1932

Abstract

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacteria that consist of a growth-inhibiting toxin and its cognate antitoxin. These systems are prevalent in bacterial chromosomes, plasmids, and phage genomes, but individual systems are not highly conserved, even among closely related strains. The biological functions of TA systems have been controversial and enigmatic, although a handful of these systems have been shown to defend bacteria against their viral predators, bacteriophages. Additionally, their patterns of conservation—ubiquitous, but rapidly acquired and lost from genomes—as well as the co-occurrence of some TA systems with known phage defense elements are suggestive of a broader role in mediating phage defense. Here, we review the existing evidence for phage defense mediated by TA systems, highlighting how toxins are activated by phage infection and how toxins disrupt phage replication. We also discuss phage-encoded systems that counteract TA systems, underscoring the ongoing coevolutionary battle between bacteria and phage. We anticipate that TA systems will continue to emerge as central players in the innate immunity of bacteria against phage.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020722-013730
2022-09-08
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-020722-013730.html?itemId=/content/journals/10.1146/annurev-micro-020722-013730&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aakre CD, Phung TN, Huang D, Laub MT. 2013. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Mol. Cell 52:5617–28
    [Google Scholar]
  2. 2.
    Ahmad S, Wang B, Walker MD, Tran H-KR, Stogios PJ et al. 2019. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 575:7784674–78
    [Google Scholar]
  3. 3.
    Alawneh AM, Qi D, Yonesaki T, Otsuka Y. 2015. An ADP-ribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module. Mol. Microbiol. 99:1188–98
    [Google Scholar]
  4. 4.
    Behme MT, Lilley GD, Ebisuzaki K. 1976. Postinfection control by bacteriophage T4 of Escherichia coli recBC nuclease activity. J. Virol. 18:120–25
    [Google Scholar]
  5. 5.
    Bernard P, Couturier M. 1992. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226:3735–45
    [Google Scholar]
  6. 6.
    Black DS, Kelly AJ, Mardis MJ, Moyed HS. 1991. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J. Bacteriol. 173:185732–39
    [Google Scholar]
  7. 7.
    Blower TR, Chai R, Przybilski R, Chindhy S, Fang X et al. 2017. Evolution of Pectobacterium bacteriophage ΦM1 to escape two bifunctional type III toxin-antitoxin and abortive infection systems through mutations in a single viral gene. Appl. Environ. Microbiol. 83:8e03229–16
    [Google Scholar]
  8. 8.
    Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GPC. 2012. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLOS Genet 8:10e1003023
    [Google Scholar]
  9. 9.
    Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP et al. 2011. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat. Struct. Mol. Biol. 18:2185–90
    [Google Scholar]
  10. 10.
    Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY et al. 2012. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40:136158–73
    [Google Scholar]
  11. 11.
    Bobonis J, Mateus A, Pfalz B, Garcia-Santamarina S, Galardini M et al. 2020. Bacterial retrons encode tripartite toxin/antitoxin systems. bioRxiv 2020.06.22.160168. https://doi.org/10.1101/2020.06.22.160168
    [Crossref]
  12. 12.
    Bobonis J, Mitosch K, Mateus A, Kritikos G, Elfenbein JR et al. 2020. Phage proteins block and trigger retron toxin/antitoxin systems. bioRxiv 2020.06.22.160242. https://doi.org/10.1101/2020.06.22.160242
    [Crossref]
  13. 13.
    Brunovskis I, Summers WC. 1971. The process of infection with coliphage T7: V. Shutoff of host RNA synthesis by an early phage function. Virology 45:1224–31
    [Google Scholar]
  14. 14.
    Chen B, Akusobi C, Fang X, Salmond GPC. 2017. Environmental T4-family bacteriophages evolve to escape abortive infection via multiple routes in a bacterial host employing “altruistic suicide” through type III toxin-antitoxin systems. Front. Microbiol. 8:1006
    [Google Scholar]
  15. 15.
    Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A et al. 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63:186–96
    [Google Scholar]
  16. 16.
    Christensen SK, Pedersen K, Hansen FG, Gerdes K. 2003. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. J. Mol. Biol. 332:4809–19
    [Google Scholar]
  17. 17.
