1932

Abstract

Nanoparticle imaging agents for vascular pathologies are in development, and some agents are already in clinical trials. Untargeted agents, with long circulation, are excellent blood-pool agents, but molecularly targeted agents have significant advantages due to the signal enhancement possible with nanoparticle presentation of the contrast agent molecules. Molecular targets that are accessible directly from the vasculature are optimal for such agents. Targets that are removed from the vasculature, such as those on tumor cell surfaces, have limited accessibility owing to the enhanced permeation and retention effect. Yet, efforts at molecular targeting have tested small molecules, peptides, antibodies, and most recently aptamers as possible targeting ligands. The future is bright for nanoparticle-based imaging of vascular pathologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042513-125551
2015-01-14
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-042513-125551.html?itemId=/content/journals/10.1146/annurev-med-042513-125551&mimeType=html&fmt=ahah

Literature Cited

  1. Levitt K, Vivas L, Courtney B, Connelly KA. 1.  2014. Vascular imaging in diabetes. Curr. Atheroscler. Rep. 16:4399 [Google Scholar]
  2. DeMarco JK, Huston J. 2.  2014. Imaging of high-risk carotid artery plaques: current status and future directions. Neurosurg. Focus 36:1E1 [Google Scholar]
  3. Saba L, Anzidei M, Marincola BC. 3.  et al. 2014. Imaging of the carotid artery vulnerable plaque. Cardiovasc. Intervent. Radiol. 37:572–85 [Google Scholar]
  4. Rosa GM, Bauckneht M, Masoero G. 4.  et al. 2013. The vulnerable coronary plaque: update on imaging technologies. Thromb. Haemost. 110:4706–22 [Google Scholar]
  5. Fleg JL, Stone GW, Fayad ZA. 5.  et al. 2012. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 5:9941–55 [Google Scholar]
  6. Roco MC.6.  2001. From vision to the implementation of the U.S. National Nanotechnology Initiative. J. Nanoparticle Res. 3:15–11 [Google Scholar]
  7. Park K.7.  2013. Facing the truth about nanotechnology in drug delivery. ACS Nano 7:97442–47 [Google Scholar]
  8. Bangham AD, Horne RW. 8.  1964. Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J. Mol. Biol. 8:660–68 [Google Scholar]
  9. Lasic DD, Martin FJ. 9.  1995. Stealth Liposomes Boca Raton, FL: CRC
  10. Lee SJ, Lee HJ, Moon M-J. 10.  et al. 2011. Superparamagnetic iron oxide nanoparticles–loaded polymersome-mediated gene delivery guided by enhanced magnetic resonance signal. J. Nanosci. Nanotechnol. 11:87057–60 [Google Scholar]
  11. Pourtau L, Oliveira H, Thevenot J. 11.  et al. 2013. Antibody-functionalized magnetic polymersomes: in vivo targeting and imaging of bone metastases using high resolution MRI. Adv. Healthc. Mater. 2:111420–24 [Google Scholar]
  12. Skouras A, Mourtas S, Markoutsa E. 12.  et al. 2011. Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomed. Nanotechnol. Biol. Med. 7:5572–79 [Google Scholar]
  13. Hainfeld JF, Smilowitz HM, O'Connor MJ. 13.  et al. 2013. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine 8:101601–9 [Google Scholar]
  14. Chen W, Bardhan R, Bartels M. 14.  et al. 2010. A molecularly targeted theranostic probe for ovarian cancer. Mol. Cancer Ther. 9:41028–38 [Google Scholar]
  15. Fatouros PP, Shultz MD. 15.  2013. Metallofullerenes: a new class of MRI agents and more?. Nanomedicine 8:111853–64 [Google Scholar]
  16. Gong H, Peng R, Liu Z. 16.  2013. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev. 65:151951–63 [Google Scholar]
  17. Kao C-Y, Hoffman EA, Beck KC. 17.  et al. 2003. Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad. Radiol. 10:5475–83 [Google Scholar]
  18. Ghaghada KB, Ravoori M, Sabapathy D. 18.  et al. 2009. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLOS ONE 4:10e7628 [Google Scholar]
  19. Ghaghada K, Hawley C, Kawaji K. 19.  et al. 2008. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents—effect of liposome size and internal gadolinium concentration. Acad. Radiol. 15:101259–63 [Google Scholar]
  20. Aime S, Caravan P. 20.  2009. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J. Magn. Reson. Imaging 30:61259–67 [Google Scholar]
  21. Caravan P, Farrar CT, Frullano L, Uppal R. 21.  2009. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4:289–100 [Google Scholar]
