1932

Abstract

The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-033021-023719
2022-09-08
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-033021-023719.html?itemId=/content/journals/10.1146/annurev-micro-033021-023719&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Albenne C, Ieva R. 2017. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol. Microbiol. 106:505–17
    [Google Scholar]
  2. 2.
    Alsteens D, Martinez N, Jamin M, Jacob-Dubuisson F. 2013. Sequential unfolding of beta helical protein by single-molecule atomic force microscopy. PLOS ONE 8:e73572
    [Google Scholar]
  3. 3.
    Alvira S, Watkins DW, Troman L, Allen WJ, Lorriman JS et al. 2020. Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis. eLife 9:e60669
    [Google Scholar]
  4. 4.
    Baud C, Guérin J, Petit E, Lesne E, Dupré E et al. 2014. Translocation path of a substrate protein through its Omp85 transporter. Nat. Commun. 5:5271
    [Google Scholar]
  5. 5.
    Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N et al. 2021. Phase separation in the outer membrane of Escherichia coli. PNAS 118:e2112237118
    [Google Scholar]
  6. 6.
    Bennion D, Charlson ES, Coon E, Misra R. 2010. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol. Microbiol. 77:1153–71
    [Google Scholar]
  7. 7.
    Chang J-S, Chen L-J, Yeh Y-H, Hsiao C-D, Li H-M. 2017. Chloroplast preproteins bind to the dimer interface of the Toc159 receptor during import. Plant Physiol 173:2148–62
    [Google Scholar]
  8. 8.
    Charlson ES, Werner JN, Misra R. 2006. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J. Bacteriol. 188:7186–94
    [Google Scholar]
  9. 9.
    Chen K-Y, Li H-M. 2007. Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant J 49:149–58
    [Google Scholar]
  10. 10.
    Chen Y-L, Chen L-J, Chu C-C, Huang P-K, Wen J-R, Li H-M. 2018. TIC236 links the outer and inner membrane translocons of the chloroplast. Nature 564:125–29
    [Google Scholar]
  11. 11.
    Chou M-L, Fitzpatrick LM, Tu S-L, Budziszewski G, Potter-Lewis S et al. 2003. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22:2970–80
    [Google Scholar]
  12. 12.
    Clantin B, Delattre AS, Rucktooa P, Saint N, Méli AC et al. 2007. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317:957–61
    [Google Scholar]
  13. 13.
    Consoli E, Luirink J, den Blaauwen T. 2021. The Escherichia coli outer membrane β-barrel assembly machinery (BAM) crosstalks with the divisome. Int. J. Mol. Sci. 22:12101
    [Google Scholar]
  14. 14.
    Curley CL, Fedrigoni TP, Flaherty EM, Woodilla CJ, Hagan CL. 2021. Bacterial contact-dependent inhibition protein binds near the open lateral gate in BamA prior to toxin translocation. Biochemistry 60:2956–65
    [Google Scholar]
  15. 15.
    da Mata Madeira PV, Zouhir S, Basso P, Neves D, Laubier A et al. 2016. Structural basis of lipid targeting and destruction by the type V secretion system of Pseudomonas aeruginosa. J. Mol. Biol. 428:1790–803
    [Google Scholar]
  16. 16.
    Diederichs KA, Buchanan SK, Botos I. 2021. Building better barrels - β-barrel biogenesis and insertion in bacteria and mitochondria. J. Mol. Biol. 433:166894
    [Google Scholar]
  17. 17.
    Diederichs KA, Ni X, Rollauer SE, Botos I, Tan X et al. 2020. Structural insight into mitochondrial β-barrel outer membrane protein biogenesis. Nat. Commun. 11:3290
    [Google Scholar]
  18. 18.
    Doerner PA, Sousa MC. 2017. Extreme dynamics in the BamA β-barrel seam. Biochemistry 56:3142–49
    [Google Scholar]
  19. 19.
    Doyle MT, Bernstein HD. 2019. Bacterial outer membrane proteins assemble via asymmetric interactions with the BamA β-barrel. Nat. Commun. 10:3358
    [Google Scholar]
  20. 20.
