1932

Abstract

Human malaria, caused by infection with parasites, remains one of the most important global public health problems, with the World Health Organization reporting more than 240 million cases and 600,000 deaths annually as of 2020 (). Our understanding of the biology of these parasites is critical for development of effective therapeutics and prophylactics, including both antimalarials and vaccines. is a protozoan organism that is intracellular for most of its life cycle. However, to complete its complex life cycle and to allow for both amplification and transmission, the parasite must egress out of the host cell in a highly regulated manner. This review discusses the major pathways and proteins involved in the egress events during the life cycle—merozoite and gametocyte egress out of red blood cells, sporozoite egress out of the oocyst, and merozoite egress out of the hepatocyte. The similarities, as well as the differences, between the various egress pathways of the parasite highlight both novel cell biology and potential therapeutic targets to arrest its life cycle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-020659
2022-09-08
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-020659.html?itemId=/content/journals/10.1146/annurev-micro-041320-020659&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abkarian M, Massiera G, Berry L, Roques M, Braun-Breton C. 2011. A novel mechanism for egress of malarial parasites from red blood cells. Blood 117:4118–24
    [Google Scholar]
  2. 2.
    Absalon S, Blomqvist K, Rudlaff RM, DeLano TJ, Pollastri MP, Dvorin JD. 2018. Calcium-dependent protein kinase 5 is required for release of egress-specific organelles in Plasmodium falciparum. mBio 9:e00130–18
    [Google Scholar]
  3. 3.
    Adovelande J, Bastide B, Deleze J, Schrevel J. 1993. Cytosolic free calcium in Plasmodium falciparum-infected erythrocytes and the effect of verapamil: a cytofluorometric study. Exper. Parasitol. 76:247–58
    [Google Scholar]
  4. 4.
    Alam MM, Solyakov L, Bottrill AR, Flueck C, Siddiqui FA et al. 2015. Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. Nat. Commun. 6:e7285
    [Google Scholar]
  5. 5.
    Alleva LM, Kirk K. 2001. Calcium regulation in the intraerythrocytic malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 117:121–28
    [Google Scholar]
  6. 6.
    Alves E, Bartlett PJ, Garcia CRS, Thomas AP. 2011. Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J. Biol. Chem. 286:5905–12
    [Google Scholar]
  7. 7.
    Aly ASI, Matuschewski K. 2005. A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J. Exp. Med. 202:225–30
    [Google Scholar]
  8. 8.
    Andreadaki M, Pace T, Grasso F, Siden-Kiamos I, Mochi S et al. 2020. Plasmodium berghei Gamete Egress Protein is required for fertility of both genders. MicrobiologyOpen 9:e1038
    [Google Scholar]
  9. 9.
    Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F et al. 2008. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat. Chem. Biol. 4:203–13
    [Google Scholar]
  10. 10.
    Arisue N, Palacpac NMQ, Tougan T, Horii T. 2020. Characteristic features of the SERA multigene family in the malaria parasite. Parasit. Vectors 13:e170
    [Google Scholar]
  11. 11.
    Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S et al. 2009. PlasmoDB: a functional genomic database for malaria parasites. Nucl. Acids Res. 37:D539–43
    [Google Scholar]
  12. 12.
    Azevedo MF, Sanders PR, Krejany E, Nie CQ, Fu P et al. 2013. Inhibition of Plasmodium falciparum CDPK1 by conditional expression of its J-domain demonstrates a key role in schizont development. Biochem. J. 452:433–41
    [Google Scholar]
  13. 13.
    Baer K, Klotz C, Kappe SHI, Schnieder T, Frevert U. 2007. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLOS Pathog 3:e171
    [Google Scholar]
  14. 14.
    Baker D. 2004. Adenylyl and guanylyl cyclases from the malaria parasite Plasmodium falciparum. IUBMB Life 56:535–40
    [Google Scholar]
  15. 15.
    Baker DA, Matralis AN, Osborne SA, Large JM, Penzo M. 2020. Targeting the malaria parasite cGMP-dependent protein kinase to develop new drugs. Front. Microbiol. 11:602803
    [Google Scholar]
  16. 16.
    Baker DA, Stewart LB, Large JM, Bowyer PW, Ansell KH et al. 2017. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nat. Commun. 8:e430
    [Google Scholar]
  17. 17.
    Balestra AC, Koussis K, Klages N, Howell SA, Flynn HR et al. 2021. Ca2+ signals critical for egress and gametogenesis in malaria parasites depend on a multipass membrane protein that interacts with PKG. Sci. Adv. 7:eabe5396
    [Google Scholar]
  18. 18.
    Bansal A, Molina-Cruz A, Brzostowski J, Liu P, Luo Y et al. 2018. Pf CDPK1 is critical for malaria parasite gametogenesis and mosquito infection. PNAS 115:774–79
    [Google Scholar]
  19. 19.
    Bansal A, Molina-Cruz A, Brzostowski J, Mu J, Miller LH. 2017. Plasmodium falciparum calcium-dependent protein kinase 2 is critical for male gametocyte exflagellation but not essential for asexual proliferation. mBio 8:e01656–17
    [Google Scholar]
  20. 20.
