B, Kelley MP. 1995. Diastereospecific recognition of dyes by salt crystals: a case of plundered ste-reochemistry in postwar Europe. Supramolecular Stereochemistry JS Siegel 203–27. Dordrecht, Neth.: Kluwer
    [Google Scholar]
  11. 11.
    Kelley MP, Janssens B, Vetter W, Kahr B. 1994. Recognition of dyes by K2SO4 surfaces: choosing organic guests for simple salts. J. Am. Chem. Soc. 116:5519–20
    [Google Scholar]
  12. 12.
    Gurney RW, Mitchell CA, Ham S, Bastin LD, Kahr B. 2000. Salting benzenes. J. Phys. Chem. B 104:878–92
    [Google Scholar]
  13. 13.
    Kahr B, Shtukenberg AG. 2016. Dyeing crystals since 2000. CrystEngComm 18:8988–98
    [Google Scholar]
  14. 14.
    Kaminsky W, Claborn K, Kahr B. 2004. Polarimetric imaging of crystals. Chem. Soc. Rev. 33:514–25
    [Google Scholar]
  15. 15.
    Claborn K, Chu A-S, Jang S-H, Su F, Kaminsky W, Kahr B. 2005. Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals. Cryst. Growth Des. 5:2117–23
    [Google Scholar]
  16. 16.
    Benedict JB, Cohen D, Lovell S, Rohl A, Kahr B. 2006. What is syncrystallization? States of the pH indicator methyl red in crystals of phthalic acid. J. Am. Chem. Soc. 128:5548–59
    [Google Scholar]
  17. 17.
    Wustholz KL, Bott ED, Isborn CM, Li X, Kahr B, Reid PJ. 2007. Dispersive kinetics from single molecules oriented in single crystals of potassium acid phthalate. J. Phys. Chem. C 111:9146–56
    [Google Scholar]
  18. 18.
    Wustholz KL, Kahr B, Reid PJ. 2005. Single-molecule orientations in dyed salt crystals. J. Phys. Chem. B 109:16357–62
    [Google Scholar]
  19. 19.
    Bernauer F. 1927. Über Zickzackbänderung (Runzelbänderung) und verwandte Polarisationserscheinungen an Kristallen und Kristallaggregaten. N. Jahrb. Mineral. Geol. Paleont. 55:92–143
    [Google Scholar]
  20. 20.
    Bernauer F. 1929. “Gedrillte” Kristalle Berlin: Gebrüder Borntraeger
  21. 21.
    Shtukenberg AG, Punin YO, Gujral A, Kahr B. 2014. Growth actuated bending and twisting of single crystals. Angew. Chem. Int. Ed. 53:672–99
    [Google Scholar]
  22. 22.
    Kahr B, Shtukenberg AG. 2017. Seeing molecular configuration in twisted crystal form. Isr. J. Chem. 57:31–8
    [Google Scholar]
  23. 23.
    Ball P. 2001. The Self-Made Tapestry: Pattern Formation in Nature Oxford, UK: Oxford Univ. Press
  24. 24.
    Shtukenberg AG, Gunn E, Gazzano M, Freudenthal J, Camp E et al. 2011. Bernauer's bands. Chem. Phys. Chem. 12:1558–71
    [Google Scholar]
  25. 25.
    Shtukenberg AG, Yang Y, Zhu X, Kahr B. 2020. Common occurrence of twisted molecular crystal morphologies from the melt. Cryst. Growth Des. 20:6186–97
    [Google Scholar]
  26. 26.
    Kahr B, Tan M, Ye H-M, Shtukenberg AG. 2019. Polymorphism and morphology folklore. Cryst. Growth Des. 19:5999–6003
    [Google Scholar]
  27. 27.
    Yang Y, Shtukenberg AG, Sun M, Hu CT, Lee S, Kahr B. 2022. Transport in twisted crystalline charge transfer complexes. Chem. Mater. 34:1778–88
    [Google Scholar]
  28. 28.
    Crist B, Schultz JM. 2016. Polymer spherulites: a critical review. Prog. Polym. Sci. 56:1–63
    [Google Scholar]
  29. 29.