    Doyle MT, Bernstein HD. 2021. BamA forms a translocation channel for polypeptide export across the bacterial outer membrane. Mol. Cell 81:2000–12.e3
    [Google Scholar]
  21. 21.
    Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M et al. 2022. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 185:1143–56
    [Google Scholar]
  22. 22.
    Flores-Pérez U, Jarvis P 2013. Molecular chaperone involvement in chloroplast protein import. Biochim. Biophys. Acta Mol. Cell Res. 1833:332–40
    [Google Scholar]
  23. 23.
    Ganesan I, Shi LX, Labs M, Theg SM. 2018. Evaluating the functional pore size of chloroplast TOC and TIC protein translocons: import of folded proteins. Plant Cell 30:2161–73
    [Google Scholar]
  24. 24.
    Ganesan I, Theg SM. 2019. Structural considerations of folded protein import through the chloroplast TOC/TIC translocons. FEBS Lett 593:565–72
    [Google Scholar]
  25. 25.
    Gentle IE, Burri L, Lithgow T. 2005. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58:1216–25
    [Google Scholar]
  26. 26.
    Germany EM, Ding Y, Imai K, Bamert RS, Dunstan RA et al. 2021. Discovery of a conserved rule behind the assembly of β-barrel membrane proteins. bioRxiv 466387. https://doi.org/10.1101/2021.10.29.466387
    [Crossref]
  27. 27.
    Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW et al. 2014. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. PNAS 111:5878–83
    [Google Scholar]
  28. 28.
    Gross LE, Klinger A, Spies N, Ernst T, Flinner N et al. 2021. Insertion of plastidic β-barrel proteins into the outer envelopes of plastids involves an intermembrane space intermediate formed with Toc75-V/OEP80. Plant Cell 33:1657–81
    [Google Scholar]
  29. 29.
    Gruss F, Zahringer F, Jakob RP, Burmann BM, Hiller S, Maier T. 2013. The structural basis of autotransporter translocation by TamA. Nat. Struct. Mol. Biol. 20:1318–20
    [Google Scholar]
  30. 30.
    Gu Y, Li H, Dong H, Zeng Y, Zhang Z et al. 2016. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531:64–69
    [Google Scholar]
  31. 31.
    Guérin J, Baud C, Touati N, Saint N, Willery E et al. 2014. Conformational dynamics of protein transporter FhaC: large-scale motions of plug helix. Mol. Microbiol. 92:1164–76
    [Google Scholar]
  32. 32.
    Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. 2017. Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front. Cell Infect. Microbiol. 7:148
    [Google Scholar]
  33. 33.
    Guérin J, Botos I, Zhang Z, Lundquist K, Gumbart JC, Buchanan SK 2020. Structural insight into toxin secretion by contact-dependent growth inhibition transporters. eLife 9:e58100
    [Google Scholar]
  34. 34.
    Guérin J, Saint N, Baud C, Méli AC, Etienne E et al. 2015. Dynamic interplay of membrane-proximal POTRA domain and conserved loop L6 in Omp85 transporter FhaC. Mol. Microbiol. 98:490–501
    [Google Scholar]
  35. 35.
    Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT et al. 2018. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep 23:2782–94
    [Google Scholar]
  36. 36.
    Hagan CL, Kim S, Kahne D. 2010. Reconstitution of outer membrane protein assembly from purified components. Science 328:890–92
    [Google Scholar]
  37. 37.
    Hagan CL, Wzorek JS, Kahne D. 2015. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. PNAS 112:2011–16
    [Google Scholar]
  38. 38.
    Hart EM, Mitchell AM, Konovalova A, Grabowicz M, Sheng J et al. 2019. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. PNAS 116:21748–57
    [Google Scholar]
  39. 39.
    Heinz E, Lithgow T. 2014. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front. Microbiol. 5:370
    [Google Scholar]
  40. 40.