    Bargieri DY, Thiberge S, Tay CL, Carey AF, Rantz A et al. 2016. Plasmodium merozoite TRAP family protein is essential for vacuole membrane disruption and gamete egress from erythrocytes. Cell Host Microbe 20:618–30
    [Google Scholar]
  21. 21.
    Beghyn TB, Charton J, Leroux F, Laconde G, Bourin A et al. 2011. Drug to genome to drug: discovery of new antiplasmodial compounds. J. Med. Chem. 54:3222–40
    [Google Scholar]
  22. 22.
    Bennink S, Kiesow MJ, Pradel G. 2016. The development of malaria parasites in the mosquito midgut. Cell. Microbiol. 18:905–18
    [Google Scholar]
  23. 23.
    Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V. 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117:503–14
    [Google Scholar]
  24. 24.
    Billker O, Lindo V, Panico M, Etienne AE, Paxton T et al. 1998. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392:289–92
    [Google Scholar]
  25. 25.
    Billker O, Shaw MK, Margos G, Sinden RE. 1997. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 115:1–7
    [Google Scholar]
  26. 26.
    Bisio H, Lunghi M, Brochet M, Soldati-Favre D. 2019. Phosphatidic acid governs natural egress in Toxoplasma gondii via a guanylate cyclase receptor platform. Nat. Microbiol. 4:420–28
    [Google Scholar]
  27. 27.
    Bisio H, Soldati-Favre D. 2019. Signaling cascades governing entry into and exit from host cells by Toxoplasma gondii. Annu. Rev. Microbiol. 73:579–99
    [Google Scholar]
  28. 28.
    Blisnick T, Vincensini L, Fall G, Braun-Breton C. 2006. Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell. Microbiol. 8:591–601
    [Google Scholar]
  29. 29.
    Blomqvist K, Helmel M, Wang C, Absalon S, Labunska T et al. 2020. Influence of Plasmodium falciparum calcium-dependent protein kinase 5 (PfCDPK5) on the late schizont stage phosphoproteome. mSphere 5:e00921–19
    [Google Scholar]
  30. 30.
    Brochet M, Balestra AC, Brusini L. 2021. cGMP homeostasis in malaria parasites—the key to perceiving and integrating environmental changes during transmission to the mosquito. Mol. Microbiol. 115:829–38
    [Google Scholar]
  31. 31.
    Brochet M, Billker O. 2016. Calcium signalling in malaria parasites. Mol. Microbiol. 100:397–408
    [Google Scholar]
  32. 32.
    Brochet M, Collins MO, Smith TK, Thompson E, Sebastian S et al. 2014. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLOS Biol 12:e1001806
    [Google Scholar]
  33. 33.
    Brown KM, Sibley LD. 2018. Essential cGMP signaling in Toxoplasma is initiated by a hybrid P-type ATPase-guanylate cyclase. Cell Host Microbe 24:804–16
    [Google Scholar]
  34. 34.
    Bullen HE, Jia Y, Yamaryo-Botte Y, Bisio H, Zhang O et al. 2016. Phosphatidic acid-mediated signaling regulates microneme secretion in Toxoplasma. Cell Host Microbe 19:349–60
    [Google Scholar]
  35. 35.
    Burda PC, Caldelari R, Heussler VT. 2017. Manipulation of the host cell membrane during Plasmodium liver stage egress. mBio 8:e00139–17
    [Google Scholar]
  36. 36.
    Burda PC, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT. 2015. A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLOS Pathog 11:e1004760
    [Google Scholar]
  37. 37.
    Bzik DJ, Li W, Horii T, Inselburg J. 1988. Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA. Mol. Biochem. Parasitol. 30:279–88
    [Google Scholar]
  38. 38.
    Carey AF, Singer M, Bargieri D, Thiberge S, Frischknecht F et al. 2014. Calcium dynamics of Plasmodium berghei sporozoite motility. Cell. Microbiol. 16:768–83
    [Google Scholar]
  39. 39.
    Chandramohanadas R, Davis PH, Beiting DP, Harbut MB, Darling C et al. 2009. Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324:794–97
    [Google Scholar]
  40. 40.
    Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. 2017. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLOS Pathog 13:e1006453
    [Google Scholar]
  41. 41.
    Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C et al. 2013. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLOS Pathog 9:e1003344
    [Google Scholar]
  42. 42.
    Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R et al. 2007. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe 2:5316–27
    [Google Scholar]
  43. 43.
    Currà C, Gessmann R, Pace T, Picci L, Peruzzi G et al. 2016. Release of Plasmodium sporozoites requires proteins with histone-fold dimerization domains. Nat. Commun. 7:e13846
    [Google Scholar]
  44. 44.
    Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR et al. 2015. Processing of Plasmodium falciparum merozoite surface protein MSP1 activates a spectrin-binding function enabling parasite egress from RBCs. Cell Host Microbe 18:433–44
    [Google Scholar]
  45. 45.
    Das S, Lemgruber L, Tay CL, Baum J, Meissner M. 2017. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development. BMC Biol 15:70
    [Google Scholar]
  46. 46.
    Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N et al. 2014. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLOS Pathog 10:e1004520
    [Google Scholar]
  47. 47.