    Christensen-Dalsgaard M, Jørgensen MG, Gerdes K. 2010. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75:2333–48
    [Google Scholar]
  18. 18.
    Culviner PH, Laub MT. 2018. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol. Cell 70:5868–80.e10
    [Google Scholar]
  19. 19.
    Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN et al. 2017. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2:316251
    [Google Scholar]
  20. 20.
    Dion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18:3125–38
    [Google Scholar]
  21. 21.
    Dörr T, Vulić M, Lewis K 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLOS Biol 8:2e1000317
    [Google Scholar]
  22. 22.
    Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC. 2014. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res 42:74590–605
    [Google Scholar]
  23. 23.
    Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK, Moineau S 1998. AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64:124748–56
    [Google Scholar]
  24. 24.
    Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. PNAS 106:3894–99
    [Google Scholar]
  25. 25.
    Fraikin N, Goormaghtigh F, Van Melderen L. 2020. Type II toxin-antitoxin systems: evolution and revolutions. J. Bacteriol. 202:7e00763–19
    [Google Scholar]
  26. 26.
    Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M et al. 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369:65071077–84
    [Google Scholar]
  27. 27.
    Garvey P, Fitzgerald GF, Hill C. 1995. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61:124321–28
    [Google Scholar]
  28. 28.
    Gerdes K, Bech FW, Jørgensen ST, Løbner-Olesen A, Rasmussen PB et al. 1986. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 5:82023–29
    [Google Scholar]
  29. 29.
    Gerdes K, Maisonneuve E. 2012. Bacterial persistence and toxin-antitoxin loci. Annu. Rev. Microbiol. 66:103–23
    [Google Scholar]
  30. 30.
    Gerdes K, Thisted T, Martinussen J. 1990. Mechanism of post-segregational killing by the hoklsok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol. Microbiol. 4:111807–18
    [Google Scholar]
  31. 31.
    Goeders N, Chai R, Chen B, Day A, Salmond GPC. 2016. Structure, evolution, and functions of bacterial Type III toxin-antitoxin systems. Toxins 8:10282
    [Google Scholar]
  32. 32.
    Goormaghtigh F, Fraikin N, Putrinš M, Hallaert T, Hauryliuk V et al. 2018. Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. mBio 9:3e00640–18
    [Google Scholar]
  33. 33.
    Guegler CK, Laub MT. 2021. Shutoff of host transcription triggers a toxin-antitoxin system to cleave phage RNA and abort infection. Mol. Cell 81:112361–73.e9
    [Google Scholar]
  34. 34.
    Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature 577:7790327–36
    [Google Scholar]
  35. 35.
    Hansen S, Lewis K, Vulić M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents Chemother. 52:82718–26
    [Google Scholar]
  36. 36.
    Harms A, Brodersen DE, Mitarai N, Gerdes K. 2018. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell 70:5768–84
    [Google Scholar]
  37. 37.
    Harms A, Fino C, Sørensen MA, Semsey S, Gerdes K. 2017. Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. mBio 8:6e01964–17
    [Google Scholar]
  38. 38.
    Harms A, Stanger FV, Scheu PD, de Jong IG, Goepfert A et al. 2015. Adenylylation of gyrase and topo IV by FicT toxins disrupts bacterial DNA topology. Cell Rep 12:91497–507
    [Google Scholar]
  39. 39.
    Hazan R, Engelberg-Kulka H. 2004. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genom. 272:2227–34
    [Google Scholar]
  40. 40.
    Hazan R, Sat B, Engelberg-Kulka H. 2004. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J. Bacteriol. 186:113663–69
    [Google Scholar]
  41. 41.
    Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:6167204–8
    [Google Scholar]
  42. 42.
    Heller DM, Tavag M, Hochschild A. 2017. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PLOS Genet 13:9e1007007
    [Google Scholar]
  43. 43.
    Hilliard JJ, Maurizi MR, Simon LD. 1998. Isolation and characterization of the phage T4 PinA protein, an inhibitor of the ATP-dependent lon protease of Escherichia coli. J. Biol. Chem. 273:1518–23
    [Google Scholar]
  44. 44.
