1932

Abstract

Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041020-100926
2022-09-08
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041020-100926.html?itemId=/content/journals/10.1146/annurev-micro-041020-100926&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–53
    [Google Scholar]
  2. 2.
    Alper BJ, Job G, Yadav RK, Shanker S, Lowe BR, Partridge JF. 2013. Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 32:2321–35
    [Google Scholar]
  3. 3.
    Anderson KA, Madsen AS, Olsen CA, Hirschey MD. 2017. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim. Biophys. Acta Bioenerg. 1858:991–98
    [Google Scholar]
  4. 4.
    Anderson MZ, Gerstein AC, Wigen L, Baller JA, Berman J. 2014. Silencing is noisy: Population and cell level noise in telomere-adjacent genes is dependent on telomere position and Sir2. PLOS Genet 10:e1004436
    [Google Scholar]
  5. 5.
    Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H et al. 2002. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J. Biol. Chem. 277:18881–90
    [Google Scholar]
  6. 6.
    Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–85
    [Google Scholar]
  7. 7.
    Anderson RM, Latorre-Esteves M, Neves AR, Lavu S, Medvedik O et al. 2003. Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302:2124–26
    [Google Scholar]
  8. 8.
    Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE. 2011. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334:977–82
    [Google Scholar]
  9. 9.
    Arras SDM, Chitty JL, Wizrah MSI, Erpf PE, Schulz BL et al. 2017. Sirtuins in the phylum Basidiomycota: a role in virulence in Cryptococcus neoformans. Sci. Rep. 7:46567
    [Google Scholar]
  10. 10.
    Astrom SU, Kegel A, Sjostrand JO, Rine J. 2000. Kluyveromyces lactis Sir2p regulates cation sensitivity and maintains a specialized chromatin structure at the cryptic α-locus. Genetics 156:81–91
    [Google Scholar]
  11. 11.
    Bedalov A, Hirao M, Posakony J, Nelson M, Simon JA 2003. NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:7044–54
    [Google Scholar]
  12. 12.
    Belenky P, Racette FG, Bogan KL, McClure JM, Smith JS, Brenner C. 2007. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 129:473–84
    [Google Scholar]
  13. 13.
    Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1. J. Biol. Chem. 277:45099–107
    [Google Scholar]
  14. 14.
    Bouklas T, Jain N, Fries BC. 2017. Modulation of replicative lifespan in Cryptococcus neoformans: implications for virulence. Front. Microbiol. 8:98
    [Google Scholar]
  15. 15.
    Bouklas T, Masone L, Fries BC. 2018. Differences in sirtuin regulation in response to calorie restriction in Cryptococcus neoformans. J. Fungi. 4:26
    [Google Scholar]
  16. 16.
    Bouklas T, Pechuan X, Goldman DL, Edelman B, Bergman A, Fries BC. 2013. Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis. mBio 4:e00455–13
    [Google Scholar]
  17. 17.
    Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC et al. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. PNAS 93:1418–22
    [Google Scholar]
  18. 18.
    Buscaino A, Lejeune E, Audergon P, Hamilton G, Pidoux A, Allshire RC. 2013. Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO J 32:1250–64
    [Google Scholar]
  19. 19.
    Canelas AB, van Gulik WM, Heijnen JJ. 2008. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol. Bioeng. 100:734–43
    [Google Scholar]
  20. 20.
    Casatta N, Porro A, Orlandi I, Brambilla L, Vai M. 2013. Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors. Biochim. Biophys. Acta Mol. Cell Res. 1833:593–601
    [Google Scholar]
  21. 21.
    Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ et al. 2006. The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone H3 lysine 56 deacetylation. Curr. Biol. 16:1280–89
    [Google Scholar]
  22. 22.
    Corbi D, Sunder S, Weinreich M, Skokotas A, Johnson ES, Winter E 2014. Multisite phosphorylation of the Sum1 transcriptional repressor by S-phase kinases controls exit from meiotic prophase in yeast. Mol. Cell. Biol. 34:2249–63
    [Google Scholar]
  23. 23.