  22. Weller A, Barber JL, Olsen OE. 22.  2013. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr. Nephrol. Oct 22:1–11 [Google Scholar]
  23. Aydogan B, Li J, Rajh T. 23.  et al. 2010. AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol. Imaging Biol. 12:5463–67 [Google Scholar]
  24. Li J, Chaudhary A, Chmura SJ. 24.  et al. 2010. A novel functional CT contrast agent for molecular imaging of cancer. Phys. Med. Biol. 55:154389–97 [Google Scholar]
  25. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. 25.  2006. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79:939248–53 [Google Scholar]
  26. Lal S, Clare SE, Halas NJ. 26.  2008. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41:121842–51 [Google Scholar]
  27. Mulder WJM, Strijkers GJ, Griffioen AW. 27.  et al. 2004. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjug. Chem. 15:4799–806 [Google Scholar]
  28. Mulder WJM, Strijkers GJ, van Tilborg GAF. 28.  et al. 2006. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19:1142–64 [Google Scholar]
  29. Mulder WJM, Douma K, Koning GA. 29.  et al. 2006. Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn. Reson. Med. 55:51170–74 [Google Scholar]
  30. Mulder WJM, Strijkers GJ, Briley-Saboe KC. 30.  et al. 2007. Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles. Magn. Reson. Med. 58:61164–70 [Google Scholar]
  31. Krause W, Leike J, Schuhmann-Giampieri G. 31.  et al. 1996. Iopromide-carrying liposomes as a contrast agent for the liver. Acad. Radiol. 3:Suppl. 2S235–37 [Google Scholar]
  32. Schmiedl UP, Krause W, Leike J, Sachse A. 32.  1999. CT blood pool enhancement in primates with lopromide-carrying liposomes containing soy phosphatidyl glycerol. Acad. Radiol. 6:3164–69 [Google Scholar]
  33. Krause W, Leike J, Sachse A, Schuhmann-Giampieri G. 33.  1993. Characterization of iopromide liposomes. Invest. Radiol. 28:111028–32 [Google Scholar]
  34. Sachse A, Leike JU, Schneider T. 34.  et al. 1997. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated iopromide-carrying liposomes. Invest. Radiol. 32:144–50 [Google Scholar]
  35. Deleted in proof
  36. Leike J, Sachse A. 36.  2001. Characterization of continuously extruded iopromide-carrying liposomes for computed tomography blood-pool imaging. Invest. Radiol. 36:6303–8 [Google Scholar]
  37. Sachse A, Leike JU, Rössling GL. 37.  et al. 1993. Preparation and evaluation of lyophilized iopromide-carrying liposomes for liver tumor detection. Invest. Radiol. 28:9838–44 [Google Scholar]
  38. Schmiedl UP, Krause W, Leike J. 38.  et al. 1995. Liver contrast enhancement in primates using iopromide liposomes. Acad. Radiol. 2:11967–72 [Google Scholar]
  39. Mukundan S, Ghaghada KB, Badea CT. 39.  et al. 2006. A liposomal nanoscale contrast agent for preclinical CT in mice. Am. J. Roentgenol. 186:2300–7 [Google Scholar]
  40. Burke SJ, Annapragada A, Hoffman EA. 40.  et al. 2007. Imaging of pulmonary embolism and t-PA therapy effects using MDCT and liposomal iohexol blood pool agent: preliminary results in a rabbit model. Acad. Radiol. 14:3355–62 [Google Scholar]
  41. 41. Marval Pharma Ltd 2014. Single dose safety, tolerability and pharmacokinetic study of NCTX in healthy volunteers. http://clinicaltrials.gov/ct2/show/NCT02063594
  42. Gløgård C, Stensrud G, Hovland R. 42.  et al. 2002. Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity. Int. J. Pharm. 233:1–2131–40 [Google Scholar]
  43. Strijkers GJ, Mulder WJM, van Heeswijk RB. 43.  et al. 2005. Relaxivity of liposomal paramagnetic MRI contrast agents. MAGMA 18:4186–92 [Google Scholar]
  44. Karathanasis E, Suryanarayanan S, Balusu SR. 44.  et al. 2009. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology 250:2398–406 [Google Scholar]
  45. Karathanasis E, McNeeley K, Agarwal A. 45.  et al. 2007. MR trackable, chemotherapeutic nanoparticles for patient specific glioma therapy. Microsc. Microanal. 13:244–45 [Google Scholar]
  46. Karathanasis E, Park J, Agarwal A. 46.  et al. 2008. MRI mediated, non-invasive tracking of intratumoral distribution of nanocarriers in rat glioma. Nanotechnology 19:31315101 [Google Scholar]