    Hinton DM. 2010. Transcriptional control in the prereplicative phase of T4 development. Virol J 7:289
    [Google Scholar]
  45. 45.
    Jankevicius G, Ariza A, Ahel M, Ahel I. 2016. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 64:61109–16
    [Google Scholar]
  46. 46.
    Jiang Y, Pogliano J, Helinski DR, Konieczny I. 2002. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44:4971–79
    [Google Scholar]
  47. 47.
    Jimmy S, Saha CK, Kurata T, Stavropoulos C, Oliveira SRA et al. 2020. A widespread toxin-antitoxin system exploiting growth control via alarmone signaling. PNAS 117:1910500–10
    [Google Scholar]
  48. 48.
    Kai T, Selick HE, Yonesaki T. 1996. Destabilization of bacteriophage T4 mRNAs by a mutation of gene 61. 5: Genetics 144:17–14
    [Google Scholar]
  49. 49.
    Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. 2013. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4:3001
    [Google Scholar]
  50. 50.
    Koga M, Otsuka Y, Lemire S, Yonesaki T. 2011. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics 187:1123–30
    [Google Scholar]
  51. 51.
    Kolodkin-Gal I, Engelberg-Kulka H. 2006. Induction of Escherichia coli chromosomal mazEF by stressful conditions causes an irreversible loss of viability. J. Bacteriol. 188:93420–23
    [Google Scholar]
  52. 52.
    Korch SB, Henderson TA, Hill TM. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50:41199–213
    [Google Scholar]
  53. 53.
    Krüger DH, Bickle TA. 1983. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol. Rev. 47:3345–60
    [Google Scholar]
  54. 54.
    Kurata T, Brodiazhenko T, Alves Oliveira SR, Roghanian M, Sakaguchi Y et al. 2021. RelA-SpoT homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Mol. Cell 81:153160–70.e9
    [Google Scholar]
  55. 55.
    Lampson BC, Inouye M, Inouye S. 1989. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56:4701–7
    [Google Scholar]
  56. 56.
    Lawarée E, Jankevicius G, Cooper C, Ahel I, Uphoff S, Tang CM. 2020. DNA ADP-ribosylation stalls replication and is reversed by RecF-mediated homologous recombination and nucleotide excision repair. Cell Rep 30:51373–84.e4
    [Google Scholar]
  57. 57.
    Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. 2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:135513–25
    [Google Scholar]
  58. 58.
    LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. 2020. Stress can induce transcription of toxin-antitoxin systems without activating toxin. Mol. Cell 79:2280–92.e8
    [Google Scholar]
  59. 59.
    LeRoux M, Srikant S, Littlehale ML, Teodoro G, Doron S et al. 2021. The DarTG toxin-antitoxin system provides phage defense by ADP-ribosylating viral DNA. bioRxiv 2021.09.27.462013. https://doi.org/10.1101/2021.09.27.462013
    [Crossref]
  60. 60.
    Li Y, Bondy-Denomy J. 2020. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29:5704–14
    [Google Scholar]
  61. 61.
    Li Y, Liu X, Tang K, Wang W, Guo Y, Wang X. 2020. Prophage encoding toxin/antitoxin system PfiT/PfiA inhibits Pf4 production in Pseudomonas aeruginosa. Microbial Biotechnol 13:41132–44
    [Google Scholar]
  62. 62.
    Lin L. 1992. Study of bacteriophage T7 gene 5.9 and gene 5.5 Ph.D. Thesis State University of New York at Stony Brook172 pp.
  63. 63.
    Liu M, Zhang Y, Inouye M, Woychik NA. 2008. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. PNAS 105:155885–90
    [Google Scholar]
  64. 64.
    Magnuson RD. 2007. Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189:176089–92
    [Google Scholar]
  65. 65.
    Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N et al. 2018. Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile. Nucleic Acids Res 46:94733–51
    [Google Scholar]
  66. 66.
    Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:3539–48
    [Google Scholar]
  67. 67.
