1932

Abstract

A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available in this new niche support a bloom of serovars, thereby ensuring transmission of the pathogen to the next susceptible host by the fecal-oral route. Here we review the anaerobic food chain that characterizes resident gut-associated microbial communities along with the winning metabolic strategy serovars use to edge out competing microbes in the inflamed intestine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104108
2015-10-15
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104108.html?itemId=/content/journals/10.1146/annurev-micro-091014-104108&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmer BM, van Reeuwijk J, Watson PR, Wallis TS, Heffron F. 1.  1999. Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol. Microbiol. 31:971–82 [Google Scholar]
  2. Aleksic S, Heinzerling F, Bockemühl J. 2.  1996. Human infection caused by salmonellae of subspecies II to VI in Germany, 1977–1992. Zbl. Bakt. 283:391–98 [Google Scholar]
  3. Ali MM, Newsom DL, Gonzalez JF, Sabag-Daigle A, Stahl C. 3.  et al. 2014. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine. PLOS Pathog. 10:e1004209 [Google Scholar]
  4. Balagam B, Richardson DE. 4.  2008. The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines. Inorg. Chem. 47:1173–78 [Google Scholar]
  5. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS. 5.  et al. 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66:1654–61 [Google Scholar]
  6. Barman M, Unold D, Shifley K, Amir E, Hung K. 6.  et al. 2008. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 76:907–15 [Google Scholar]
  7. Barthel M, Hapfelmeier S, Quintanilla-Martinez L, Kremer M, Rohde M. 7.  et al. 2003. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71:2839–58 [Google Scholar]
  8. Bäumler AJ. 8.  1997. The record of horizontal gene transfer in Salmonella. Trends Microbiol. 5:318–22 [Google Scholar]
  9. Bäumler AJ, Heffron F, Reissbrodt R. 9.  1997. Rapid detection of Salmonella enterica with primers specific for iroB. J. Clin. Microbiol. 35:1224–30 [Google Scholar]
  10. Bäumler AJ, Norris TL, Lasco T, Voight W, Reissbrodt R. 10.  et al. 1998. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J. Bacteriol. 180:1446–53 [Google Scholar]
  11. Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A. 11.  et al. 2006. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. PNAS 103:1834–39 [Google Scholar]
  12. Blaut M. 12.  1994. Metabolism of methanogens. Antonie van Leeuwenhoek 66:187–208 [Google Scholar]
  13. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 13.  2000. Salmonella nomenclature. J. Clin. Microbiol. 38:2465–67 [Google Scholar]
  14. Cardelli J, Konisky J. 14.  1974. Isolation and characterization of an Escherichia coli mutant tolerant to colicins Ia and Ib. J. Bacteriol. 119:379–85 [Google Scholar]
  15. Carter PB, Collins FM. 15.  1974. The route of enteric infection in normal mice. J. Exp. Med. 139:1189–203 [Google Scholar]
  16. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R. 16.  et al. 2007. Colicin biology. Microbiol. Mol. Biol. Rev. 71:158–229 [Google Scholar]
  17. Caspari D, Macy JM. 17.  1983. The role of carbon dioxide in glucose metabolism of Bacteroides fragilis. Arch. Microbiol. 135:16–24 [Google Scholar]
  18. Chassard C, Bernalier-Donadille A. 18.  2006. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiol. Lett. 254:116–22 [Google Scholar]
  19. Chessa D, Spiga L, De Riu N, Delaconi P, Mazzarello V. 19.  et al. 2014. Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4. Infect. Immun. 82:4553–62 [Google Scholar]
  20. Clark DP. 20.  1989. The fermentation pathways of Escherichia coli. FEMS Microbiol. Rev. 5:223–34 [Google Scholar]
  21. Crawford RW, Wangdi T, Spees AM, Xavier MN, Tsolis RM, Bäumler AJ. 21.  2013. Loss of very-long O-antigen chains optimizes capsule-mediated immune evasion by Salmonella enterica serovar Typhi. mBio 4:e00232–13 [Google Scholar]
  22. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC. 22.  2008. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 67:971–83 [Google Scholar]