    Heinz E, Selkrig J, Belousoff MJ, Lithgow T. 2015. Evolution of the translocation and assembly module (TAM). Genome Biol. Evol. 7:1628–43
    [Google Scholar]
  41. 41.
    Heinz E, Stubenrauch CJ, Grinter R, Croft NP, Purcell AW et al. 2016. Conserved features in the structure, mechanism, and biogenesis of the inverse autotransporter protein family. Genome Biol. Evol 8:1690–705
    [Google Scholar]
  42. 42.
    Hinnah SC, Hill K, Wagner R, Schlicher T, Soll J. 1997. Reconstitution of a chloroplast protein import channel. EMBO J 16:7351–60
    [Google Scholar]
  43. 43.
    Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J. 2002. The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys. J. 83:899–911
    [Google Scholar]
  44. 44.
    Hodak H, Clantin B, Willery E, Villeret V, Locht C, Jacob-Dubuisson F. 2006. Secretion signal of the filamentous haemagglutinin, a model two-partner secretion substrate. Mol. Microbiol. 61:368–82
    [Google Scholar]
  45. 45.
    Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA et al. 2018. Membrane protein insertion through a mitochondrial β-barrel gate. Science 359:eaah6834
    [Google Scholar]
  46. 46.
    Hoppins SC, Nargang FE. 2004. The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279:12396–405
    [Google Scholar]
  47. 47.
    Horne JE, Brockwell DJ, Radford SE. 2020. Role of the lipid bilayer in outer membrane protein folding in gram-negative bacteria. J. Biol. Chem. 295:10340–67
    [Google Scholar]
  48. 48.
    Hussain S, Peterson JH, Bernstein HD. 2020. Bam complex-mediated assembly of bacterial outer membrane proteins synthesized in an in vitro translation system. Sci. Rep. 10:4557
    [Google Scholar]
  49. 49.
    Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ et al. 2016. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7:12865
    [Google Scholar]
  50. 50.
    Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE et al. 2020. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun. Biol. 3:766
    [Google Scholar]
  51. 51.
    Ieva R, Skillman KM, Bernstein HD. 2008. Incorporation of a polypeptide segment into the β-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67:188–201
    [Google Scholar]
  52. 52.
    Imai K, Fujita N, Gromiha MM, Horton P. 2011. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genom 12:79
    [Google Scholar]
  53. 53.
    Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R et al. 2019. A new antibiotic selectively kills gram-negative pathogens. Nature 576:459–64
    [Google Scholar]
  54. 54.
    Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell DJ. 2003. atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J. Biol. Chem. 278:38617–27
    [Google Scholar]
  55. 55.
    Inoue H, Li M, Schnell DJ. 2013. An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. PNAS 110:3173–78
    [Google Scholar]
  56. 56.
    Iqbal H, Kenedy MR, Lybecker M, Akins DR. 2016. The TamB ortholog of Borrelia burgdorferi interacts with the β-barrel assembly machine (BAM) complex protein BamA. Mol. Microbiol. 102:757–74
    [Google Scholar]
  57. 57.
    Ishikawa D, Yamamoto H, Tamura Y, Moritoh K, Endo T. 2004. Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly. J. Cell Biol. 166:621–27
    [Google Scholar]
  58. 58.
    Jacob-Dubuisson F, Locht C, Antoine R 2001. Two-partner secretion in gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol. Microbiol. 40:306–13
    [Google Scholar]
  59. 59.
    Josts I, Stubenrauch CJ, Vadlamani G, Mosbahi K, Walker D et al. 2017. The structure of a conserved domain of TamB reveals a hydrophobic β taco fold. Structure 25:1898–906.e5
    [Google Scholar]
  60. 60.
    Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC et al. 2006. Pertactin β-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. PNAS 103:4918–23
    [Google Scholar]
  61. 61.
    Kang'ethe W, Bernstein HD 2013. Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. PNAS 110:E4246–55
    [Google Scholar]
  62. 62.
    Kang'ethe W, Bernstein HD 2013. Stepwise folding of an autotransporter passenger domain is not essential for its secretion. J. Biol. Chem. 288:35028–38
    [Google Scholar]
  63. 63.