    Makarova KS, Wolf YI, Koonin EV. 2009. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4:119
    [Google Scholar]
  68. 68.
    Makarova KS, Wolf YI, Koonin EV. 2013. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:84360–77
    [Google Scholar]
  69. 69.
    Miki T, Park JA, Nagao K, Murayama N, Horiuchi T. 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli: Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225:139–52
    [Google Scholar]
  70. 70.
    Millman A, Bernheim A, Stokar-Avihail A, Fedorenko T, Voichek M et al. 2020. Bacterial retrons function in anti-phage defense. Cell 183:61551–61.e12
    [Google Scholar]
  71. 71.
    Millman A, Melamed S, Amitai G, Sorek R. 2020. Diversity and classification of cyclic- oligonucleotide-based anti-phage signalling systems. Nat. Microbiol. 5:121608–15
    [Google Scholar]
  72. 72.
    Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155:2768–75
    [Google Scholar]
  73. 73.
    Muthuramalingam M, White J, Bourne C. 2016. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins 8:7214–16
    [Google Scholar]
  74. 74.
    Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. 2011. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLOS Biol 9:3e1001033
    [Google Scholar]
  75. 75.
    Naka K, Koga M, Yonesaki T, Otsuka Y. 2014. RNase HI stimulates the activity of RnlA toxin in Escherichia coli. Mol. Microbiol. 91:3596–605
    [Google Scholar]
  76. 76.
    Nigam A, Ziv T, Oron-Gottesman A, Engelberg-Kulka H. 2019. Stress-induced MazF-mediated proteins in Escherichia coli. mBio 10:2e00340–19
    [Google Scholar]
  77. 77.
    Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. PNAS 80:154784–88
    [Google Scholar]
  78. 78.
    Otsuka Y, Ueno H, Yonesaki T. 2003. Escherichia coli endoribonucleases involved in cleavage of bacteriophage T4 mRNAs. J. Bacteriol. 185:3983–90
    [Google Scholar]
  79. 79.
    Otsuka Y, Yonesaki T. 2005. A novel endoribonuclease, RNase LS, in Escherichia coli. Genetics 169:113–20
    [Google Scholar]
  80. 80.
    Otsuka Y, Yonesaki T. 2012. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83:4669–81
    [Google Scholar]
  81. 81.
    Pacumbaba R, Center MS. 1975. Partial purification and properties of a bacteriophage T7 inhibitor of the host exonuclease V activity. J. Virol. 16:51200–7
    [Google Scholar]
  82. 82.
    Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12:4208–14
    [Google Scholar]
  83. 83.
    Pandey DP, Gerdes K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucl. Acids Res. 33:3966–76
    [Google Scholar]
  84. 84.
    Pecota DC, Wood TK. 1996. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178:72044–50
    [Google Scholar]
  85. 85.
    Piscotta FJ, Jeffrey PD, Link AJ. 2019. ParST is a widespread toxin-antitoxin module that targets nucleotide metabolism. PNAS 116:3826–34
    [Google Scholar]
  86. 86.
    PNAS 2018. Retraction for Maisonneuve et al., Bacterial persistence by RNA endonucleases. PNAS 115:12E2901
    [Google Scholar]
  87. 87.
    Ramage HR, Connolly LE, Cox JS. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLOS Genet 5:12e1000767
    [Google Scholar]
  88. 88.
    Ronneau S, Helaine S 2019. Clarifying the link between toxin-antitoxin modules and bacterial persistence. J. Mol. Biol. 431:183462–71
    [Google Scholar]
  89. 89.
    Sakaki Y, Karu AE, Linn S, Echols H. 1973. Purification and properties of the gamma-protein specified by bacteriophage lambda: an inhibitor of the host RecBC recombination enzyme. PNAS 70:82215–19
    [Google Scholar]
  90. 90.
    Sala A, Bordes P, Genevaux P. 2014. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 6:31002–20
    [Google Scholar]
  91. 91.
    Samson JE, Bélanger M, Moineau S. 2013. Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J. Bacteriol. 195:173947–56
    [Google Scholar]
  92. 92.
    Samson JE, Magadán AH, Sabri M, Moineau S. 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11:1067587
    [Google Scholar]
  93. 93.