    Lovinger A. 2020. Twisted crystals and the origin of banding in spherulites of semiconducting polymers. Macromolecules 53:741–45
    [Google Scholar]
  30. 30.
    Haddad A, Aharoni H, Sharon E, Shtukenberg AG, Kahr B, Efrati E 2019. Twist renormalization in molecular crystals driven by geometric frustration. Soft Matter 15:116–26
    [Google Scholar]
  31. 31.
    Li C, Shtukenberg AG, Vogt-Maranto L, Efrati E, Raiteri P et al. 2020. Why are some crystals straight?. J. Phys. Chem. C 124:15616–24
    [Google Scholar]
  32. 32.
    Zhang Y, Shtukenberg AG, Kahr B, Kaylyon DM, Lee SS. 2023. Effect of melt shearing on D-mannitol crystal twisting in the presence of small molecule and macromolecular additives. J. Cryst. Growth 601:126942
    [Google Scholar]
  33. 33.
    Dandekar P, Kuvadia ZB, Doherty MF. 2013. Engineering crystal morphology. Annu. Rev. Mater. Res. 43:359–86
    [Google Scholar]
  34. 34.
    Shtukenberg AG, Lee SS, Kahr B, Ward MD. 2014. Manipulating crystallization with molecular additives. Annu. Rev. Chem. Biomol. Eng. 5:77–96
    [Google Scholar]
  35. 35.
    Lovette MA, Browning AR, Griffin DW, Sizemore JP, Snyder RC et al. 2008. Crystal shape engineering. Ind. Eng. Chem. Res. 47:9812–33
    [Google Scholar]
  36. 36.
    De Yoreo JJ, Vekilov PG. 2003. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54:57–93
    [Google Scholar]
  37. 37.
    Sunagawa I. 2007. Crystals: Growth, Morphology, and Perfection Cambridge, UK: Cambridge Univ. Press
  38. 38.
    Chernov AA. 1984. Modern Crystallography III. Crystal Growth Berlin: Springer
  39. 39.
    Berkovitch-Yellin Z, Van Mil J, Addadi L, Idelson M, Lahav M et al. 1985. Crystal morphology engineering by “tailor-made” inhibitors; a new probe to fine intermolecular interactions. J. Am. Chem. Soc. 107:3111–22
    [Google Scholar]
  40. 40.
    Engwerda AHJ, vanSchayik P, Jagtenberg H, Meekes H, Rutjes FPJT, Vlieg E. 2018. Deracemization of a racemic compound by using tailor-made additives. Chem. Eur. J. 24:2863–67
    [Google Scholar]
  41. 41.
    Addadi L, van Mil J, Gati E, Lahav M. 1981. Amplification of optical activity by crystallization in the presence of tailor-made additives. The “inversion rule. .” Orig. Life 11:355–64
    [Google Scholar]
  42. 42.
    Addadi L, Berkovitch-Yellin Z, Weissbuch I, Lahav M, Leiserowitz L et al. 1982. Use of “enantiopolar” directions in centrosymmetric crystals for direct assignment of absolute configuration of chiral molecules: application to the system serine/threonine. J. Am. Chem. Soc. 104:2075–77
    [Google Scholar]
  43. 43.
    Shimon LJW, Lahav M, Leiserowitz L. 1985. Design of stereoselective etchants for organic crystals. Application for the sorting of enantiomorphs and direct assignment of absolute configuration of chiral molecules. J. Am. Chem. Soc. 107:3375–77
    [Google Scholar]
  44. 44.
    Weissbuch I, Popovitz-Biro R, Lahav M, Leiserowitz L. 1995. Understanding and control of nucleation, growth, habit, dissolution and structure of two- and three-dimensional crystals using ‘tailor-made’ auxiliaries. Acta Crystallogr. B 51:115–48
    [Google Scholar]
  45. 45.
    Lahav M, Addadi L, Leiserowitz L. 1987. Chemistry at the surfaces of organic crystals. PNAS 84:4737–38
    [Google Scholar]
  46. 46.
    Weissbuch I, Addadi L, Lahav M, Leiserowitz L. 1991. Molecular recognition at crystal interfaces. Science 253:637–45
    [Google Scholar]
  47. 47.
