1932

Abstract

is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the –host interface. strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104411
2015-10-15
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104411.html?itemId=/content/journals/10.1146/annurev-micro-091014-104411&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarez-Martinez CE, Christie PJ. 1.  2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775–808 [Google Scholar]
  2. Anderson BE, Dawson JE, Jones DC, Wilson KH. 2.  1991. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J. Clin. Microbiol. 29:2838–42 [Google Scholar]
  3. Anderson BE, Sims KG, Olson JG, Childs JE, Piesman JF. 3.  et al. 1993. Amblyomma americanum: a potential vector of human ehrlichiosis. Am. J. Trop. Med. Hyg. 49:239–44 [Google Scholar]
  4. Andersson M, Raberg L. 4.  2011. Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, Southern Sweden. Emerg. Infect. Dis. 17:1716–18 [Google Scholar]
  5. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC. 5.  et al. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–40 [Google Scholar]
  6. Bao W, Kumagai Y, Niu H, Yamaguchi M, Miura K, Rikihisa Y. 6.  2009. Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J. Bacteriol. 191:278–86 [Google Scholar]
  7. Barnewall RE, Ohashi N, Rikihisa Y. 7.  1999. Ehrlichia chaffeensis and E. sennetsu, but not the human granulocytic ehrlichiosis agent, colocalize with transferrin receptor and up-regulate transferrin receptor mRNA by activating iron-responsive protein 1. Infect. Immun. 67:2258–65 [Google Scholar]
  8. Barnewall RE, Rikihisa Y. 8.  1994. Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron-transferrin. Infect. Immun. 62:4804–10 [Google Scholar]
  9. Barnewall RE, Rikihisa Y, Lee EH. 9.  1997. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect. Immun. 65:1455–61 [Google Scholar]
  10. Bitsaktsis C, Huntington J, Winslow G. 10.  2004. Production of IFN-γ by CD4 T cells is essential for resolving ehrlichia infection. J. Immunol. 172:6894–901 [Google Scholar]
  11. Bitsaktsis C, Nandi B, Racine R, MacNamara KC, Winslow G. 11.  2007. T-Cell-independent humoral immunity is sufficient for protection against fatal intracellular ehrlichia infection. Infect. Immun. 75:4933–41 [Google Scholar]
  12. Bitsaktsis C, Winslow G. 12.  2006. Fatal recall responses mediated by CD8 T cells during intracellular bacterial challenge infection. J. Immunol. 177:4644–51 [Google Scholar]
  13. Buller RS, Arens M, Hmiel SP, Paddock CD, Sumner JW. 13.  et al. 1999. Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N. Engl. J. Med. 341:148–55 [Google Scholar]
  14. 14. CDC 2013. Notifiable Diseases and Mortality Tables. Morb. Mortal. Wkly. Rep. 62:ND–695 [Google Scholar]
  15. Chen SM, Cullman LC, Walker DH. 15.  1997. Western immunoblotting analysis of the antibody responses of patients with human monocytotropic ehrlichiosis to different strains of Ehrlichia chaffeensis and Ehrlichia canis. Clin. Diagn. Lab. Immunol. 4:731–35 [Google Scholar]
  16. Chen SM, Dumler JS, Bakken JS, Walker DH. 16.  1994. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 32:589–95 [Google Scholar]
  17. Cheng C, Nair AD, Indukuri VV, Gong S, Felsheim RF. 17.  et al. 2013. Targeted and random mutagenesis of Ehrlichia chaffeensis for the identification of genes required for in vivo infection. PLOS Pathog. 9:e1003171 [Google Scholar]
  18. Cheng C, Paddock CD, Reddy Ganta R. 18.  2003. Molecular heterogeneity of Ehrlichia chaffeensis isolates determined by sequence analysis of the 28-kilodalton outer membrane protein genes and other regions of the genome. Infect. Immun. 71:187–95 [Google Scholar]
