1932

Abstract

Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the system in the fission yeast ; the spore killers of species; and two spore-killer systems in , and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-113730
2022-09-08
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-113730.html?itemId=/content/journals/10.1146/annurev-micro-041320-113730&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Avril A, Purcell J, Beniguel S, Chapuisat M. 2020. Maternal effect killing by a supergene controlling ant social organization. PNAS 117:17130–34
    [Google Scholar]
  2. 2.
    Barrett LG, Legros M, Kumaran N, Glassop D, Raghu S, Gardiner DM. 2019. Gene drives in plants: opportunities and challenges for weed control and engineered resilience. Proc. Biol. Sci. 286:20191515
    [Google Scholar]
  3. 3.
    Bernet J. 1965. Mode d'action des gènes de barrage et relation entre l'incompatibilité cellulaire et l'incompatibilité sexuelle chez le Podospora anserina. Ann. Sci. Natl. Bot. 6:611–768
    [Google Scholar]
  4. 4.
    Bowen NJ, Jordan IK, Epstein JA, Wood V, Levin HL. 2003. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res 13:1984–97
    [Google Scholar]
  5. 5.
    Bravo Nunez MA, Lange JJ, Zanders SE. 2018. A suppressor of a wtf poison-antidote meiotic driver acts via mimicry of the driver's antidote. PLOS Genet 14:e1007836
    [Google Scholar]
  6. 6.
    Bravo Nunez MA, Sabbarini IM, Eickbush MT, Liang Y, Lange JJ et al. 2020. Dramatically diverse Schizosaccharomyces pombe wtf meiotic drivers all display high gamete-killing efficiency. PLOS Genet 16:e1008350
    [Google Scholar]
  7. 7.
    Burt A, Trivers R. 2006. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, MA: Harvard Univ. Press
  8. 8.
    Chiti F, Dobson CM. 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86:27–68
    [Google Scholar]
  9. 9.
    Crow JF. 1991. Why is Mendelian segregation so exact?. BioEssays 13:305–12
    [Google Scholar]
  10. 10.
    Dalstra HJ, Swart K, Debets AJ, Saupe SJ, Hoekstra RF. 2003. Sexual transmission of the [Het-S] prion leads to meiotic drive in Podospora anserina. PNAS 100:6616–21
    [Google Scholar]
  11. 11.
    Dalstra HJ, van der Zee R, Swart K, Hoekstra RF, Saupe SJ, Debets AJ. 2005. Non-Mendelian inheritance of the HET-s prion or HET-s prion domains determines the het-S spore killing system in Podospora anserina. Fungal Genet. Biol. 42:836–47
    [Google Scholar]
  12. 12.
    Daskalov A, Gantner M, Walti MA, Schmidlin T, Chi CN et al. 2014. Contribution of specific residues of the beta-solenoid fold to HET-s prion function, amyloid structure and stability. PLOS Pathog 10:e1004158
    [Google Scholar]
  13. 13.
    Daskalov A, Habenstein B, Martinez D, Debets AJ, Sabate R et al. 2015. Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold. PLOS Biol 13:e1002059
    [Google Scholar]
  14. 14.
    Daskalov A, Heller J, Herzog S, Fleissner A, Glass NL. 2017. Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. Microbiol. Spectr. 5: https://doi.org/10.1128/microbiolspec.FUNK-0015-2016
    [Crossref] [Google Scholar]
  15. 15.
    Debets AJ, Dalstra HJ, Slakhorst M, Koopmanschap B, Hoekstra RF, Saupe SJ. 2012. High natural prevalence of a fungal prion. PNAS 109:10432–37
    [Google Scholar]
  16. 16.
    Deleu C, Clave C, Begueret J. 1993. A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics 135:45–52
    [Google Scholar]
  17. 17.
    Dyrka W, Lamacchia M, Durrens P, Kobe B, Daskalov A et al. 2014. Diversity and variability of NOD-like receptors in fungi. Genome Biol. Evol. 6:3137–58
    [Google Scholar]
  18. 18.
    Eickbush MT, Young JM, Zanders SE. 2019. Killer meiotic drive and dynamic evolution of the wtf gene family. Mol. Biol. Evol. 36:1201–14
    [Google Scholar]
  19. 19.
    Gardiner DM, Rusu A, Barrett L, Hunter GC, Kazan K. 2020. Can natural gene drives be part of future fungal pathogen control strategies in plants?. New Phytol 228:1431–39
    [Google Scholar]
  20. 20.
    Gershenson S. 1928. A new sex-ratio abnormality in DROSOPHILA OBSCURA. Genetics 13:488–507
    [Google Scholar]
  21. 21.
    Gladieux P, De Bellis F, Hann-Soden C, Svedberg J, Johannesson H, Taylor JW. 2020. Neurospora from natural populations: population genomics insights into the life history of a model microbial eukaryote. Methods Mol. Biol. 2090:313–36
    [Google Scholar]
  22. 22.