    De Niz M, Meibalan E, Mejia P, Ma S, Brancucci NMB et al. 2018. Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Sci. Adv. 4:eaat3775
    [Google Scholar]
  48. 48.
    Debrabant A, Delplace P. 1989. Leupeptin alters the proteolytic processing of P126, the major parasitophorous vacuole antigen of Plasmodium falciparum. Mol. Biochem. Parasitol. 33:151–58
    [Google Scholar]
  49. 49.
    Debrabant A, Maes P, Delplace P, Dubremetz JF, Tartar A, Camus D. 1992. Intramolecular mapping of Plasmodium falciparum P126 proteolytic fragments by N-terminal amino acid sequencing. Mol. Biochem. Parasitol. 53:89–95
    [Google Scholar]
  50. 50.
    Deligianni E, Morgan RN, Bertuccini L, Kooij TW, Laforge A et al. 2011. Critical role for a stage-specific actin in male exflagellation of the malaria parasite. Cell. Microbiol. 13:1714–30
    [Google Scholar]
  51. 51.
    Deligianni E, Morgan RN, Bertuccini L, Wirth CC, de Monerri NCS et al. 2013. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell. Microbiol. 15:1438–55
    [Google Scholar]
  52. 52.
    Deligianni E, Silmon de Monerri NC, McMillan PJ, Bertuccini L, Superti F et al. 2018. Essential role of Plasmodium perforin-like protein 4 in ookinete midgut passage. PLOS ONE 13:e0201651
    [Google Scholar]
  53. 53.
    Deng W, Baker DA. 2002. A novel cyclic GMP-dependent protein kinase is expressed in the ring stage of the Plasmodium falciparum life cycle. Mol. Microbiol. 44:1141–51
    [Google Scholar]
  54. 54.
    Diaz CA, Allocco J, Powles MA, Yeung L, Donald RG et al. 2006. Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor. Mol. Biochem. Parasitol. 146:78–88
    [Google Scholar]
  55. 55.
    Donald RG, Allocco J, Singh SB, Nare B, Salowe SP, Wiltsie J, Liberator PA. 2002. Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase. Eukaryot Cell 1:317–28
    [Google Scholar]
  56. 56.
    Donald RGK, Zhong T, Wiersma H, Nare B, Yao D et al. 2006. Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Mol. Biochem. Parasitol. 142:86–98
    [Google Scholar]
  57. 57.
    Douradinha B, Augustijn KD, Moore SG, Ramesar J, Mota MM et al. 2011. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host. Malaria J 10:71
    [Google Scholar]
  58. 58.
    Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR et al. 2010. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328:910–12
    [Google Scholar]
  59. 59.
    Ecker A, Pinto SB, Baker KW, Kafatos FC, Sinden RE. 2007. Plasmodium berghei: Plasmodium perforin-like protein 5 is required for mosquito midgut invasion in Anopheles stephensi. Exp. Parasitol. 116:504–8
    [Google Scholar]
  60. 60.
    Engelmann S, Silvie O, Matuschewski K 2009. Disruption of Plasmodium sporozoite transmission by depletion of sporozoite invasion-associated protein 1. Eukaryot. Cell 8:640–48
    [Google Scholar]
  61. 61.
    Euk. Pathog. Vector Host Inform. Res 2021. PlasmoDB. Rel. 53, July 21
  62. 62.
    Färber PM, Graeser R, Franklin RM, Kappes B. 1997. Molecular cloning and characterization of a second calcium-dependent protein kinase of Plasmodium falciparum. Mol. Biochem. Parasitol. 87:211–16
    [Google Scholar]
  63. 63.
    Favuzza P, de Lera Ruiz M, Thompson JK, Triglia T, Ngo A et al. 2020. Discovery of dual plasmepsin-targeting antimalarial agents that disrupt multiple stages of the malaria parasite lifecycle. Cell Host Microbe 27:642–58
    [Google Scholar]
  64. 64.
    Fierro MA, Asady B, Brooks CF, Cobb DW, Villegas A et al. 2020. An endoplasmic reticulum CREC family protein regulates the egress proteolytic cascade in malaria parasites. mBio 11:e03078–19
    [Google Scholar]
  65. 65.
    Flueck C, Drought LG, Jones A, Patel A, Perrin AJ et al. 2019. Phosphodiesterase beta is the master regulator of cAMP signalling during malaria parasite invasion. PLOS Biol 17:e3000154
    [Google Scholar]
  66. 66.
    Garcia GE, Wirtz RA, Barr JR, Woolfitt A, Rosenberg R. 1998. Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J. Biol. Chem. 273:12003–5
    [Google Scholar]
  67. 67.
    Garg S, Agarwal S, Kumar S, Yazdani SS, Chitnis CE, Singh S. 2013. Calcium-dependent permeabilization of erythrocytes by a perforin-like protein during egress of malaria parasites. Nat. Commun. 4:1736
    [Google Scholar]
  68. 68.
    Gazarini ML, Garcia CR. 2004. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem. Biophys. Res. Commun. 321:138–44
    [Google Scholar]
  69. 69.