  23. Cummings JH, Englyst HN. 23.  1987. Fermentation in the human large intestine and the available substrates. Am. J. Clin. Nutr. 45:1243–55 [Google Scholar]
  24. de la Huerga J, Popper H. 24.  1951. Urinary excretion of choline metabolites following choline administration in normals and patients with hepatobiliary diseases. J. Clin. Invest. 30:463–70 [Google Scholar]
  25. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ. 25.  et al. 2013. Probiotic bacteria reduce Salmonella Typhimurium intestinal colonization by competing for iron. Cell Host Microbe 14:26–37 [Google Scholar]
  26. Donohoe DR, Wali A, Brylawski BP, Bultman SJ. 26.  2012. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLOS ONE 7:e46589 [Google Scholar]
  27. Drake HL, Gossner AS, Daniel SL. 27.  2008. Old acetogens, new light. Ann. N.Y. Acad. Sci. 1125:100–28 [Google Scholar]
  28. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. 28.  2004. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 91:915–23 [Google Scholar]
  29. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L. 29.  et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  30. Edwards JC, Johnson MS, Taylor BL. 30.  2006. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol. Microbiol. 62:823–37 [Google Scholar]
  31. Espey MG. 31.  2013. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic. Biol. Med. 55:130–40 [Google Scholar]
  32. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H. 32.  et al. 2013. The long-term stability of the human gut microbiota. Science 341:1237439 [Google Scholar]
  33. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ. 33.  et al. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. PNAS 103:16502–7 [Google Scholar]
  34. Fischbach MA, Sonnenburg JL. 34.  2011. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10:336–47 [Google Scholar]
  35. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA. 35.  et al. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–21 [Google Scholar]
  36. Freter R, Brickner H, Fekete J, Vickerman MM, Carey KE. 36.  1983. Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39:686–703 [Google Scholar]
  37. Fricke WF, Mammel MK, McDermott PF, Tartera C, White DG. 37.  et al. 2011. Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J. Bacteriol. 193:3556–68 [Google Scholar]
  38. Fritsch J, Lenz O, Friedrich B. 38.  2013. Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat. Rev. Microbiol. 11:106–14 [Google Scholar]
  39. Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. 39.  2001. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol. 62:255–59 [Google Scholar]
  40. Galán JE, Curtiss R III. 40.  1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. PNAS 86:6383–87 [Google Scholar]
  41. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W. 41.  et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:382–92 [Google Scholar]
  42. Gibson GR, Macfarlane GT, Cummings JH. 42.  1988. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65:103–11 [Google Scholar]
  43. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. 43.  2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10:1033–43 [Google Scholar]
  44. Greer-Phillips SE, Alexandre G, Taylor BL, Zhulin IB. 44.  2003. Aer and Tsr guide Escherichia coli in spatial gradients of oxidizable substrates. Microbiology 149:2661–67 [Google Scholar]
  45. Grimont PAD, Weill F-X. 45.  2007. Antigenic formulae of the Salmonella serovars. WHO Collab. Cent. Ref. Res. Salmonella, Paris
  46. Guterman SK, Dann L. 46.  1973. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J. Bacteriol. 114:1225–30 [Google Scholar]
  47. Haneda T, Winter SE, Butler BP, Wilson RP, Tukel C. 47.  et al. 2009. The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect. Immun. 77:2932–42 [Google Scholar]
  48. Hantke K. 48.  1981. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol. Gen. Genet. 182:288–92 [Google Scholar]
  49. Hantke K. 49.  1990. Dihydroxybenzoylserine—a siderophore for E. coli. FEMS Microbiol. Lett. 55:5–8 [Google Scholar]
  50. Hantke K, Nicholson G, Rabsch W, Winkelmann G. 50.  2003. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. PNAS 100:3677–82 [Google Scholar]