    Cormack BP, Ghori N, Falkow S. 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–82
    [Google Scholar]
  24. 24.
    Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB et al. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–7
    [Google Scholar]
  25. 25.
    De Las Penas A, Juarez-Cepeda J, Lopez-Fuentes E, Briones-Martin-Del-Campo M, Gutierrez-Escobedo G, Castano I. 2015. Local and regional chromatin silencing in Candida glabrata: consequences for adhesion and the response to stress. FEMS Yeast Res 15:fov056
    [Google Scholar]
  26. 26.
    De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–58
    [Google Scholar]
  27. 27.
    Delgoshaie N, Tang X, Kanshin ED, Williams EC, Rudner AD et al. 2014. Regulation of the histone deacetylase Hst3 by cyclin-dependent kinases and the ubiquitin ligase SCFCdc4. J. Biol. Chem. 289:13186–96
    [Google Scholar]
  28. 28.
    Devare MN, Kim YH, Jung J, Kang WK, Kwon KS, Kim JY. 2020. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 19:e13151
    [Google Scholar]
  29. 29.
    Domergue R, Castano I, De Las Penas A, Zupancic M, Lockatell V et al. 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308:866–70
    [Google Scholar]
  30. 30.
    Du J, Zhou Y, Su X, Yu JJ, Khan S et al. 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–9
    [Google Scholar]
  31. 31.
    Durand-Dubief M, Sinha I, Fagerstrom-Billai F, Bonilla C, Wright A et al. 2007. Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing. EMBO J 26:2477–88
    [Google Scholar]
  32. 32.
    Edenberg ER, Vashisht AA, Topacio BR, Wohlschlegel JA, Toczyski DP. 2014. Hst3 is turned over by a replication stress-responsive SCFCdc4 phospho-degron. PNAS 111:5962–67
    [Google Scholar]
  33. 33.
    Ellahi A, Rine J. 2016. Evolution and functional trajectory of Sir1 in gene silencing. Mol. Cell. Biol. 36:1164–79
    [Google Scholar]
  34. 34.
    Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C et al. 2005. Sir2 blocks extreme life-span extension. Cell 123:655–67
    [Google Scholar]
  35. 35.
    Fabrizio P, Longo VD. 2003. The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
    [Google Scholar]
  36. 36.
    Fernandez J, Marroquin-Guzman M, Nandakumar R, Shijo S, Cornwell KM et al. 2014. Plant defence suppression is mediated by a fungal sirtuin during rice infection by Magnaporthe oryzae. Mol. Microbiol. 94:70–88
    [Google Scholar]
  37. 37.
    Fine RD, Maqani N, Li M, Franck E, Smith JS. 2019. Depletion of limiting rDNA structural complexes triggers chromosomal instability and replicative aging of Saccharomyces cerevisiae. Genetics 212:75–91
    [Google Scholar]
  38. 38.
    Foss EJ, Gatbonton-Schwager T, Thiesen AH, Taylor E, Soriano R et al. 2019. Sir2 suppresses transcription-mediated displacement of Mcm2–7 replicative helicases at the ribosomal DNA repeats. PLOS Genet 15:e1008138
    [Google Scholar]
  39. 39.
    Freeman-Cook LL, Gomez EB, Spedale EJ, Marlett J, Forsburg SL et al. 2005. Conserved locus-specific silencing functions of Schizosaccharomyces pombe sir2+. Genetics 169:1243–60
    [Google Scholar]
  40. 40.
    Freeman-Cook LL, Sherman JM, Brachmann CB, Allshire RC, Boeke JD, Pillus L. 1999. The Schizosaccharomyces pombe hst4+ gene is a SIR2 homologue with silencing and centromeric functions. Mol. Biol. Cell 10:3171–86
    [Google Scholar]
  41. 41.
    Freire-Beneitez V, Gourlay S, Berman J, Buscaino A. 2016. Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans. Nucleic Acids Res 44:9166–79
    [Google Scholar]
  42. 42.