  47. Karathanasis E, Chan L, Balusu SR. 47.  et al. 2008. Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy. Biomaterials 29:364815–22 [Google Scholar]
  48. Bhavane R, Badea C, Ghaghada KB. 48.  et al. 2013. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circ. Cardiovasc. Imaging 6:285–94 [Google Scholar]
  49. McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. 49.  2009. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 30:23–243986–95 [Google Scholar]
  50. Saul JM, Annapragada AV, Bellamkonda RV. 50.  2006. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J. Control. Release 114:3277–87 [Google Scholar]
  51. McNeeley KM, Annapragada A, Bellamkonda RV. 51.  2007. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 18:385101 [Google Scholar]
  52. Prabhakar U, Maeda H, Jain RK. 52.  et al. 2013. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73:2412–17 [Google Scholar]
  53. 53.  Deleted in proof
  54. Zalipsky S, Mullah N, Engbers C. 54.  et al. 2007. Thiolytically cleavable dithiobenzyl urethane-linked polymer-protein conjugates as macromolecular prodrugs: reversible PEGylation of proteins. Bioconjug. Chem. 18:61869–78 [Google Scholar]
  55. Lee RJ, Low PS. 55.  1995. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta 1233:2134–44 [Google Scholar]
  56. Islam T, Josephson L. 56.  2009. Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 5:299–107 [Google Scholar]
  57. Ghaghada KB, Saul J, Natarajan JV. 57.  et al. 2005. Folate targeting of drug carriers: a mathematical model. J. Control. Release 104:1113–28 [Google Scholar]
  58. Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. 58.  2003. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J. Control. Release 92:1–249–67 [Google Scholar]
  59. Ye M, Qian Y, Tang J. 59.  et al. 2013. Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. J. Control. Release 169:3239–45 [Google Scholar]
  60. Boca-Farcau S, Potara M, Simon T. 60.  et al. 2013. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol. Pharm. 11:391–99 [Google Scholar]
  61. Luo S, Zhang E, Su Y. 61.  et al. 2011. A review of NIR dyes in cancer targeting and imaging. Biomaterials 32:297127–38 [Google Scholar]
  62. Tanifum EA, Dasgupta I, Srivastava M. 62.  et al. 2012. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLOS ONE 7:10e48515 [Google Scholar]
  63. Tanifum EA, Starosolski ZA, Fowler SW. 63.  et al. 2014. Cerebral vascular leak in a mouse model of amyloid neuropathology. J. Cereb. Blood Flow Metab. 341646–54
  64. Staquicini FI, Ozawa MG, Moya CA. 64.  et al. 2011. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J. Clin. Invest. 121:1161–73 [Google Scholar]
  65. Ruoslahti E.65.  2012. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. Weinheim. 24:283747–56 [Google Scholar]
  66. Ellington AD, Szostak JW. 66.  1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:6287818–22 [Google Scholar]
  67. 67. Board of Regents, The University of Texas System 2011. Structure based and combinatorially selected oligonucleoside. Patent application. US Patent Office, US20110212843A1
  68. Mann AP, Bhavane RC, Somasunderam A. 68.  et al. 2011. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2:4298–304 [Google Scholar]
  69. Zrazhevskiy P, Gao X. 69.  2013. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 4:1619 [Google Scholar]
  70. Guo Y, Chen W, Wang W. 70.  et al. 2012. Simultaneous diagnosis and gene therapy of immuno-rejection in rat allogeneic heart transplantation model using a T-cell-targeted theranostic nanosystem. ACS Nano 6:1210646–57 [Google Scholar]
  71. Shahbazi-Gahrouei D, Abdolahi M. 71.  2013. Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging. Sci. World J. 2013:609151 [Google Scholar]
  72. Pang P, Wu C, Shen M. 72.  et al. 2013. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells. PLOS ONE 8:10e76612 [Google Scholar]
  73. Nagarajan S, Zhang Y. 73.  2013. Lanthanide-based upconversion nanoparticles for connexin-targeted imaging in co-cultures. Methods Mol. Biol. 1058:97–107 [Google Scholar]
  74. Skala MC, Crow MJ, Wax A, Izatt JA. 74.  2013. Three-dimensional molecular imaging with photothermal optical coherence tomography. Methods Mol. Biol.102685–92
  75. Grebenik EA, Nadort A, Generalova AN. 75.  et al. 2013. Feasibility study of the optical imaging of a breast cancer lesion labeled with upconversion nanoparticle biocomplexes. J. Biomed. Opt. 18:776004 [Google Scholar]