  51. Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller AJ. 51.  et al. 2005. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol. 174:1675–85 [Google Scholar]
  52. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. 52.  1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177:2813–20 [Google Scholar]
  53. Hensel M, Hinsley AP, Nikolaus T, Sawers G, Berks BC. 53.  1999. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32:275–87 [Google Scholar]
  54. Hensel M, Shea JE, Bäumler AJ, Gleeson C, Blattner F, Holden DW. 54.  1997. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J. Bacteriol. 179:1105–11 [Google Scholar]
  55. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. 55.  1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–3 [Google Scholar]
  56. Huang CJ, Barrett EL. 56.  1991. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J. Bacteriol. 173:1544–53 [Google Scholar]
  57. Kawai K, Fujita M, Nakao M. 57.  1974. Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim. Biophys. Acta 369:222–33 [Google Scholar]
  58. Larque E, Sabater-Molina M, Zamora S. 58.  2007. Biological significance of dietary polyamines. Nutrition 23:87–95 [Google Scholar]
  59. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. 59.  2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76:403–16 [Google Scholar]
  60. Le Minor L, Popoff MY. 60.  1987. Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella: request for an opinion. Int. J. System. Evol. Bacteriol. 37:465–68 [Google Scholar]
  61. Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. 61.  1999. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J. Clin. Investig. 104:1107–14 [Google Scholar]
  62. Li J, Ochman H, Groisman EA, Boyd EF, Solomon F. 62.  et al. 1995. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. PNAS 92:7252–56 [Google Scholar]
  63. Li J, Smith NH, Nelson K, Crichton PB, Old DC. 63.  et al. 1993. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J. Med. Microbiol. 38:129–39 [Google Scholar]
  64. Lopez CA, Winter SE, Rivera-Chávez F, Xavier MN, Poon V. 64.  et al. 2012. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. mBio 3:e00143–12 [Google Scholar]
  65. Louis P, Flint HJ. 65.  2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294:1–8 [Google Scholar]
  66. Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J. 66.  et al. 2010. How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J. Biol. Chem. 285:3928–38 [Google Scholar]
  67. Magee EA, Richardson CJ, Hughes R, Cummings JH. 67.  2000. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72:1488–94 [Google Scholar]
  68. Maier L, Vyas R, Cordova CD, Lindsay H, Schmidt TS. 68.  et al. 2013. Microbiota-derived hydrogen fuels Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe 14:641–51 [Google Scholar]
  69. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI. 69.  et al. 2008. Molecular phylogeny of the salmonellae: relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J. Bacteriol. 190:7060–67 [Google Scholar]
  70. Meynell GG. 70.  1963. Antibacterial mechanisms of the mouse gut. II. The role of Eh and volatile fatty acids in the normal gut. Br. J. Exp. Pathol. 44:209–19 [Google Scholar]
  71. Miller TL, Wolin MJ. 71.  1979. Fermentations by saccharolytic intestinal bacteria. Am. J. Clin. Nutr. 32:164–72 [Google Scholar]
  72. Mills DM, Bajaj V, Lee CA. 72.  1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol. Microbiol. 15:749–59 [Google Scholar]
  73. Mills PC, Richardson DJ, Hinton JC, Spiro S. 73.  2005. Detoxification of nitric oxide by the flavorubredoxin of Salmonella enterica serovar Typhimurium. Biochem. Soc. Trans. 33:198–99 [Google Scholar]
  74. Mills PC, Rowley G, Spiro S, Hinton JC, Richardson DJ. 74.  2008. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology 154:1218–28 [Google Scholar]
  75. Muller L. 75.  1923. Un nouveau milieu d'enrichissement pour la recherche du bacille typhique et des paratyphique. C. R. Seances Soc. Biol. Fil. 89:434–37 [Google Scholar]
  76. Muyzer G, Stams AJ. 76.  2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6:441–54 [Google Scholar]