  19. Cheng Y, Liu Y, Wu B, Zhang JZ, Gu J. 19.  et al. 2014. Proteomic analysis of the Ehrlichia chaffeensis phagosome in cultured DH82 cells. PLOS ONE 9:e88461 [Google Scholar]
  20. Cheng Z, Kumagai Y, Lin M, Zhang C, Rikihisa Y. 20.  2006. Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel. Cell. Microbiol. 8:1241–52 [Google Scholar]
  21. Cheng Z, Lin M, Rikihisa Y. 21.  2014. Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. mBio 5:e02141–14 [Google Scholar]
  22. Cheng Z, Miura K, Popov VL, Kumagai Y, Rikihisa Y. 22.  2011. Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen Ehrlichia chaffeensis. Mol Microbiol. 82:1217–34 [Google Scholar]
  23. Cheng Z, Wang X, Rikihisa Y. 23.  2008. Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J. Bacteriol. 190:2096–105 [Google Scholar]
  24. Cohen MS. 24.  1994. Molecular events in the activation of human neutrophils for microbial killing. Clin. Infect. Dis. 18:Suppl. 2S170–79 [Google Scholar]
  25. Dawson JE, Anderson BE, Fishbein DB, Sanchez JL, Goldsmith CS. 25.  et al. 1991. Isolation and characterization of an Ehrlichia sp. from a patient diagnosed with human ehrlichiosis. J. Clin. Microbiol. 29:2741–45 [Google Scholar]
  26. Dawson JE, Ewing SA. 26.  1992. Susceptibility of dogs to infection with Ehrlichia chaffeensis, causative agent of human ehrlichiosis. Am. J. Vet. Res. 53:1322–27 [Google Scholar]
  27. DeLeo FR. 27.  2004. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399–413 [Google Scholar]
  28. Doyle CK, Nethery KA, Popov VL, McBride JW. 28.  2006. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect. Immun. 74:711–20 [Google Scholar]
  29. Dugan VG, Little SE, Stallknecht DE, Beall AD. 29.  2000. Natural infection of domestic goats with Ehrlichia chaffeensis. J. Clin. Microbiol. 38:448–49 [Google Scholar]
  30. Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH. 30.  et al. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 51:2145–65 [Google Scholar]
  31. Dumler JS, Chen SM, Asanovich K, Trigiani E, Popov VL, Walker DH. 31.  1995. Isolation and characterization of a new strain of Ehrlichia chaffeensis from a patient with nearly fatal monocytic ehrlichiosis. J. Clin. Microbiol. 33:1704–11 [Google Scholar]
  32. Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV. 32.  et al. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLOS Genet. 2:e21 [Google Scholar]
  33. Dunphy PS, Luo T, McBride JW. 33.  2014. Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect. Immun. 82:4154–68 [Google Scholar]
  34. Ewing SA, Dawson JE, Kocan AA, Barker RW, Warner CK. 34.  et al. 1995. Experimental transmission of Ehrlichia chaffeensis (Rickettsiales: Ehrlichieae) among white-tailed deer by Amblyomma americanum (Acari: Ixodidae). J. Med. Entomol. 32:368–74 [Google Scholar]
  35. Fehr JS, Bloemberg GV, Ritter C, Hombach M, Luscher TF. 35.  et al. 2010. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg. Infect. Dis. 16:1127–29 [Google Scholar]
  36. Felek S, Unver A, Stich RW, Rikihisa Y. 36.  2001. Sensitive detection of Ehrlichia chaffeensis in cell culture, blood, and tick specimens by reverse transcription-PCR. J. Clin. Microbiol. 39:460–63 [Google Scholar]
  37. Fujita H, Watanabe Y. 37.  1994. Ehrlichial organisms isolated from Ixodes ovatus ticks and field rodents in Japan. Ann. Rep. Ohara Hosp. 37:13–17 [Google Scholar]
  38. Ganta RR, Cheng C, Miller EC, McGuire BL, Peddireddi L. 38.  et al. 2007. Differential clearance and immune responses to tick cell-derived versus macrophage culture-derived Ehrlichia chaffeensis in mice. Infect. Immun. 75:135–45 [Google Scholar]