    Samson JE, Spinelli S, Cambillau C, Moineau S. 2013. Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Mol. Microbiol. 87:4756–68
    [Google Scholar]
  94. 94.
    Sberro H, Leavitt A, Kiro R, Koh E, Peleg Y et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:1136–48
    [Google Scholar]
  95. 95.
    Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M et al. 2016. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 44:31256–70
    [Google Scholar]
  96. 96.
    Schuller M, Butler RE, Ariza A, Tromans-Coia C, Jankevicius G et al. 2021. Molecular basis for DarT ADP-ribosylation of a DNA base. Nature 596:7873597–602
    [Google Scholar]
  97. 97.
    Shao Y, Harrison EM, Bi D, Tai C, He X et al. 2011. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39:D606–11
    [Google Scholar]
  98. 98.
    Short FL, Akusobi C, Broadhurst WR, Salmond GPC. 2018. The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity. Sci. Rep. 8:11013
    [Google Scholar]
  99. 99.
    Short FL, Pei XY, Blower TR, Ong S-L, Fineran PC et al. 2013. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. PNAS 110:3E241–49
    [Google Scholar]
  100. 100.
    Simon AJ, Ellington AD, Finkelstein IJ. 2019. Retrons and their applications in genome engineering. Nucleic Acids Res 47:2111007–19
    [Google Scholar]
  101. 101.
    Snyder L, Gold L, Kutter E. 1976. A gene of bacteriophage T4 whose product prevents true late transcription on cytosine-containing T4 DNA. PNAS 73:93098–102
    [Google Scholar]
  102. 102.
    Song S, Wood TK. 2020. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11:1895
    [Google Scholar]
  103. 103.
    Tam JE, Kline BC. 1989. Control of the ccd operon in plasmid F. J. Bacteriol. 171:52353–60
    [Google Scholar]
  104. 104.
    Tan Q, Awano N, Inouye M. 2011. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. Mol. Microbiol. 79:1109–18
    [Google Scholar]
  105. 105.
    Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. 2007. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome?. J. Bacteriol. 189:176101–8
    [Google Scholar]
  106. 106.
    Van Melderen L, Bernard P, Couturier M. 1994. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11:61151–57
    [Google Scholar]
  107. 107.
    Van Melderen L, Saavedra De Bast M. 2009. Bacterial toxin-antitoxin systems: more than selfish entities?. PLOS Genet 5:3e1000437
    [Google Scholar]
  108. 108.
    Van Melderen L, Wood TK. 2017. Commentary: what is the link between stringent response, endoribonuclease encoding Type II toxin-antitoxin systems and persistence?. Front. Microbiol. 8:R81–83
    [Google Scholar]
  109. 109.
    Wan H, Otsuka Y, Gao Z-Q, Wei Y, Chen Z et al. 2016. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd. Mol. Microbiol. 101:5757–69
    [Google Scholar]
  110. 110.
    Wang X, Lord DM, Cheng H-Y, Osbourne DO, Hong SH et al. 2012. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8:10855–61
    [Google Scholar]
  111. 111.
    Wang X, Wood TK. 2011. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 77:165577–83
    [Google Scholar]
  112. 112.
    Wei Y, Gao Z, Zhang H, Dong Y. 2016. Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA. Biochem. Biophys. Res. Commun. 472:4592–97
    [Google Scholar]
  113. 113.
    Winther KS, Gerdes K. 2011. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. PNAS 108:187403–7
    [Google Scholar]
  114. 114.
    Xie Y, Wei Y, Shen Y, Li X, Zhou H et al. 2018. TADB 2.0: an updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res 46:D749–53
    [Google Scholar]
  115. 115.
    Yamaguchi Y, Park J-H, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45:61–79
    [Google Scholar]
  116. 116.
    Zaveri A, Wang R, Botella L, Sharma R, Zhu L et al. 2020. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Mol. Microbiol. 114:4641–52
    [Google Scholar]
  117. 117.
    Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12:4913–23
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020722-013730
Loading
/content/journals/10.1146/annurev-micro-020722-013730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error