  77. Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR. 77.  2010. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu. Rev. Food Sci. Technol. 1:363–95 [Google Scholar]
  78. Nedialkova LP, Denzler R, Koeppel MB, Diehl M, Ring D. 78.  et al. 2014. Inflammation fuels colicin Ib-dependent competition of Salmonella serovar Typhimurium and E. coli in enterobacterial blooms. PLOS Pathog. 10:e1003844 [Google Scholar]
  79. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC. 79.  et al. 2013. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502:96–99 [Google Scholar]
  80. Nielsen LR, Schukken YH, Grohn YT, Ersboll AK. 80.  2004. Salmonella dublin infection in dairy cattle: risk factors for becoming a carrier. Prev. Vet. Med. 65:47–62 [Google Scholar]
  81. Nuccio SP, Bäumler AJ. 81.  2014. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 5:e00929–14 [Google Scholar]
  82. Ochman H, Groisman EA. 82.  1996. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64:5410–12 [Google Scholar]
  83. Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K. 83.  2003. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–70 [Google Scholar]
  84. Pimentel M, Mayer AG, Park S, Chow EJ, Hasan A, Kong Y. 84.  2003. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 48:86–92 [Google Scholar]
  85. Pollack JR, Neilands JB. 85.  1970. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 38:989–92 [Google Scholar]
  86. Price-Carter M, Tingey J, Bobik TA, Roth JR. 86.  2001. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar Typhimurium on ethanolamine or 1,2-propanediol. J. Bacteriol. 183:2463–75 [Google Scholar]
  87. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS. 87.  et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  88. Que JU, Hentges DJ. 88.  1985. Effect of streptomycin administration on colonization resistance to Salmonella typhimurium in mice. Infect. Immun. 48:169–74 [Google Scholar]
  89. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP. 89.  et al. 2009. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–86 [Google Scholar]
  90. Raffatellu M, Santos RL, Chessa D, Wilson RP, Winter SE. 90.  et al. 2007. The capsule encoding the viaB locus reduces interleukin-17 expression and mucosal innate responses in the bovine intestinal mucosa during infection with Salmonella enterica serotype Typhi. Infect. Immun. 75:4342–50 [Google Scholar]
  91. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ III. 91.  1989. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J. Clin. Microbiol. 27:313–20 [Google Scholar]
  92. Reissbrodt R, Rabsch W. 92.  1988. Further differentiation of Enterobacteriaceae by means of siderophore-pattern analysis. Z. Bakteriol. Mikrobiol. Hyg. Ser. A 268:306–17 [Google Scholar]
  93. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD. 93.  et al. 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285:22082–90 [Google Scholar]
  94. Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG. 94.  et al. 2013. Salmonella uses energy taxis to benefit from intestinal inflammation. PLOS Pathog. 9:e1003267 [Google Scholar]
  95. Roediger WE, Moore J, Babidge W. 95.  1997. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig. Dis. Sci. 42:1571–79 [Google Scholar]
  96. Santos RL, Raffatellu M, Bevins CL, Adams LG, Tukel C. 96.  et al. 2009. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 17:498–506 [Google Scholar]
  97. Schaffer S, Hantke K, Braun V. 97.  1985. Nucleotide sequence of the iron regulatory gene fur. Mol. Gen. Genet. 200:110–13 [Google Scholar]
  98. Schmitt CK, Ikeda JS, Darnell SC, Watson PR, Bispham J. 98.  et al. 2001. Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect. Immun. 69:5619–25 [Google Scholar]
  99. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 99.  2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69:52–60 [Google Scholar]
  100. Selander RK, Beltran P, Smith NH, Helmuth R, Rubin FA. 100.  et al. 1990. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect. Immun. 58:2262–75 [Google Scholar]