    Addadi L, Berkovitch-Yellin Z, Weissbuch I, Lahav M, Leiserowitz L 1986. A link between macroscopic phenomena and molecular chirality: crystals as probes for the direct assignment of absolute configuration of chiral molecules. Topics in Stereochemistry, Vol. 16 EL Eliel, SH Wilen, NL Allinger 1–85. New York: Wiley
    [Google Scholar]
  48. 48.
    Rimer JD, An Z, Zhu Z, Lee MH, Goldfarb DS et al. 2010. Crystal growth inhibitors for the prevention of l-cystine kidney stones through molecular design. Science 330:337–41
    [Google Scholar]
  49. 49.
    Shtukenberg AG, Poloni LN, Zhu Z, An Z, Bhandari M et al. 2015. Dislocation-actuated growth and inhibition of hexagonal l-cystine crystallization at the molecular level. Cryst. Growth Des. 15:921–34
    [Google Scholar]
  50. 50.
    Poloni LN, Zhu Z, Garcia-Vázquez N, Yu AC, Connors DM et al. 2017. Role of molecular recognition in l-cystine crystal growth inhibition. Cryst. Growth Des. 17:2767–81
    [Google Scholar]
  51. 51.
    Shtukenberg AG, Hu L, Sahota A, Kahr B, Ward MD. 2022. Disrupting crystal growth through molecular recognition: designer therapies for kidney stone prevention. Acc. Chem. Res. 55:516–25
    [Google Scholar]
  52. 52.
    Yang Y, Albanyan H, Lee S, Aloysius H, Liang J-J et al. 2018. Design, synthesis, and evaluation of l-cystine diamides as l-cystine crystallization inhibitors for cystinuria. Bioorg. Med. Chem. Lett. 28:1303–8
    [Google Scholar]
  53. 53.
    Klapper H 2010. Generation and propagation of defects during crystal growth. Springer Handbook of Crystal Growth G Dhanaraj, K Byrappa, V Prasad, M Dudley 93–132. Heidelberg, Ger: Springer
    [Google Scholar]
  54. 54.
    Shtukenberg AG, Punin Y-O, Gunn E, Kahr B. 2012. Spherulites. Chem. Rev. 112:1805–38
    [Google Scholar]
  55. 55.
    Jackson KA, Uhlmann DR, Hunt JD. 1967. On the nature of crystal growth from the melt. J. Cryst. Growth 1:1–36
    [Google Scholar]
  56. 56.
    Perepezko JH. 1997. Kinetic processes in undercooled melts. Mater. Sci. Eng. A 226–228:374–82
    [Google Scholar]
  57. 57.
    Jia S, Gao Z, Tian N, Li Z, Gong J et al. 2021. Review of melt crystallization in the pharmaceutical field, towards crystal engineering and continuous process development. Chem. Eng. Res. Des. 166:268–80
    [Google Scholar]
  58. 58.
    Veintemillas-Verdaguer S. 1996. Chemical aspects of the effect of impurities in crystal growth. Prog. Cryst. Growth Charact. Mater. 32:75–109
    [Google Scholar]
  59. 59.
    Parks GS, Spaght ME, Barton LE. 1935. Viscosity data for commercial rosin and abietic acid. Ind. Eng. Chem. Res. 7:115–16
    [Google Scholar]
  60. 60.
    Shtukenberg AG, Ward MD, Kahr B. 2022. Crystal growth inhibition by impurity stoppers, now. J. Cryst. Growth 597:126839
    [Google Scholar]
  61. 61.
    Kahr B, Shtukenberg AG, Yang J, Ward MD 2021. Tailor-made additives for polar growth from melts. Isr. J. Chem. 61:583–89
    [Google Scholar]
  62. 62.
    Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S et al. 2016. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. . PNAS 113:3740–45
    [Google Scholar]
  63. 63.
    Harding MM, Ward LG, Haymet ADJ. 1999. Type I ‘antifreeze’ proteins. Eur. J. Biochem. 264:653–65
    [Google Scholar]
  64. 64.
    Damodaran S. 2007. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. J. Agric. Food Chem. 55:10918–23
    [Google Scholar]
  65. 65.
    Feeney RE, Yeh Y. 1998. Antifreeze proteins: Current status and possible food uses. Trends Food Sci. Technol. 9:102–6
    [Google Scholar]
  66. 66.