    Freire-Beneitez V, Price RJ, Tarrant D, Berman J, Buscaino A. 2016. Candida albicans repetitive elements display epigenetic diversity and plasticity. Sci. Rep. 6:22989
    [Google Scholar]
  43. 43.
    Froyd CA, Kapoor S, Dietrich F, Rusche LN. 2013. The deacetylase Sir2 from the yeast Clavispora lusitaniae lacks the evolutionarily conserved capacity to generate subtelomeric heterochromatin. PLOS Genet 9:e1003935
    [Google Scholar]
  44. 44.
    Froyd CA, Rusche LN. 2011. The duplicated deacetylases Sir2 and Hst1 subfunctionalized by acquiring complementary inactivating mutations. Mol. Cell. Biol. 31:3351–65
    [Google Scholar]
  45. 45.
    Fu XH, Meng FL, Hu Y, Zhou JQ. 2008. Candida albicans, a distinctive fungal model for cellular aging study. Aging Cell 7:746–57
    [Google Scholar]
  46. 46.
    Ganley AR, Ide S, Saka K, Kobayashi T. 2009. The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol. Cell 35:683–93
    [Google Scholar]
  47. 47.
    Gerhart-Hines Z, Dominy JE Jr., Blattler SM, Jedrychowski MP, Banks AS et al. 2011. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD+. Mol. Cell 44:851–63
    [Google Scholar]
  48. 48.
    Gottlieb S, Esposito RE. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–76
    [Google Scholar]
  49. 49.
    Ha CW, Huh WK. 2011. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res 39:1336–50
    [Google Scholar]
  50. 50.
    Haldar D, Kamakaka RT. 2008. Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation. Eukaryot. Cell 7:800–13
    [Google Scholar]
  51. 51.
    Halme A, Bumgarner S, Styles C, Fink GR. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–15
    [Google Scholar]
  52. 52.
    Hickman MA, Froyd CA, Rusche LN. 2011. Reinventing heterochromatin in budding yeasts: Sir2 and the origin recognition complex take center stage. Eukaryot. Cell 10:1183–92
    [Google Scholar]
  53. 53.
    Hickman MA, Rusche LN. 2009. The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLOS Genet 5:e1000710
    [Google Scholar]
  54. 54.
    Honigberg SM. 2016. Similar environments but diverse fates: responses of budding yeast to nutrient deprivation. Microb. Cell 3:302–28
    [Google Scholar]
  55. 55.
    Hoppe GJ, Tanny JC, Rudner AD, Gerber SA, Danaie S et al. 2002. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22:4167–80
    [Google Scholar]
  56. 56.
    Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K et al. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–91
    [Google Scholar]
  57. 57.
    Humphrey KM, Zhu L, Hickman MA, Hasan S, Maria H et al. 2020. Evolution of distinct responses to low NAD+ stress by rewiring the Sir2 deacetylase network in yeasts. Genetics 214:855–68
    [Google Scholar]
  58. 58.
    Iida T, Kobayashi T. 2019. RNA polymerase I activators count and adjust ribosomal RNA gene copy number. Mol. Cell 73:645–54.e13
    [Google Scholar]
  59. 59.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800
    [Google Scholar]
  60. 60.
    Itoh E, Odakura R, Oinuma KI, Shimizu M, Masuo S, Takaya N. 2017. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J. Biol. Chem. 292:11043–54
    [Google Scholar]
  61. 61.
    Itoh E, Shigemoto R, Oinuma KI, Shimizu M, Masuo S, Takaya N. 2017. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. J. Gen. Appl. Microbiol. 63:228–35
    [Google Scholar]
  62. 62.
    Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. 2003. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem. 278:50985–98
    [Google Scholar]
  63. 63.
    Jain N, Janning P, Neumann H. 2021. 14–3–3 protein Bmh1 triggers short-range compaction of mitotic chromosomes by recruiting sirtuin deacetylase Hst2. J. Biol. Chem. 296:100078
    [Google Scholar]
  64. 64.
    Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA et al. 2005. Increased life span due to calorie restriction in respiratory-deficient yeast. PLOS Genet 1:e69
    [Google Scholar]
  65. 65.
    Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. 2005. Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126:491–504
    [Google Scholar]
  66. 66.
    Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–80
    [Google Scholar]
  67. 67.
    Kang WK, Kim YH, Kang HA, Kwon KS, Kim JY 2015. Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast. eLife 4:e09709
    [Google Scholar]
  68. 68.
    Kapoor S, Zhu L, Froyd C, Liu T, Rusche LN. 2015. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. PNAS 112:12139–44
    [Google Scholar]
  69. 69.
    Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17:167–80
    [Google Scholar]
  70. 70.
    Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F et al. 2011. Expression analysis of SIR2 and SAPs1–4 gene expression in Candida albicans treated with allicin compared to fluconazole. Trop. Biomed. 28:589–98
    [Google Scholar]
  71. 71.
    Kobayashi T, Ganley AR. 2005. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–84
    [Google Scholar]
  72. 72.
    Kobayashi T, Horiuchi T. 1996. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1:465–74
    [Google Scholar]
  73. 73.
    Kobayashi T, Horiuchi T, Tongaonkar P, Vu L, Nomura M. 2004. SIR2 regulates recombination between different rDNA repeats, but not recombination within individual rRNA genes in yeast. Cell 117:441–53
    [Google Scholar]
  74. 74.
    Konada L, Aricthota S, Vadla R, Haldar D. 2018. Fission yeast sirtuin Hst4 functions in preserving genomic integrity by regulating replisome component Mcl1. Sci. Rep. 8:8496
    [Google Scholar]
  75. 75.
    Krause DJ, Kominek J, Opulente DA, Shen XX, Zhou X et al. 2018. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. PNAS 115:11030–35
    [Google Scholar]
  76. 76.
    Kruitwagen T, Denoth-Lippuner A, Wilkins BJ, Neumann H, Barral Y 2015. Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation. eLife 4:e1039
    [Google Scholar]
  77. 77.
    Kumar S, Lombard DB. 2018. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit. Rev. Biochem. Mol. Biol. 53:311–34
    [Google Scholar]
  78. 78.
    Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L et al. 2013. A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLOS Genet 9:e1003329
    [Google Scholar]
  79. 79.
    Landry J, Slama JT, Sternglanz R. 2000. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem. Biophys. Res. Commun. 278:685–90
    [Google Scholar]
  80. 80.
    Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J et al. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. PNAS 97:5807–11
    [Google Scholar]
  81. 81.
    Li C, Mueller JE, Bryk M. 2006. Sir2 represses endogenous polymerase II transcription units in the ribosomal DNA nontranscribed spacer. Mol. Biol. Cell 17:3848–59
    [Google Scholar]
  82. 82.
    Li G, Qi X, Sun G, Rocha RO, Segal LM et al. 2020. Terminating rice innate immunity induction requires a network of antagonistic and redox-responsive E3 ubiquitin ligases targeting a fungal sirtuin. New Phytol 226:523–40
    [Google Scholar]
  83. 83.
    Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS. 2013. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 14:R48
    [Google Scholar]
  84. 84.
    Li Y, Zhou Y, Wang F, Chen X, Wang C et al. 2018. SIRT4 is the last puzzle of mitochondrial sirtuins. Bioorg. Med. Chem. 26:3861–65
    [Google Scholar]
  85. 85.
    Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP. 2009. 2-Dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. J. Basic Microbiol. 49:579–83
    [Google Scholar]
  86. 86.
    Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA et al. 2002. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–48
    [Google Scholar]
  87. 87.
    Lin YY, Lu JY, Zhang J, Walter W, Dang W et al. 2009. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073–84
    [Google Scholar]
  88. 88.
    Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE. 2011. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLOS Genet 7:e1002015
    [Google Scholar]
  89. 89.
    Liu B, Larsson L, Caballero A, Hao X, Oling D et al. 2010. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–67
    [Google Scholar]
  90. 90.
    Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F 2008. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J. Appl. Microbiol. 105:2169–77
    [Google Scholar]
  91. 91.