    Kaur H, Jakob RP, Marzinek JK, Green R, Imai Y et al. 2021. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593:125–29
    [Google Scholar]
  64. 64.
    Kikuchi S, Hirohashi T, Nakai M. 2006. Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. Plant Cell Physiol. 47:363–71
    [Google Scholar]
  65. 65.
    Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. 2007. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–64
    [Google Scholar]
  66. 66.
    Konovalova A, Kahne DE, Silhavy TJ. 2017. Outer membrane biogenesis. Annu. Rev. Microbiol. 71:539–56
    [Google Scholar]
  67. 67.
    Kovacheva S, Bedard J, Wardle A, Patel R, Jarvis P 2007. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50:364–79
    [Google Scholar]
  68. 68.
    Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M et al. 2008. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132:1011–24
    [Google Scholar]
  69. 69.
    Lauber F, Deme JC, Lea SM, Berks BC. 2018. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 564:77–82
    [Google Scholar]
  70. 70.
    Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL et al. 2018. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. PNAS 115:2359–64
    [Google Scholar]
  71. 71.
    Lee J, Tomasek D, Santos TM, May MD, Meuskens I, Kahne D 2019. Formation of a β-barrel membrane protein is catalyzed by the interior surface of the assembly machine protein BamA. eLife 8:e49787
    [Google Scholar]
  72. 72.
    Lessen HJ, Fleming PJ, Fleming KG, Sodt AJ. 2018. Building blocks of the outer membrane: calculating a general elastic energy model for β-barrel membrane proteins. J. Chem. Theory Comput. 14:4487–97
    [Google Scholar]
  73. 73.
    Liu J, Gumbart JC. 2020. Membrane thinning and lateral gating are consistent features of BamA across multiple species. PLOS Comput. Biol. 16:e1008355
    [Google Scholar]
  74. 74.
    Liu L, McNeilage RT, Shi LX, Theg SM. 2014. ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens. Plant Cell 26:1246–55
    [Google Scholar]
  75. 75.
    Lundquist K, Bakelar J, Noinaj N, Gumbart JC. 2018. C-terminal kink formation is required for lateral gating in BamA. PNAS 115:E7942–49
    [Google Scholar]
  76. 76.
    Luther A, Urfer M, Zahn M, Müller M, Wang SY et al. 2019. Chimeric peptidomimetic antibiotics against gram-negative bacteria. Nature 576:452–58
    [Google Scholar]
  77. 77.
    Maier T, Clantin B, Gruss F, Dewitte F, Delattre AS et al. 2015. Conserved Omp85 lid-lock structure and substrate recognition in FhaC. Nat. Commun. 6:7452
    [Google Scholar]
  78. 78.
    Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D et al. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61:151–64
    [Google Scholar]
  79. 79.
    Matano LM, Coyne MJ, Garcia-Bayona L, Comstock LE 2021. Bacteroidetocins target the essential outer membrane protein BamA of Bacteroidales symbionts and pathogens. mBio 12:e0228521
    [Google Scholar]
  80. 80.
    Nikaido H, Vaara M. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1–32
    [Google Scholar]
  81. 81.
    Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. 2014. Lateral opening and exit pore formation are required for BamA function. Structure 22:1055–62
    [Google Scholar]
  82. 82.
    Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H et al. 2013. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–90
    [Google Scholar]
  83. 83.
    Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC. 2003. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol. Microbiol. 47:1367–83
    [Google Scholar]
  84. 84.
    O'Neil PK, Richardson LGL, Paila YD, Piszczek G, Chakravarthy S et al. 2017. The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. PNAS 114:E4868–76
    [Google Scholar]
  85. 85.
    Paschen SA, Waizenegger T, Stan T, Preuss M, Cyrklaff M et al. 2003. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426:862–66
    [Google Scholar]
  86. 86.
    Patel R, Hsu SC, Bedard J, Inoue K, Jarvis P 2008. The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol 148:235–45
    [Google Scholar]
  87. 87.