  101. Selander RK, Smith NH, Li J, Beltran P, Ferris KE. 101.  et al. 1992. Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J. Bacteriol. 174:3587–92 [Google Scholar]
  102. Shivaprasad HL. 102.  2000. Fowl typhoid and pullorum disease. Rev. Sci. Tech. 19:405–24 [Google Scholar]
  103. Stecher B, Barthel M, Schlumberger MC, Haberli L, Rabsch W. 103.  et al. 2008. Motility allows S. Typhimurium to benefit from the mucosal defence. Cell. Microbiol. 10:1166–80 [Google Scholar]
  104. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M. 104.  et al. 2007. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLOS Biol. 5:2177–89 [Google Scholar]
  105. Stone WS. 105.  1912. The medical aspect of chronic typhoid infection (typhoid bacillus carriers). Am. J. Med. Sci. 143:544–57 [Google Scholar]
  106. Tap J, Mondot S, Levenez F, Pelletier E, Caron C. 106.  et al. 2009. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11:2574–84 [Google Scholar]
  107. Thiennimitr P, Winter SE, Bäumler AJ. 107.  2012. Salmonella, the host and its microbiota. Curr. Opin. Microbiol. 15:108–14 [Google Scholar]
  108. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V. 108.  et al. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. PNAS 108:17480–85 [Google Scholar]
  109. Tsolis RM, Adams LG, Ficht TA, Bäumler AJ. 109.  1999. Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect. Immun. 67:4879–85 [Google Scholar]
  110. Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA. 110.  et al. 1999. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67:6385–93 [Google Scholar]
  111. Weaver GA, Krause JA, Miller TL, Wolin MJ. 111.  1986. Incidence of methanogenic bacteria in a sigmoid-oscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27:698–704 [Google Scholar]
  112. Willis CL, Cummings JH, Neale G, Gibson GR. 112.  1996. In vitro effects of mucin fermentation on the growth of human colonic sulphate-reducing bacteria. Anaerobe 2:117–22 [Google Scholar]
  113. Windey K, De Preter V, Verbeke K. 113.  2012. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56:184–96 [Google Scholar]
  114. Winter SE, Bäumler AJ. 114.  2011. A breathtaking feat: To compete with the gut microbiota, Salmonella drives its host to provide a respiratory electron acceptor. Gut Microbes 2:58–60 [Google Scholar]
  115. Winter SE, Bäumler AJ. 115.  2014. Dysbiosis in the inflamed intestine: Chance favors the prepared microbe. Gut Microbes 5:71–73 [Google Scholar]
  116. Winter SE, Lopez CA, Bäumler AJ. 116.  2013. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 14:319–27 [Google Scholar]
  117. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL. 117.  et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–29 [Google Scholar]
  118. Winter SE, Winter MG, Godinez I, Yang HJ, Russmann H. 118.  et al. 2010. A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella. PLOS Pathog. 6:e1001060 [Google Scholar]
  119. Winter SE, Winter MG, Poon V, Keestra AM, Sterzenbach T. 119.  et al. 2014. Salmonella enterica serovar Typhi conceals the invasion-associated type three secretion system from the innate immune system by gene regulation. PLOS Pathog. 10:e1004207 [Google Scholar]
  120. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V. 120.  et al. 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339:708–11 [Google Scholar]
  121. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK. 121.  et al. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–76 [Google Scholar]
  122. Young IG. 122.  1976. Preparation of enterochelin from Escherichia coli. Prep. Biochem. 6:123–31 [Google Scholar]
  123. Zhang S, Kingsley RA, Santos RL, Andrews-Polymenis H, Raffatellu M. 123.  et al. 2003. Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect. Immun. 71:1–12 [Google Scholar]
  124. Zhang S, Santos RL, Tsolis RM, Stender S, Hardt W-D. 124.  et al. 2002. SipA, SopA, SopB, SopD and SopE2 act in concert to induce diarrhea in calves infected with Salmonella enterica serotype Typhimurium. Infect. Immun. 70:3843–55 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104108
Loading
/content/journals/10.1146/annurev-micro-091014-104108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error