    Gazarini ML, Thomas AP, Pozzan T, Garcia CR. 2003. Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem. J. Cell. Biol. 161:103–10
    [Google Scholar]
  70. 70.
    Gemma S, Giovani S, Brindisi M, Tripaldi P, Brogi S et al. 2012. Quinolylhydrazones as novel inhibitors of Plasmodium falciparum serine protease PfSUB1. Bioorg. Med. Chem. Lett. 22:5317–21
    [Google Scholar]
  71. 71.
    Ghartey-Kwansah G, Yin Q, Li Z, Gumpper K, Sun Y et al. 2020. Calcium-dependent protein kinases in malaria parasite development and Infection. Cell Transpl 29:963689719884888
    [Google Scholar]
  72. 72.
    Giganti D, Bouillon A, Tawk L, Robert F, Martinez M et al. 2014. A novel Plasmodium-specific prodomain fold regulates the malaria drug target SUB1 subtilase. Nat. Commun. 5:e4833
    [Google Scholar]
  73. 73.
    Giovani S, Penzo M, Brogi S, Brindisi M, Gemma S et al. 2014. Rational design of the first difluorostatone-based PfSUB1 inhibitors. Bioorg. Med. Chem. Lett. 24:3582–86
    [Google Scholar]
  74. 74.
    Glushakova S, Beck JR, Garten M, Busse BL, Nasamu AS et al. 2018. Rounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytes. Cell. Microbiol. 20:e12868
    [Google Scholar]
  75. 75.
    Glushakova S, Humphrey G, Leikina E, Balaban A, Miller J, Zimmerberg J. 2010. New stages in the program of malaria parasite egress imaged in normal and sickle erythrocytes. Curr. Biol. 20:1117–21
    [Google Scholar]
  76. 76.
    Glushakova S, Lizunov V, Blank PS, Melikov K, Humphrey G, Zimmerberg J. 2013. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes. Malar. J. 12:41
    [Google Scholar]
  77. 77.
    Glushakova S, Mazar J, Hohmann-Marriott MF, Hama E, Zimmerberg J. 2009. Irreversible effect of cysteine protease inhibitors on the release of malaria parasites from infected erythrocytes. Cell. Microbiol. 11:95–105
    [Google Scholar]
  78. 78.
    Glushakova S, Yin D, Li T, Zimmerberg J. 2005. Membrane transformation during malaria parasite release from human red blood cells. Curr. Biol. 15:1645–50
    [Google Scholar]
  79. 79.
    Govindasamy K, Bhanot P. 2020. Overlapping and distinct roles of CDPK family members in the pre-erythrocytic stages of the rodent malaria parasite, Plasmodium berghei. PLOS Pathog 16:e1008131
    [Google Scholar]
  80. 80.
    Graewe S, Rankin KE, Lehmann C, Deschermeier C, Hecht L et al. 2011. Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress. PLOS Pathog 7:e1002224
    [Google Scholar]
  81. 81.
    Gurnett AM, Liberator PA, Dulski PM, Salowe SP, Donald RG et al. 2002. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites: a novel chemotherapeutic target. J. Biol. Chem. 277:15913–22
    [Google Scholar]
  82. 82.
    Hale VL, Watermeyer JM, Hackett F, Vizcay-Barrena G, van Ooij C et al. 2017. Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress. PNAS 114:3439–44
    [Google Scholar]
  83. 83.
    Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A. 2002. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100:1048–54
    [Google Scholar]
  84. 84.
    Harmon AC, Gribskov M, Harper JF. 2000. CDPKs—a kinase for every Ca2+ signal?. Trends Plant Sci 5:154–59
    [Google Scholar]
  85. 85.
    Hirai M, Arai M, Kawai S, Matsuoka H. 2006. PbGCβ is essential for Plasmodium ookinete motility to invade midgut cell and for successful completion of parasite life cycle in mosquitoes. J. Biochem. 140:747–57
    [Google Scholar]
  86. 86.
    Howard BL, Harvey KL, Stewart RJ, Azevedo MF, Crabb BS et al. 2015. Identification of potent phosphodiesterase inhibitors that demonstrate cyclic nucleotide-dependent functions in apicomplexan parasites. ACS Chem. Biol. 10:1145–54
    [Google Scholar]
  87. 87.
    Ishino T, Boisson B, Orito BB, Lacroix C, Bischoff E et al. 2009. LISP1 is important for the egress of Plasmodium berghei parasites from liver cells. Cell. Microbiol. 11:1329–39
    [Google Scholar]
  88. 88.
    Ishino T, Chinzei Y, Yuda M. 2005. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7:199–208
    [Google Scholar]
  89. 89.
    Ishino T, Orito Y, Chinzei Y, Yuda M. 2006. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol. Microbiol. 59:1175–84
    [Google Scholar]
  90. 90.
    Ishino T, Tachibana M, Baba M, Iriko H, Tsuboi T, Torii M. 2020. Observation of morphological changes of female osmiophilic bodies prior to Plasmodium gametocyte egress from erythrocytes. Mol. Biochem. Parasitol. 236:111261
    [Google Scholar]
  91. 91.