    Shtukenberg AG, Ward MD, Kahr B. 2017. Crystal growth with macromolecular additives. . Chem. Rev. 117:14042–90
    [Google Scholar]
  67. 67.
    Drori R, Li C, Hu C, Raiteri P, Rohl AL et al. 2016. A supramolecular ice growth inhibitor. J. Am. Chem. Soc. 138:13396–401
    [Google Scholar]
  68. 68.
    Carenco A, Jerphagnon J, Perigaud A. 1977. Nonlinear optical properties of some m-disubstituted benzene derivatives. J. Chem. Phys. 66:3806–13
    [Google Scholar]
  69. 69.
    Murata Y, Honda T. 1977. The growth of m-chloronitrobenzene crystals. J. Cryst. Growth 39:315–27
    [Google Scholar]
  70. 70.
    Matsuoka M, Garside J, Rout JE, Black SN, Davey RJ. 1990. The influence of melt composition on the crystal morphology of m-chloronitrobenzene. J. Cryst. Growth 99:1138–41
    [Google Scholar]
  71. 71.
    Chen BD, Garside J. 1991. A comparison of the morphology of m-chloronitrobenzene crystals grown from solution and from the melt. J. Phys. D. Appl. Phys. 24:131–34
    [Google Scholar]
  72. 72.
    Chen B, Garside J, Davey RJ, Maginn SJ, Matsuoka M. 1994. Growth of m-chloronitrobenzene crystals in the presence of tailor-made additives: assignment of the polar axes from morphological calculations. J. Phys. Chem. 98:3215–21
    [Google Scholar]
  73. 73.
    Chen B, Potts GD, Davey RJ, Garside J, Bergmann D, et. al. 1994. Growth of meta-chloronitrobenzene crystals in the presence of “tailor-made” additives: assignment of the polar axes from morphological changes. J. Cryst. Growth 144:297–303
    [Google Scholar]
  74. 74.
    Takiyama H, Okada Y, Arita H, Uchida H, Matsuoka M. 2002. Morphological changes and local purities of m-CNB crystals. J. Cryst. Growth 235:494–98
    [Google Scholar]
  75. 75.
    Funakoshi K. 2018. Melting inhibition behaviors of m-chloronitrobenzene crystals by addition of p-chloronitrobenzene. J. Chem. Eng. Jpn. 51:625–30
    [Google Scholar]
  76. 76.
    Docherty R, Roberts KJ. 1988. Modelling the morphology of molecular crystals; application to anthracene, biphenyl and β-succinic acid. J. Cryst. Growth 88:159–68
    [Google Scholar]
  77. 77.
    Gránásy L, Pusztai T, Börzsönyi T, Tóth GI, Tegze G et al. 2006. Polycrystalline patterns in far-from-equilibrium freezing: a phase field study. Philos. Mag. 86:3757–78
    [Google Scholar]
  78. 78.
    Boys SF. 1934. Optical rotatory power. I—a theoretical calculation for a molecule containing only isotropic refractive centres. Proc. R. Soc. A 144:655–75
    [Google Scholar]
  79. 79.
    Devarajan V, Glazer AM. 1986. Computation of optical rotatory power in inorganic crystals. Acta Crystallogr. A. 42:560–69
    [Google Scholar]
  80. 80.
    Gunn E, Sours R, Benedict JB, Kahr B. 2006. Mesoscale chiroptics of rhythmic precipitates. J. Am. Chem. Soc. 128:14234–35
    [Google Scholar]
  81. 81.
    Freudenthal J, Kahr B. 2008. Dendritic crystal growth, asymmetric photochemistry, and the origin of biomolecular homochirality. Chirality 20:973–77
    [Google Scholar]
  82. 82.
    Tan M, Jiang W, Martin AT, Shtukenberg AG, McKee MD, Kahr B. 2020. Polarized light through polycrystalline vaterite helicoids. Chem. Commun. 56:7353–56
    [Google Scholar]
  83. 83.
    Helmbrecht L, Tan M, Röhrich R, Bistervels MH, Kessels BO et al. 2019. Directed emission from self-assembled microhelices. Adv. Funct. Mater. 30:1908218
    [Google Scholar]
  84. 84.