    Pautsch A, Schulz GE. 1998. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5:1013–17
    [Google Scholar]
  88. 88.
    Peterson JH, Hussain S, Bernstein HD. 2018. Identification of a novel post-insertion step in the assembly of a bacterial outer membrane protein. Mol. Microbiol. 110:143–59
    [Google Scholar]
  89. 89.
    Peterson JH, Tian P, Ieva R, Dautin N, Bernstein HD. 2010. Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. PNAS 107:17739–44
    [Google Scholar]
  90. 90.
    Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M et al. 2013. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154:596–608
    [Google Scholar]
  91. 91.
    Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M et al. 2015. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523:333–36
    [Google Scholar]
  92. 92.
    Ricci DP, Hagan CL, Kahne D, Silhavy TJ. 2012. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. PNAS 109:3487–91
    [Google Scholar]
  93. 93.
    Richardson LGL, Small EL, Inoue H, Schnell DJ. 2018. Molecular topology of the transit peptide during chloroplast protein import. Plant Cell 30:1789–806
    [Google Scholar]
  94. 94.
    Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L et al. 2018. The outer membrane is an essential load-bearing element in gram-negative bacteria. Nature 559:617–21
    [Google Scholar]
  95. 95.
    Salacha R, Kovacić F, Brochier-Armanet C, Wilhelm S, Tommassen J et al. 2010. The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel type V secretion system. Environ. Microbiol. 12:1498–512
    [Google Scholar]
  96. 96.
    Sánchez-Pulido L, Devos D, Genevrois S, Vicente M, Valencia A 2003. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem. Sci. 28:523–26
    [Google Scholar]
  97. 97.
    Sauri A, Soprova Z, Wickstrom D, de Gier JW, Van der Schors RC et al. 2009. The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155:3982–91
    [Google Scholar]
  98. 98.
    Schiffrin B, Brockwell DJ, Radford SE. 2017. Outer membrane protein folding from an energy landscape perspective. BMC Biol 15:123
    [Google Scholar]
  99. 99.
    Schleiff E, Soll J, Küchler M, Kühlbrandt W, Harrer R. 2003. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160:541–51
    [Google Scholar]
  100. 100.
    Schulz GE. 2000. β-Barrel membrane proteins. Curr. Opin. Struct. Biol. 10:443–47
    [Google Scholar]
  101. 101.
    Selkrig J, Belousoff MJ, Headey SJ, Heinz E, Shiota T et al. 2015. Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module. Sci. Rep. 5:12905
    [Google Scholar]
  102. 102.
    Selkrig J, Mosbahi K, Webb CT, Belousoff MJ, Perry AJ et al. 2012. Discovery of an archetypal protein transport system in bacterial outer membranes. Nat. Struct. Mol. Biol. 19:506–10
    [Google Scholar]
  103. 103.
    Shen H-H, Leyton DL, Shiota T, Belousoff MJ, Noinaj N et al. 2014. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes. Nat. Commun. 5:5078
    [Google Scholar]
  104. 104.
    Shi LX, Theg SM. 2013. The chloroplast protein import system: from algae to trees. Biochim. Biophys. Acta Mol. Cell Res. 1833:314–31
    [Google Scholar]
  105. 105.
    Sikdar R, Peterson JH, Anderson DE, Bernstein HD. 2017. Folding of a bacterial integral outer membrane protein is initiated in the periplasm. Nat. Commun. 8:1309
    [Google Scholar]
  106. 106.
    Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. 2007. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. PNAS 104:6400–5
    [Google Scholar]
  107. 107.
    Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–84
    [Google Scholar]
  108. 108.
    Sommer MS, Daum B, Gross LE, Weis BL, Mirus O et al. 2011. Chloroplast Omp85 proteins change orientation during evolution. PNAS 108:13841–46
    [Google Scholar]
  109. 109.
    Stegmeier JF, Glück A, Sukumaran S, Mäntele W, Andersen C. 2007. Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli. Biol. Chem. 388:37–46
    [Google Scholar]
  110. 110.