  76. Yan C, Wu Y, Feng J. 76.  et al. 2013. Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. Int. J. Nanomed. 8:245–55 [Google Scholar]
  77. Guo Q, Liu Y, Xu K. 77.  et al. 2013. Mouse lymphatic endothelial cell targeted probes: anti-LYVE-1 antibody-based magnetic nanoparticles. Int. J. Nanomed. 8:2273–84 [Google Scholar]
  78. Chen H, Wang L, Yu Q. 78.  et al. 2013. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer. Int. J. Nanomed. 8:3781–94 [Google Scholar]
  79. Skaat H, Corem-Slakmon E, Grinberg I. 79.  et al. 2013. Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils. Int. J. Nanomed. 8:4063–76 [Google Scholar]
  80. Yang B, Cai H, Qin W. 80.  et al. 2013. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging. Int. J. Nanomed. 8:3977–90 [Google Scholar]
  81. Kwon H, Lee J, Song R. 81.  et al. 2013. In vitro and in vivo imaging of prostate cancer angiogenesis using anti-vascular endothelial growth factor receptor 2 antibody-conjugated quantum dot. Korean J. Radiol. 14:130–37 [Google Scholar]
  82. Cornelissen B, Able S, Kersemans V. 82.  et al. 2013. Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 34:41146–54 [Google Scholar]
  83. Kim J-H, Ha TL, Im GH. 83.  et al. 2013. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody aβ1-40 in a transgenic mouse model. Neuroreport 24:116–21 [Google Scholar]
  84. Hou Y, Qiao R, Fang F. 84.  et al. 2013. NaGdF4 nanoparticle-based molecular probes for magnetic resonance imaging of intraperitoneal tumor xenografts in vivo. ACS Nano 7:1330–38 [Google Scholar]
  85. Chan LW, Wang Y-N, Lin LY. 85.  et al. 2013. Synthesis and characterization of anti-EGFR fluorescent nanoparticles for optical molecular imaging. Bioconjug. Chem. 24:2167–75 [Google Scholar]
  86. Boeneman Gemmill K, Deschamps JR, Delehanty JB. 86.  et al. 2013. Optimizing protein coordination to quantum dots with designer peptidyl linkers. Bioconjug. Chem. 24:2269–81 [Google Scholar]
  87. Abdolahi M, Shahbazi-Gahrouei D, Laurent S. 87.  et al. 2013. Synthesis and in vitro evaluation of MR molecular imaging probes using J591 mAb-conjugated SPIONs for specific detection of prostate cancer. Contrast Media Mol. Imaging 8:2175–84 [Google Scholar]
  88. Camp ER, Wang C, Little EC. 88.  et al. 2013. Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. 20:4222–28 [Google Scholar]
  89. Yu K, Ng P, Ouyang J. 89.  et al. 2013. Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications. ACS Appl. Mater. Interfaces 5:82870–80 [Google Scholar]
  90. Wang Y, Yan X-P. 90.  2013. Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem. Commun. 49:323324–26 [Google Scholar]
  91. Akhtar NH, Osborne JR, Fareedy SB, Tagawa ST. 91.  2013. PSMA-targeted dendrimers: a patent evaluation (WO2012078534). Expert Opin. Ther. Pat. 23:5665–68 [Google Scholar]
  92. Wu C, Gong F, Pang P. 92.  et al. 2013. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLOS ONE 8:6e66416 [Google Scholar]
  93. Wadajkar AS, Menon JU, Tsai Y-S. 93.  et al. 2013. Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34:143618–25 [Google Scholar]
  94. Shenoi MM, Iltis I, Choi J. 94.  et al. 2013. Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol. Pharm. 10:51683–94 [Google Scholar]
  95. Jia J, Zhang P, Gao D. 95.  et al. 2013. One-step synthesis of peptide-programmed QDs as ready-to-use nanoprobes. Chem. Commun. 49:404492–94 [Google Scholar]
  96. Luehmann HP, Pressly ED, Detering L. 96.  et al. 2014. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J. Nucl. Med. 55:4629–34 [Google Scholar]
  97. Hu Q, Gao X, Kang T. 97.  et al. 2013. CGKRK-modified nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels. Biomaterials 34:379496–508 [Google Scholar]
  98. Danila D, Johnson E, Kee P. 98.  2013. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 9:71067–76 [Google Scholar]
  99. Yao L, Daniels J, Danniels J. 99.  et al. 2013. pHLIP peptide targets nanogold particles to tumors. Proc. Natl. Acad. Sci. USA 110:2465–70 [Google Scholar]
/content/journals/10.1146/annurev-med-042513-125551
Loading
/content/journals/10.1146/annurev-med-042513-125551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error