    Ye H-M, Tan M, Freudenthal JF, Kahr B. 2019. Chiroptical differentiation of twisted chiral and achiral polymer crystals. Macromolecules 2:8514–20
    [Google Scholar]
  85. 85.
    Yang Y, Zong K, Whittaker SJ, An Z, Tan M et al. 2022. Twisted tetrathiafulvalene crystals. Mol. Syst. Des. Eng. 7:569–76
    [Google Scholar]
  86. 86.
    Yang Y, de Moraes LS, Ruzié C, Schweicher G, Geerts YH et al. 2022. Charge transport in twisted organic semiconductor crystals of modulated pitch. Adv. Mater. 34:2203842
    [Google Scholar]
  87. 87.
    Cui X, Rohl AL, Shtukenberg A, Kahr B. 2013. Twisted aspirin crystals. J. Am. Chem. Soc. 135:3395–98
    [Google Scholar]
  88. 88.
    Martin AT, Nichols SM, Murphy VL, Kahr B. 2021. Chiroptical anisotropy of crystals and molecules. Chem. Commun. 57:8107–20
    [Google Scholar]
  89. 89.
    Arteaga OB, Kahr B. 2019. Mueller matrix polarimetry of bianisotropic materials. J. Opt. Soc. Am. B 36:F72–83
    [Google Scholar]
  90. 90.
    Cui X, Shtukenberg AG, Freudenthal J, Nichols S, Kahr B. 2014. Circular birefringence of banded spherulites. J. Am. Chem. Soc. 136:5481–90
    [Google Scholar]
  91. 91.
    Shtukenberg AG, Cui X, Freudenthal J, Gunn E, Camp E et al. 2012. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites. J. Am. Chem. Soc. 134:6354–64
    [Google Scholar]
  92. 92.
    Cui X, Nichols SM, Arteaga O, Freudenthal J, Paula F et al. 2016. Dichroism in helicoidal crystals. J. Am. Chem. Soc. 138:12211–18
    [Google Scholar]
  93. 93.
    Kaminsky W. 2000. Experimental and phenomenological aspects of circular birefringence and related phenomena in transparent crystals. Rep. Prog. Phys. 63:1575–640
    [Google Scholar]
  94. 94.
    Wallerant MF. 1907. Sur les enroulements hélicoïdaux dans les corps cristallisés. Bull. Minéral. Soc. Fr. 30:43–60
    [Google Scholar]
  95. 95.
    Shtukenberg AG, Freudenthal J, Kahr B. 2010. Reversible twisting during helical hippuric acid crystal growth. J. Am. Chem. Soc. 132:9341–49
    [Google Scholar]
  96. 96.
    Ubbelohde AR, Robertson JM. 1937. A new form of resorcinol. Nature 140:239
    [Google Scholar]
  97. 97.
    Robertson JM, Ubbelohde AR. 1938. A new form of resorcinol. I. Structure determination by X-rays. Proc. R. Soc. A 167:122–35
    [Google Scholar]
  98. 98.
    Robertson JM, Ubbelohde AR. 1938. A new form of resorcinol. II. Thermodynamic properties in relation to structure. Proc. R. Soc. A 167:136–47
    [Google Scholar]
  99. 99.
    Zhu Q, Shtukenberg AG, Carter DJ, Yu T-Q, Yang J et al. 2016. Resorcinol crystallization from the melt: a new ambient phase and new “riddles. .” J. Am. Chem. Soc. 138:4881–89
    [Google Scholar]
  100. 100.
    Wells AF. 1949. Abnormal and modified crystal growth. Discuss. Faraday Soc. 5:197–201
    [Google Scholar]
  101. 101.
    Weissbuch I, Leiserowitz L, Lahav M. 2006. Self-poisoning at {011} faces of α-resorcinol crystals may explain its unidirectional growth in the vapor phase: a molecular modeling study. Cryst. Growth Des. 6:625–28
    [Google Scholar]
  102. 102.
    Lahav M, Leiserowitz L. 2001. The effect of solvent on crystal growth and morphology. Chem. Eng. Sci. 56:2245–53
    [Google Scholar]
  103. 103.