    Iyer GR, Singh S, Kaur I, Agarwal S, Siddiqui MA et al. 2018. Calcium-dependent phosphorylation of Plasmodium falciparum serine repeat antigen 5 triggers merozoite egress. J. Biol. Chem. 293:9736–46
    [Google Scholar]
  92. 92.
    Jebiwott S, Govindaswamy K, Mbugua A, Bhanot P. 2013. Plasmodium berghei calcium dependent protein kinase 1 is not required for host cell invasion. PLOS ONE 8:e79171
    [Google Scholar]
  93. 93.
    Jia Y, Marq JB, Bisio H, Jacot D, Mueller C et al. 2017. Crosstalk between PKA and PKG controls pH-dependent host cell egress of Toxoplasma gondii. EMBO J 36:3250–67
    [Google Scholar]
  94. 94.
    Jiang Y, Wei J, Cui H, Liu C, Zhi Y et al. 2020. An intracellular membrane protein GEP1 regulates xanthurenic acid induced gametogenesis of malaria parasites. Nat. Commun. 11:e1764
    [Google Scholar]
  95. 95.
    Joice R, Nilsson SK, Montgomery J, Dankwa S, Egan E et al. 2014. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6:244re5
    [Google Scholar]
  96. 96.
    Jones ML, Cottingham C, Rayner JC. 2009. Effects of calcium signaling on Plasmodium falciparum erythrocyte invasion and post-translational modification of gliding-associated protein 45 (PfGAP45). Mol. Biochem. Parasitol. 168:55–62
    [Google Scholar]
  97. 97.
    Kadota K, Ishino T, Matsuyama T, Chinzei Y, Yuda M. 2004. Essential role of membrane-attack protein in malarial transmission to mosquito host. PNAS 101:16310–15
    [Google Scholar]
  98. 98.
    Kafsack BF, Carruthers VB. 2010. Apicomplexan perforin-like proteins. Commun. Integr. Biol. 3:18–23
    [Google Scholar]
  99. 99.
    Kato N, Sakata T, Breton G, le Roch KG, Nagle A et al. 2008. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nat. Chem. Biol. 4:347–56
    [Google Scholar]
  100. 100.
    Kawamoto F, Alejo-Blanco R, Fleck SL, Kawamoto Y, Sinden RE. 1990. Possible roles of Ca2+ and cGMP as mediators of the exflagellation of Plasmodium berghei and Plasmodium falciparum. Mol. Biochem. Parasitol. 42:101–8
    [Google Scholar]
  101. 101.
    Kehrer J, Singer M, Lemgruber L, Silva PAGC, Frischknecht F, Mair GR. 2016. A putative small solute transporter is responsible for the secretion of G377 and TRAP-containing secretory vesicles during Plasmodium gamete egress and sporozoite motility. PLOS Pathog 12:e1005734
    [Google Scholar]
  102. 102.
    Kimura M, Yamaguchi Y, Takada S, Tanabe K. 1993. Cloning of a Ca2+-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca2+-ATPases. J. Cell Sci. 104:1129–36
    [Google Scholar]
  103. 103.
    Klug D, Frischknecht F 2017. Motility precedes egress of malaria parasites from oocysts. eLife 6:e19157
    [Google Scholar]
  104. 104.
    Koussis K, Withers-Martinez C, Yeoh S, Child M, Hackett F et al. 2009. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J 28:725–35
    [Google Scholar]
  105. 105.
    Kumar P, Tripathi A, Ranjan R, Halbert J, Gilberger T et al. 2014. Regulation of Plasmodium falciparum development by Calcium-Dependent Protein Kinase 7 (PfCDPK7). J. Biol. Chem. 289:20386–95
    [Google Scholar]
  106. 106.
    Large JM, Birchall K, Bouloc NS, Merritt AT, Smiljanic-Hurley E et al. 2019. Potent inhibitors of malarial P. falciparum protein kinase G: improving the cell activity of a series of imidazopyridines. Bioorg. Med. Chem. Lett. 29:509–14
    [Google Scholar]
  107. 107.
    le Bonniec S, Deregnaucourt C, Redeker V, Banerjee R, Grellier P et al. 1999. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J. Biol. Chem. 274:14218–23
    [Google Scholar]
  108. 108.
    Leykauf K, Treeck M, Gilson PR, Nebl T, Braulke T et al. 2010. Protein kinase A dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLOS Pathog 6:e1000941
    [Google Scholar]
  109. 109.
    Li J, Mitamura T, Fox BA, Bzik DJ, Horii T. 2002. Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol. Int. 51:343–52
    [Google Scholar]
  110. 110.
    Lidumniece E, Withers-Martinez C, Hackett F, Collins CR, Perrin AJ et al. 2021. Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. PNAS 118:e2022696118
    [Google Scholar]
  111. 111.
    Liu J, Gluzman IY, Drew ME, Goldberg DE. 2005. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 280:1432–37
    [Google Scholar]
  112. 112.
    Lourido S, Moreno SN. 2015. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 57:186–93
    [Google Scholar]
  113. 113.
    Martin SK, Miller LH, Nijhout MM, Carter R. 1978. Plasmodium gallinaceum: induction of male gametocyte exflagellation by phosphodiesterase inhibitors. Exp. Parasitol. 44:239–42
    [Google Scholar]
  114. 114.