    Storek KM, Auerbach MR, Shi H, Garcia NK, Sun D et al. 2018. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. PNAS 115:3692–97
    [Google Scholar]
  111. 111.
    Storek KM, Vij R, Sun D, Smith PA, Koerber JT, Rutherford ST. 2019. The Escherichia coli β-barrel assembly machinery is sensitized to perturbations under high membrane fluidity. J. Bacteriol. 201:e00517–18
    [Google Scholar]
  112. 112.
    Struyve M, Moons M, Tommassen J. 1991. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer-membrane protein. J. Mol. Biol. 218:141–48
    [Google Scholar]
  113. 113.
    Stubenrauch C, Belousoff MJ, Hay ID, Shen H-H, Lillington J et al. 2016. Effective assembly of fimbriae in Escherichia coli depends on the translocation assembly module nanomachine. Nat. Microbiol. 1:16064
    [Google Scholar]
  114. 114.
    Stubenrauch CJ, Lithgow T. 2019. The TAM: a translocation and assembly module of the β-barrel assembly machinery in bacterial outer membranes. EcoSal Plus 8:2 https://doi.org/10.1128/ecosalplus.ESP-0036-2018
    [Crossref] [Google Scholar]
  115. 115.
    Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2021. Physical properties of the bacterial outer membrane. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00638-0
    [Crossref] [Google Scholar]
  116. 116.
    Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV et al. 2021. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 590:163–69
    [Google Scholar]
  117. 117.
    Tomasek D, Rawson S, Lee J, Wzorek JS, Harrison SC et al. 2020. Structure of a nascent membrane protein as it folds on the BAM complex. Nature 583:473–78
    [Google Scholar]
  118. 118.
    Torres VVL, Heinz E, Stubenrauch CJ, Wilksch JJ, Cao H et al. 2018. An investigation into the Omp85 protein BamK in hypervirulent Klebsiella pneumoniae, and its role in outer membrane biogenesis. Mol. Microbiol. 109:584–99
    [Google Scholar]
  119. 119.
    Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. 2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–65
    [Google Scholar]
  120. 120.
    Wang Q, Guan Z, Qi L, Zhuang J, Wang C et al. 2021. Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex. Science 373:1377–81
    [Google Scholar]
  121. 121.
    Wang X, Peterson JH, Bernstein HD. 2021. Bacterial outer membrane proteins are targeted to the Bam complex by two parallel mechanisms. mBio 12:e00597–21
    [Google Scholar]
  122. 122.
    Warner LR, Gatzeva-Topalova PZ, Doerner PA, Pardi A, Sousa MC. 2017. Flexibility in the periplasmic domain of BamA is important for function. Structure 25:94–106
    [Google Scholar]
  123. 123.
    White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM et al. 2021. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat. Commun. 12:4174
    [Google Scholar]
  124. 124.
    Wiedemann N, Kozjak V, Chacinska A, Schonfisch B, Rospert S et al. 2003. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–71
    [Google Scholar]
  125. 125.
    Wiedemann N, Truscott KN, Pfannschmidt S, Guiard B, Meisinger C, Pfanner N. 2004. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: Intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279:18188–94
    [Google Scholar]
  126. 126.
    Wiesemann K, Simm S, Mirus O, Ladig R, Schleiff E. 2019. Regulation of two GTPases Toc159 and Toc34 in the translocon of the outer envelope of chloroplasts. Biochim. Biophys. Acta Proteins Proteom. 1867:627–36
    [Google Scholar]
  127. 127.
    Wilson MM, Anderson DE, Bernstein HD 2015. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLOS ONE 10:e0117732
    [Google Scholar]
  128. 128.
    Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–45
    [Google Scholar]
  129. 129.
    Yuan X, Johnson MD, Zhang J, Lo AW, Schembri MA et al. 2018. Molecular basis for the folding of β-helical autotransporter passenger domains. Nat. Commun. 9:1395
    [Google Scholar]
/content/journals/10.1146/annurev-micro-033021-023719
Loading
/content/journals/10.1146/annurev-micro-033021-023719
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error