    Lahav M, Leiserowitz L. 2006. A stereochemical approach that demonstrates the effect of solvent on the growth of polar crystals:a perspective. Cryst. Growth Des. 6:619–24
    [Google Scholar]
  104. 104.
    Kahr B, Shtukenberg A, Gunn E, Carter DJ, Rohl AL. 2011. Controlling mesoscale crystal helicity with additives, again. Cryst. Growth Des. 11:2070–73
    [Google Scholar]
  105. 105.
    Pasteur L. 1848. Mémoire sur la relation qui peut exister entre la forme cristallineet la composition chimique, et sur la cause de la polarization rotatoire. C. R. Acad. Sci. Paris 26:535–39
    [Google Scholar]
  106. 106.
    Pasteur L. 1852. Mémoire sur les acides aspartique et malique. Ann. Chim. Phys. 34:30–64
    [Google Scholar]
  107. 107.
    Lehmann O. 1888. Molekularphysik Leipzig, Ger.: Engelmann
  108. 108.
    Yang J, Hu CT, Shtukenberg AG, Yin Q, Kahr B. 2018. l-malic acid crystallization: polymorphism, semi-spherulites, twisting, and polarity. CrystEngComm 20:1383–89
    [Google Scholar]
  109. 109.
    Cui X. 2015. Optical analysis of crystal twisting in banded spherulites PhD Diss. New York Univ. New York:
  110. 110.
    Ross J, Gagnon H, Girard D, Hachey J-M. 1996. Chemical composition of the bark oil of balsam fir Abies balsamea (L.) Mill. . J. Essent. Oil Res. 8:343–46
    [Google Scholar]
  111. 111.
    Akkermans RLC, Spenley NA, Robertson SH. 2013. Monte Carlo methods in Materials Studio. Mol. Simul. 39:1153–64
    [Google Scholar]
  112. 112.
    Sun H. 1998. COMPASS: an ab initio force-field optimized for condensed-phase applications – overview with details on alkane and benzene compounds. J. Phys. Chem. B 102:7338–64
    [Google Scholar]
  113. 113.
    Killalea CE, Amabilino DB. 2021. Stereochemistry and twisted crystals. Isr. J. Chem. 61:629–44
    [Google Scholar]
  114. 114.
    Polyzois H, Guo R, Srirambhatla VK, Warzecha M, Prasad E et al. 2022. Crystal structure and twisted aggregates of oxcarbazepine form III. Cryst. Growth Des. 22:4146–56
    [Google Scholar]
  115. 115.
    Scheurle PI, Mähringer A, Haug T, Biewald A, Axthammer D et al. 2022. Helical anthracene–ethyne-based MOF-74 analogue. Cryst. Growth Des. 22:2849–53
    [Google Scholar]
  116. 116.
    Shtukenberg AG, Gujral A, Rosseeva E, Cui X, Kahr B. 2015. Mechanics of twisted hippuric acid crystals untwisting as they grow. CrystEngComm 17:8817–84
    [Google Scholar]
  117. 117.
    Efrati E. 2020. Geometric frustration in molecular crystals. Isr. J. Chem. 60:1185–89
    [Google Scholar]
  118. 118.
    Shtukenberg AG, Drori R, Sturm E, Vidavsky N, Haddad A et al. 2020. Crystals of benzamide, the first polymorphous molecular compound, are helicoidal. Angew. Chem. Int. Ed. 59:14593–601
    [Google Scholar]
  119. 119.
    Armon S, Efrati E, Kupferman R, Sharon E 2011. Geometry and mechanics in the opening of chiral seed pods. Science 333:1726–30
    [Google Scholar]
  120. 120.
    Armon S, Aharoni H, Moshe M, Sharon E 2014. Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10:2733–40
    [Google Scholar]
  121. 121.
    Zhang M, Grossman D, Danino D, Sharon E 2019. Shape and fluctuations of frustrated self-assembled nano ribbons. Nat. Commun. 10:3565
    [Google Scholar]
  122. 122.
    Grason GM. 2020. Chiral and achiral mechanisms of self-limiting assembly of twisted bundles. Soft Matter 16:1102–6
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-112946
Loading
/content/journals/10.1146/annurev-matsci-081720-112946
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error