    Mastan BS, Narwal SK, Dey S, Kumar KA, Mishra S. 2017. Plasmodium berghei plasmepsin VIII is essential for sporozoite gliding motility. Int. J. Parasitol. 47:239–45
    [Google Scholar]
  115. 115.
    Matralis AN, Malik A, Penzo M, Moreno I, Almela MJ et al. 2019. Development of chemical entities endowed with potent fast-killing properties against Plasmodium falciparum malaria parasites. J. Med. Chem. 62:9217–35
    [Google Scholar]
  116. 116.
    McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN et al. 2007. Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect. Immun. 75:5565–74
    [Google Scholar]
  117. 117.
    McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM et al. 2008. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase. PLOS Biol 6:e139
    [Google Scholar]
  118. 118.
    Meyers MJ, Tortorella MD, Xu J, Qin L, He Z et al. 2013. Evaluation of aminohydantoins as a novel class of antimalarial agents. ACS Med. Chem. Lett. 5:89–93
    [Google Scholar]
  119. 119.
    Millholland MG, Chandramohanadas R, Pizzarro A, Wehr A, Shi H et al. 2011. The malaria parasite progressively dismantles the host erythrocyte cytoskeleton for efficient egress. Mol. Cell. Proteom. 10:M111.010678
    [Google Scholar]
  120. 120.
    Miranda K, de Souza W, Plattner H, Hentschel J, Kawazoe U et al. 2008. Acidocalcisomes in Apicomplexan parasites. Exp. Parasitol. 118:2–9
    [Google Scholar]
  121. 121.
    Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D et al. 2009. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLOS Pathog 5:e1000599
    [Google Scholar]
  122. 122.
    Moreno SN, Ayong L, Pace DA. 2011. Calcium storage and function in apicomplexan parasites. Essays Biochem 51:97–110
    [Google Scholar]
  123. 123.
    Muhia DK, Swales CA, Deng W, Kelly JM, Baker DA. 2001. The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 42:553–60
    [Google Scholar]
  124. 124.
    Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A et al. 2017. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science 358:518–22
    [Google Scholar]
  125. 125.
    Nasamu AS, Polino AJ, Istvan ES, Goldberg DE 2020. Malaria parasite plasmepsins: more than just plain old degradative pepsins. J. Biol. Chem. 295:8425–41
    [Google Scholar]
  126. 126.
    Nofal SD, Patel A, Blackman MJ, Flueck C, Baker DA. 2021. Plasmodium falciparum guanylyl cyclase-alpha and the activity of its appended P4-ATPase domain are essential for cGMP synthesis and blood-stage egress. mBio 12:e02694–20
    [Google Scholar]
  127. 127.
    Obrova K, Cyrklaff M, Frank R, Mair GR, Mueller AK. 2019. Transmission of the malaria parasite requires ferlin for gamete egress from the red blood cell. Cell. Microbiol. 21:e12999
    [Google Scholar]
  128. 128.
    Ojo KK, Eastman RT, Vidadala R, Zhang Z, Rivas KL et al. 2014. A specific inhibitor of PfCDPK4 blocks malaria transmission: chemical-genetic validation. J. Infect. Dis. 209:275–84
    [Google Scholar]
  129. 129.
    Olivieri A, Bertuccini L, Deligianni E, Franke-Fayard B, Currà C et al. 2015. Distinct properties of the egress-related osmiophilic bodies in male and female gametocytes of the rodent malaria parasite Plasmodium berghei. Cell. Microbiol. 17:355–68
    [Google Scholar]
  130. 130.
    Omara-Opyene AL, Moura PA, Sulsona CR, Bonilla JA, Yowell CA et al. 2004. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J. Biol. Chem. 279:54088–96
    [Google Scholar]
  131. 131.
    Pace T, Grasso F, Camarda G, Suarez C, Blackman MJ et al. 2019. The Plasmodium berghei serine protease PbSUB1 plays an important role in male gamete egress. Cell. Microbiol. 21:e13028
    [Google Scholar]
  132. 132.
    Paul AS, Miliu A, Paulo JA, Goldberg JM, Bonilla AM et al. 2020. Co-option of Plasmodium falciparum PP1 for egress from host erythrocytes. Nat. Commun. 11:3532
    [Google Scholar]
  133. 133.
    Penzo M, de las Heras-Dueña L, Mata-Cantero L, Diaz-Hernandez B, Vazquez-Muñiz MJ et al. 2019. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci. Rep. 9:7005
    [Google Scholar]
  134. 134.
    Perrin AJ, Collins CR, Russell MRG, Collinson LM, Baker DA, Blackman MJ. 2018. The actinomyosin motor drives malaria parasite red blood cell invasion but not egress. mBio 9:e00905–18
    [Google Scholar]
  135. 135.
    Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N et al. 2017. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 358:522–28
    [Google Scholar]
  136. 136.
    Ponzi M, Sidén-Kiamos I, Bertuccini L, Currà C, Kroeze H et al. 2009. Egress of Plasmodium berghei gametes from their host erythrocyte is mediated by the MDV-1/PEG3 protein. Cell. Microbiol. 11:1272–88
    [Google Scholar]
  137. 137.