    Luo K, Vega-Palas MA, Grunstein M. 2002. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16:1528–39
    [Google Scholar]
  92. 92.
    Ma B, Pan SJ, Domergue R, Rigby T, Whiteway M et al. 2009. High-affinity transporters for NAD+ precursors in Candida glabrata are regulated by Hst1 and induced in response to niacin limitation. Mol. Cell. Biol. 29:4067–79
    [Google Scholar]
  93. 93.
    Ma B, Pan SJ, Zupancic ML, Cormack BP. 2007. Assimilation of NAD+ precursors in Candida glabrata. Mol. Microbiol. 66:14–25
    [Google Scholar]
  94. 94.
    Maas NL, Miller KM, DeFazio LG, Toczyski DP. 2006. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23:109–19
    [Google Scholar]
  95. 95.
    MacCabe AP, Riach MB, Unkles SE, Kinghorn JR. 1990. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9:279–87
    [Google Scholar]
  96. 96.
    Marcet-Houben M, Gabaldon T. 2009. The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLOS ONE 4:e4357
    [Google Scholar]
  97. 97.
    Masumoto H, Hawke D, Kobayashi R, Verreault A. 2005. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–98
    [Google Scholar]
  98. 98.
    McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C et al. 2011. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:885–95
    [Google Scholar]
  99. 99.
    Mead J, McCord R, Youngster L, Sharma M, Gartenberg MR, Vershon AK. 2007. Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mol. Cell. Biol. 27:2466–75
    [Google Scholar]
  100. 100.
    Medvedik O, Lamming DW, Kim KD, Sinclair DA. 2007. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLOS Biol 5:e261
    [Google Scholar]
  101. 101.
    Michel AH, Kornmann B, Dubrana K, Shore D. 2005. Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes Dev 19:1199–210
    [Google Scholar]
  102. 102.
    Onishi M, Liou G-G, Buchberger JR, Walz T, Moazed D. 2007. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol. Cell 28:1015–28
    [Google Scholar]
  103. 103.
    Orta-Zavalza E, Guerrero-Serrano G, Gutierrez-Escobedo G, Canas-Villamar I, Juarez-Cepeda J et al. 2013. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol. Microbiol. 88:1135–48
    [Google Scholar]
  104. 104.
    Perez-Martin J, Uria JA, Johnson AD. 1999. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 18:2580–92
    [Google Scholar]
  105. 105.
    Perrod S, Cockell MM, Laroche T, Renauld H, Ducrest AL et al. 2001. A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast. EMBO J 20:197–209
    [Google Scholar]
  106. 106.
    Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK. 2003. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol. Cell. Biol. 23:4814–25
    [Google Scholar]
  107. 107.
    Price RJ, Weindling E, Berman J, Buscaino A. 2019. Chromatin profiling of the repetitive and nonrepetitive genomes of the human fungal pathogen Candida albicans. mBio 10:e01376–19
    [Google Scholar]
  108. 108.
    Roetzer A, Gabaldón T, Schüller C. 2011. From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol. Lett. 314:1–9
    [Google Scholar]
  109. 109.
    Rupert CB, Heltzel JM, Taylor DJ, Rusche LN 2016. Sporadic gene loss after duplication is associated with functional divergence of sirtuin deacetylases among Candida yeast species. G3 6:3297–305
    [Google Scholar]
  110. 110.
    Rusche LN, Kirchmaier AL, Rine J. 2002. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell 13:2207–22
    [Google Scholar]
  111. 111.
    Saka K, Ide S, Ganley AR, Kobayashi T. 2013. Cellular senescence in yeast is regulated by rDNA noncoding transcription. Curr. Biol. 23:1794–98
    [Google Scholar]
  112. 112.
    Sauve AA, Schramm VL. 2003. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42:9249–56
    [Google Scholar]
  113. 113.
    Selles Vidal L, Kelly CL, Mordaka PM, Heap JT 2018. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 1866:327–47
    [Google Scholar]
  114. 114.