    Grognet P, Lalucque H, Malagnac F, Silar P. 2014. Genes that bias Mendelian segregation. PLOS Genet 10:e1004387
    [Google Scholar]
  23. 23.
    Habig M, Kema GHJ, Stukenbrock EH 2018. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. eLife 7:e40251
    [Google Scholar]
  24. 24.
    Hammond TM, Rehard DG, Xiao H, Shiu PK 2012. Molecular dissection of Neurospora Spore killer meiotic drive elements. PNAS 109:12093–98
    [Google Scholar]
  25. 25.
    Harvey AM, Rehard DG, Groskreutz KM, Kuntz DR, Sharp KJ et al. 2014. A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement. Genetics 197:1165–74
    [Google Scholar]
  26. 26.
    Hay BA, Oberhofer G, Guo M. 2021. Engineering the composition and fate of wild populations with gene drive. Annu. Rev. Entomol. 66:407–34
    [Google Scholar]
  27. 27.
    Hoffman CS, Wood V, Fantes PA. 2015. An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics 201:403–23
    [Google Scholar]
  28. 28.
    Hu W, Jiang ZD, Suo F, Zheng JX, He WZ, Du LL 2017. A large gene family in fission yeast encodes spore killers that subvert Mendel's law. eLife 6:e26057
    [Google Scholar]
  29. 29.
    Hurst LD. 2019. A century of bias in genetics and evolution. Heredity 123:33–43
    [Google Scholar]
  30. 30.
    Jeffares DC, Rallis C, Rieux A, Speed D, Prevorovsky M et al. 2015. The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nat. Genet. 47:235–41
    [Google Scholar]
  31. 31.
    Kathariou S, Spieth PT. 1982. Spore killer polymorphism in FUSARIUM MONILIFORME. Genetics 102:19–24
    [Google Scholar]
  32. 32.
    Kruger AN, Mueller JL. 2021. Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cell Mol. Life Sci. 78:3205–18
    [Google Scholar]
  33. 33.
    Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE et al. 2021. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell 184:194904–18.e11
    [Google Scholar]
  34. 34.
    Larracuente AM, Presgraves DC. 2012. The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics 192:33–53
    [Google Scholar]
  35. 35.
    Liu H, Li Y, Chen D, Qi Z, Wang Q et al. 2017. A-to-I RNA editing is developmentally regulated and generally adaptive for sexual reproduction in Neurospora crassa. PNAS 114:E7756–65
    [Google Scholar]
  36. 36.
    Lohmar JM, Rhoades NA, Patel TN, Proctor RH, Hammond TM, Brown DW. 2022. A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems. Genetics 15:iyac029
    [Google Scholar]
  37. 37.
    Lopez Hernandez JF, Zanders SE 2018. Veni, vidi, vici: the success of wtf meiotic drivers in fission yeast. Yeast 35:447–53
    [Google Scholar]
  38. 38.
    Lyttle TW. 1993. Cheaters sometimes prosper: distortion of mendelian segregation by meiotic drive. Trends Genet 9:205–10
    [Google Scholar]
  39. 39.
    Martinossi-Allibert I, Veller C, Ament-Velasquez SL, Vogan AA, Rueffler C, Johannesson H. 2021. Invasion and maintenance of meiotic drivers in populations of ascomycete fungi. Evolution 75:1150–69
    [Google Scholar]
  40. 40.
    Matsuyama A, Arai R, Yashiroda Y, Shirai A, Kamata A et al. 2006. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24:841–47
    [Google Scholar]
  41. 41.
    Muirhead CA, Presgraves DC. 2021. Satellite DNA-mediated diversification of a sex-ratio meiotic drive gene family in Drosophila. Nat. Ecol. Evol. 5:121604–12
    [Google Scholar]
  42. 42.
    Nauta MJ, Hoekstra RF. 1993. Evolutionary dynamics of spore killers. Genetics 135:923–30
    [Google Scholar]
  43. 43.
    Nuckolls NL, Bravo Nunez MA, Eickbush MT, Young JM, Lange JJ et al. 2017. wtf genes are prolific dual poison-antidote meiotic drivers. eLife 6:e26033
    [Google Scholar]
  44. 44.
    Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS et al. 2020. The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. eLife 9:e55694
    [Google Scholar]
  45. 45.
    Padieu E, Bernet J. 1967. Mode d'action des gènes responsables de l'avortement de certains produits de la méiose chez l'Ascomycète Podosporaanserina [Mode of action of the genes responsible for abortion of certain products of meiosis in the Ascomycete Podospora anserina]. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 264:2300–3
    [Google Scholar]
  46. 46.
    Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN et al. 2020. Resistance to natural and synthetic gene drive systems. J. Evol. Biol. 33:1345–60
    [Google Scholar]
  47. 47.
    Pyle J, Patel T, Merrill B, Nsokoshi C, McCall M et al. 2016. A meiotic drive element in the maize pathogen Fusarium verticillioides is located within a 102 kb region of chromosome V. G3 6:2543–52
    [Google Scholar]
  48. 48.