    Prinz B, Harvey KL, Wilcke L, Ruch U, Engelberg K et al. 2016. Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites. Sci. Rep. 6:34479
    [Google Scholar]
  138. 138.
    Putrianti ED, Schmidt-Christensen A, Arnold I, Heussler VT, Matuschewski K, Silvie O 2010. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite. Cell. Microbiol. 12:725–39
    [Google Scholar]
  139. 139.
    Putrianti ED, Schmidt-Christensen A, Heussler V, Matuschewski K, Ingmundson A. 2020. A Plasmodium cysteine protease required for efficient transition from the liver infection stage. PLOS Pathog 16:e1008891
    [Google Scholar]
  140. 140.
    Raabe AC, Wengelnik K, Billker O, Vial HJ. 2011. Multiple roles for Plasmodium berghei phosphoinositide-specific phospholipase C in regulating gametocyte activation and differentiation. Cell. Microbiol. 13:955–66
    [Google Scholar]
  141. 141.
    Rohrbach P, Friedrich O, Hentschel J, Plattner H, Fink RH, Lanzer M. 2005. Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum-infected erythrocytes. J. Biol. Chem. 280:27960–69
    [Google Scholar]
  142. 142.
    Rotmann A, Sanchez C, Guiguemde A, Rohrbach P, Dave A et al. 2010. PfCHA is a mitochondrial divalent cation/H+ antiporter in Plasmodium falciparum. Mol. Microbiol. 76:1591–606
    [Google Scholar]
  143. 143.
    Ruecker A, Shea M, Hackett F, Suarez C, Hirst EMA et al. 2012. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J. Biol. Chem. 287:37949–63
    [Google Scholar]
  144. 144.
    Sajid M, Withers-Martinez C, Blackman MJ. 2000. Maturation and specificity of Plasmodium falciparum subtilisin-like protease-1, a malaria merozoite subtilisin-like serine protease. J. Biol. Chem. 275:631–41
    [Google Scholar]
  145. 145.
    Salmon BL, Oksman A, Goldberg DE. 2001. Malaria parasite exit from the host erythrocyte: A two-step process requiring extraerythrocytic proteolysis. PNAS 98:271–76
    [Google Scholar]
  146. 146.
    Sassmannshausen J, Pradel G, Bennink S. 2020. Perforin-like proteins of apicomplexan parasites. Front. Cell Infect. Microbiol. 10:578883
    [Google Scholar]
  147. 147.
    Siden-Kiamos I, Pace T, Klonizakis A, Nardini M, Garcia CRSS, Currà C. 2018. Identification of Plasmodium berghei Oocyst Rupture Protein 2 (ORP2) domains involved in sporozoite egress from the oocyst. Int. J. Parasitol. 48:1127–36
    [Google Scholar]
  148. 148.
    Sijwali PS, Rosenthal PJ. 2004. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. PNAS 101:4384–89
    [Google Scholar]
  149. 149.
    Silmon de Monerri NC, Flynn HR, Campos MG, Hackett F, Koussis K et al. 2011. Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect. Immun. 79:1086–97
    [Google Scholar]
  150. 150.
    Sinden RE, Canning EU, Spain B. 1976. Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proc. R. Soc. Lond. Biol. Sci. 193:55–76
    [Google Scholar]
  151. 151.
    Singh P, Alaganan A, More KR, Lorthiois A, Thiberge S et al. 2019. Role of a patatin-like phospholipase in Plasmodium falciparum gametogenesis and malaria transmission. PNAS 116:17498–508
    [Google Scholar]
  152. 152.
    Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR et al. 2015. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol. Microbiol. 96:368–87
    [Google Scholar]
  153. 153.
    Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S et al. 2006. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313:1287–90
    [Google Scholar]
  154. 154.
    Suarez C, Volkmann K, Gomes AR, Billker O, Blackman MJ. 2013. The malarial serine protease SUB1 plays an essential role in parasite liver stage development. PLOS Pathog 9:e1003811
    [Google Scholar]
  155. 155.
    Suareź-Cortés P, Sharma V, Bertuccini L, Costa G, Bannerman NL et al. 2016. Comparative proteomics and functional analysis reveal a role of Plasmodium falciparum osmiophilic bodies in malaria parasite transmission. Mol. Cell. Proteom. 15:3243–55
    [Google Scholar]
  156. 156.
    Suareź-Cortés P, Silvestrini F, Alano P. 2014. A fast, non-invasive, quantitative staining protocol provides insights in Plasmodium falciparum gamete egress and in the role of osmiophilic bodies. Malaria J 13:389
    [Google Scholar]
  157. 157.
    Subramanian G, Belekar MA, Shukla A, Tong JX, Sinha A et al. 2018. Targeted phenotypic screening in Plasmodium falciparum and Toxoplasma gondii reveals novel modes of action of Medicines for Malaria Venture malaria box molecules. mSphere 3:e00534–17
    [Google Scholar]
  158. 158.
    Sultan AA, Thathy V, Frevert U, Robson KJH, Crisanti A et al. 1997. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90:511–20
    [Google Scholar]
  159. 159.