    Shankaranarayana GD, Motamedi MR, Moazed D, Grewal SI. 2003. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13:1240–46
    [Google Scholar]
  115. 115.
    Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL et al. 2018. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175:1533–45.e20
    [Google Scholar]
  116. 116.
    Shigemoto R, Matsumoto T, Masuo S, Takaya N. 2018. 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production. J. Gen. Appl. Microbiol. 64:240–47
    [Google Scholar]
  117. 117.
    Shimizu M, Masuo S, Fujita T, Doi Y, Kamimura Y, Takaya N. 2012. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol. Cell. Biol. 32:3743–55
    [Google Scholar]
  118. 118.
    Sinclair DA, Guarente L. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–42
    [Google Scholar]
  119. 119.
    Sipiczki M. 2006. Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl. Environ. Microbiol. 72:6716–24
    [Google Scholar]
  120. 120.
    Smith DL Jr, McClure JM, Matecic M, Smith JS. 2007. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6:649–62
    [Google Scholar]
  121. 121.
    Smith JS, Boeke JD. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–54
    [Google Scholar]
  122. 122.
    Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S et al. 2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. PNAS 97:6658–63
    [Google Scholar]
  123. 123.
    Stevenson JS, Liu H. 2011. Regulation of white and opaque cell-type formation in Candida albicans by Rtt109 and Hst3. Mol. Microbiol. 81:1078–91
    [Google Scholar]
  124. 124.
    Stumpferl SW, Brand SE, Jiang JC, Korona B, Tiwari A et al. 2012. Natural genetic variation in yeast longevity. Genome Res 22:1963–73
    [Google Scholar]
  125. 125.
    Tanner KG, Landry J, Sternglanz R, Denu JM. 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. PNAS 97:14178–82
    [Google Scholar]
  126. 126.
    Thaminy S, Newcomb B, Kim J, Gatbonton T, Foss E et al. 2007. Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56. J. Biol. Chem. 282:37805–14
    [Google Scholar]
  127. 127.
    Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK et al. 2006. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5:505–14
    [Google Scholar]
  128. 128.
    Tudzynski B. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 5:656
    [Google Scholar]
  129. 129.
    Turkel S, Ener B. 2009. Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z. Naturforsch. C. J. Biosci. 64:405–10
    [Google Scholar]
  130. 130.
    Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL et al. 2006. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–61
    [Google Scholar]
  131. 131.
    Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K et al. 2014. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80
    [Google Scholar]
  132. 132.
    Wilson JM, Le VQ, Zimmerman C, Marmorstein R, Pillus L. 2006. Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Rep 7:1247–51
    [Google Scholar]
  133. 133.
    Wilson RA, Talbot NJ. 2009. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7:185–95
    [Google Scholar]
  134. 134.
    Winter E. 2012. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 76:1–15
    [Google Scholar]
  135. 135.
    Wiren M, Silverstein RA, Sinha I, Walfridsson J, Lee HM et al. 2005. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J 24:2906–18
    [Google Scholar]
  136. 136.
    Workman JJ, Chen H, Laribee RN. 2016. Saccharomyces cerevisiae TORC1 controls histone acetylation by signaling through the Sit4/PP6 phosphatase to regulate sirtuin deacetylase nuclear accumulation. Genetics 203:1733–46
    [Google Scholar]
  137. 137.
    Wurtele H, Tsao S, Lepine G, Mullick A, Tremblay J et al. 2010. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat. Med. 16:774–80
    [Google Scholar]
  138. 138.
    Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK. 1999. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J 18:6448–54
    [Google Scholar]
  139. 139.
    Zaganjor E, Yoon H, Spinelli JB, Nunn ER, Laurent G et al. 2021. SIRT4 is an early regulator of branched-chain amino acid catabolism that promotes adipogenesis. Cell Rep 36:109345
    [Google Scholar]
  140. 140.
    Zhao G, Rusche LN 2021. Genetic analysis of sirtuin deacetylases in hyphal growth of Candida albicans. mSphere 6:e00053–21
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041020-100926
Loading
/content/journals/10.1146/annurev-micro-041020-100926
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error