    Raju NB, Metzenberg RL, Shiu PK. 2007. Neurospora spore killers Sk-2 and Sk-3 suppress meiotic silencing by unpaired DNA. Genetics 176:43–52
    [Google Scholar]
  49. 49.
    Rhoades NA, Hammond TM. 2021. RNA editing controls meiotic drive by a Neurospora Spore killer. bioRxiv 2020.12.30.424869, Jan. 1
  50. 50.
    Rhoades NA, Harvey AM, Samarajeewa DA, Svedberg J, Yusifov A et al. 2019. Identification of rfk-1, a meiotic driver undergoing RNA editing in Neurospora. Genetics 212:93–110
    [Google Scholar]
  51. 51.
    Riek R, Saupe SJ. 2016. The HET-S/s prion motif in the control of programmed cell death. Cold Spring Harb. Perspect. Biol. 8:a023515
    [Google Scholar]
  52. 52.
    Sander L, Novitski E. 1957. Meiotic drive as an evolutionary force. Am. Nat. 91:105–10
    [Google Scholar]
  53. 53.
    Saupe SJ. 2020. Amyloid signaling in filamentous fungi and bacteria. Annu. Rev. Microbiol. 74:673–91
    [Google Scholar]
  54. 54.
    Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ et al. 2012. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLOS Biol 10:e1001451
    [Google Scholar]
  55. 55.
    Shiu PK, Raju NB, Zickler D, Metzenberg RL. 2001. Meiotic silencing by unpaired DNA. Cell 107:905–16
    [Google Scholar]
  56. 56.
    Silver LM. 1985. Mouse t haplotypes. Annu. Rev. Genet. 19:179–208
    [Google Scholar]
  57. 57.
    Srinivasa AN, Zanders SE. 2020. Meiotic drive. Curr. Biol. 30:R627–29
    [Google Scholar]
  58. 58.
    Svedberg J, Hosseini S, Chen J, Vogan AA, Mozgova I et al. 2018. Convergent evolution of complex genomic rearrangements in two fungal meiotic drive elements. Nat. Commun. 9:4242
    [Google Scholar]
  59. 59.
    Svedberg J, Vogan AA, Rhoades NA, Sarmarajeewa D, Jacobson DJ et al. 2021. An introgressed gene causes meiotic drive in Neurospora sitophila. PNAS 118:e2026605118
    [Google Scholar]
  60. 60.
    Swentowsky KW, Gent JI, Lowry EG, Schubert V, Ran X et al. 2020. Distinct kinesin motors drive two types of maize neocentromeres. Genes Dev 34:1239–51
    [Google Scholar]
  61. 61.
    Taga M, Bronson CR, Yoder OC. 1985. Nonrandom abortion of ascospores containing alternate alleles at the Tox-1 locus of the fungal plant pathogen Cochliobolus heterostrophus. Can. J. Genet. Cytol. 27:450–56
    [Google Scholar]
  62. 62.
    Turner BC, Perkins DD. 1979. Spore killer, a chromosomal factor in Neurospora that kills meiotic products not containing it. Genetics 93:587–606
    [Google Scholar]
  63. 63.
    Turner BC, Perkins DD. 1991. Meiotic drive in Neurospora and other fungi. Am. Nat. 137:416–29
    [Google Scholar]
  64. 64.
    Turner BC, Perkins DD, Fairfield A. 2001. Neurospora from natural populations: a global study. Fungal Genet. Biol. 32:67–92
    [Google Scholar]
  65. 65.
    Urquhart AS, Gardiner DM. 2022. A natural fungal gene drive enacts killing through targeting DNA. bioRxiv 2022.01.19.477016, Jan. 21
  66. 66.
    van der Gaag M, Debets AJ, Oosterhof J, Slakhorst M, Thijssen JA, Hoekstra RF. 2000. Spore-killing meiotic drive factors in a natural population of the fungus Podospora anserina. Genetics 156:593–605
    [Google Scholar]
  67. 67.
    Vogan AA, Ament-Velasquez SL, Bastiaans E, Wallerman O, Saupe SJ et al. 2021. The Enterprise, a massive transposon carrying Spok meiotic drive genes. Genome Res 31:789–98
    [Google Scholar]
  68. 68.
    Vogan AA, Ament-Velasquez SL, Granger-Farbos A, Svedberg J, Bastiaans E et al. 2019. Combinations of Spok genes create multiple meiotic drivers in Podospora. eLife 8:e46454
    [Google Scholar]
  69. 69.
    Wedell N, Price TAR, Lindholm AK. 2019. Gene drive: progress and prospects. Proc. Biol. Sci. 286:20192709
    [Google Scholar]
  70. 70.
    Zanders SE, Eickbush MT, Yu JS, Kang JW, Fowler KR et al. 2014. Genome rearrangements and pervasive meiotic drive cause hybrid infertility in fission yeast. eLife 3:e02630
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-113730
Loading
/content/journals/10.1146/annurev-micro-041320-113730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error