    Talman AM, Lacroix C, Marques SR, Blagborough AM, Carzaniga R et al. 2011. PbGEST mediates malaria transmission to both mosquito and vertebrate host. Mol. Microbiol. 82:462–74
    [Google Scholar]
  160. 160.
    Tan MSY, Koussis K, Withers-Martinez C, Howell SA, Thomas JA et al. 2021. Autocatalytic activation of a malarial egress protease is druggable and requires a protein cofactor. EMBO J 40:e107226
    [Google Scholar]
  161. 161.
    Tarr SJ, Withers-Martinez C, Flynn HR, Snijders AP, Masino L et al. 2020. A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem. J. 477:525–40
    [Google Scholar]
  162. 162.
    Tawk L, Lacroix C, Gueirard P, Kent R, Gorgette O et al. 2013. A key role for Plasmodium subtilisin-like SUB1 protease in egress of malaria parasites from host hepatocytes. J. Biol. Chem. 288:33336–46
    [Google Scholar]
  163. 163.
    Taylor CJ, McRobert L, Baker DA. 2008. Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes aberrant gametogenesis. Mol. Microbiol. 69:110–18
    [Google Scholar]
  164. 164.
    Taylor HM, McRobert L, Grainger M, Sicard A, Dluzewski AR et al. 2010. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot. Cell. 9:37–45
    [Google Scholar]
  165. 165.
    Thomas JA, Tan MSY, Bisson C, Borg A, Umrekar TR et al. 2018. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat. Microbiol. 3:447–55
    [Google Scholar]
  166. 166.
    Uboldi AD, Wilde ML, McRae EA, Stewart RJ, Dagley LF et al. 2018. Protein kinase A negatively regulates Ca2+ signalling in Toxoplasma gondii. PLOS Biol 16:e2005642
    [Google Scholar]
  167. 167.
    Vanaerschot M, Murithi JM, Pasaje CFA, Ghidelli-Disse S, Dwomoh L et al. 2020. Inhibition of resistance-refractory P. falciparum kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity. Cell Chem. Biol. 27:806–18
    [Google Scholar]
  168. 168.
    Vaughan AM, Kappe SHI. 2017. Malaria parasite liver infection and exoerythrocytic biology. Cold Spring Harb. . Perspect. Med. 7:a025486
    [Google Scholar]
  169. 169.
    Vidadala RSR, Ojo KK, Johnson SM, Zhang Z, Leonard SE et al. 2014. Development of potent and selective Plasmodium falciparum calcium-dependent protein kinase 4 (PfCDPK4) inhibitors that block the transmission of malaria to mosquitoes. Eur. J. Med. Chem. 74:562–73
    [Google Scholar]
  170. 170.
    Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, Linder JU. 2004. Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16:115–25
    [Google Scholar]
  171. 171.
    Wentzinger L, Bopp S, Tenor H, Klar J, Brun R et al. 2008. Cyclic nucleotide-specific phosphodiesterases of Plasmodium falciparum: PfPDEα, a non-essential cGMP-specific PDE that is an integral membrane protein. Int. J. Parasitol. 38:1625–37
    [Google Scholar]
  172. 172.
    Wilde ML, Triglia T, Marapana D, Thompson JK, Kouzmitchev AA et al. 2019. Protein kinase A is essential for invasion of Plasmodium falciparum into human erythrocytes. mBio 10:e01972–19
    [Google Scholar]
  173. 173.
    Wirth CC, Bennink S, Scheuermayer M, Fischer R, Pradel G. 2015. Perforin-like protein PPLP4 is crucial for mosquito midgut infection by Plasmodium falciparum. Mol. Biochem. Parasitol. 201:90–99
    [Google Scholar]
  174. 174.
    Wirth CC, Glushakova S, Scheuermayer M, Repnik U, Garg S et al. 2014. Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell. Microbiol. 16:709–33
    [Google Scholar]
  175. 175.
    Withers-Martinez C, Strath M, Hackett F, Haire LF, Howell SA et al. 2014. The malaria parasite egress protease SUB1 is a calcium-dependent redox switch subtilisin. Nat. Commun. 5:e3726
    [Google Scholar]
  176. 176.
    Yang ASP, O'Neill MT, Jennison C, Lopaticki S, Allison CC et al. 2017. Cell traversal activity is important for Plasmodium falciparum liver infection in humanized mice. Cell Rep 18:3105–16
    [Google Scholar]
  177. 177.
    Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH et al. 2007. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–83
    [Google Scholar]
  178. 178.
    Yuasa K, Mi-Ichi F, Kobayashi T, Yamanouchi M, Kotera J et al. 2005. PfPDE1, a novel cGMP-specific phosphodiesterase from the human malaria parasite Plasmodium falciparum. Biochem. J. 392:221–29
    [Google Scholar]
  179. 179.
    Zhao Y, Kappes B, Franklin RM. 1993. Gene structure and expression of an unusual protein kinase from Plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-binding proteins. J. Biol. Chem. 268:4347–54
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-020659
Loading
/content/journals/10.1146/annurev-micro-041320-020659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error