1932

Abstract

The model we propose to explain the links between atherosclerosis and telomere dynamics (birth telomere length and its age-dependent shortening) in leukocytes takes cues from three facts: atherosclerosis is a disease of the vascular endothelium; the hematopoietic system and the vascular endothelium share a common embryonic origin; interindividual variation in leukocyte telomere length (LTL) in the general population has a genetic explanation. The model posits that LTL dynamics mirror telomere dynamics in hematopoietic stem cells (HSCs), where telomere length is an index of HSC reserves. Diminished HSC reserves at birth, their accelerated attrition rate afterward, or both are are reflected in shortened LTL during adulthood—a phenomenon that confers increased risk for atherosclerosis. We explain how telomere length in HSCs serves as both a biomarker of atherosclerosis and a determinant of its development. Our model comes down to this proposition: Shortened LTL predicts increased atherosclerotic risk because the injurious component of atherosclerosis exceeds the repair capacity of HSC reserves, which largely depend on HSC telomere length.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050311-104846
2012-02-18
2024-05-10
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-med-050311-104846
Loading
/content/journals/10.1146/annurev-med-050311-104846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error