  39. Ganta RR, Cheng C, Wilkerson MJ, Chapes SK. 39.  2004. Delayed clearance of Ehrlichia chaffeensis infection in CD4+ T-cell knockout mice. Infect. Immun. 72:159–67 [Google Scholar]
  40. Gardner SL, Holman RC, Krebs JW, Berkelman R, Childs JE. 40.  2003. National surveillance for the human ehrlichioses in the United States, 1997–2001, and proposed methods for evaluation of data quality. Ann. N. Y. Acad. Sci. 990:80–89 [Google Scholar]
  41. Ge Y, Rikihisa Y. 41.  2006. Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell. Microbiol. 8:1406–16 [Google Scholar]
  42. Ge Y, Rikihisa Y. 42.  2007. Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J. Bacteriol. 189:7819–28 [Google Scholar]
  43. Ge Y, Rikihisa Y. 43.  2007. Surface-exposed proteins of Ehrlichia chaffeensis. Infect. Immun. 75:3833–41 [Google Scholar]
  44. Ge Y, Yoshiie K, Kuribayashi F, Lin M, Rikihisa Y. 44.  2005. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell. Microbiol. 7:29–38 [Google Scholar]
  45. Gentle IE, Burri L, Lithgow T. 45.  2005. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58:1216–25 [Google Scholar]
  46. Goodman JL, Nelson C, Vitale B, Madigan JE, Dumler JS. 46.  et al. 1996. Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N. Engl. J. Med. 334:209–15 [Google Scholar]
  47. Hackstadt T, Baehr W, Ying Y. 47.  1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. PNAS 88:3937–41 [Google Scholar]
  48. Hallez R, Bellefontaine AF, Letesson JJ, De Bolle X. 48.  2004. Morphological and functional asymmetry in alpha-proteobacteria. Trends Microbiol. 12:361–65 [Google Scholar]
  49. Heinzen RA, Hackstadt T. 49.  1996. A developmental stage-specific histone H1 homolog of Coxiella burnetii. J. Bacteriol. 178:5049–52 [Google Scholar]
  50. Holley AK, Dhar SK, Xu Y, St Clair DK. 50.  2012. Manganese superoxide dismutase: beyond life and death. Amino Acids 42:139–58 [Google Scholar]
  51. Huang H, Lin M, Wang X, Kikuchi T, Mottaz H. 51.  et al. 2008. Proteomic analysis of and immune responses to Ehrlichia chaffeensis lipoproteins. Infect. Immun. 76:3405–14 [Google Scholar]
  52. Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D. 52.  et al. 2014. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLOS Pathog. 10:e1004222 [Google Scholar]
  53. Ismail N, Bloch KC, McBride JW. 53.  2010. Human ehrlichiosis and anaplasmosis. Clin. Lab. Med. 30:261–92 [Google Scholar]
  54. Ismail N, Soong L, McBride JW, Valbuena G, Olano JP. 54.  et al. 2004. Overproduction of TNF-α by CD8+ type 1 cells and down-regulation of IFN-γ production by CD4+ Th1 cells contribute to toxic shock-like syndrome in an animal model of fatal monocytotropic ehrlichiosis. J. Immunol. 172:1786–800 [Google Scholar]
  55. Ismail N, Stevenson HL, Walker DH. 55.  2006. Role of tumor necrosis factor alpha (TNF-α) and interleukin-10 in the pathogenesis of severe murine monocytotropic ehrlichiosis: increased resistance of TNF receptor p55- and p75-deficient mice to fatal ehrlichial infection. Infect. Immun. 74:1846–56 [Google Scholar]
  56. Ismail N, Walker DH. 56.  2005. Balancing protective immunity and immunopathology: a unifying model of monocytotropic ehrlichiosis. Ann. N. Y. Acad. Sci. 1063:383–94 [Google Scholar]
  57. Kawahara M, Suto C, Rikihisa Y, Yamamoto S, Tsuboi Y. 57.  1993. Characterization of ehrlichial organisms isolated from a wild mouse. J. Clin. Microbiol. 31:89–96 [Google Scholar]
  58. Kawahara M, Suto C, Shibata S, Futohashi M, Rikihisa Y. 58.  1996. Impaired antigen specific responses and enhanced polyclonal stimulation in mice infected with Ehrlichia muris. Microbiol. Immunol. 40:575–81 [Google Scholar]
  59. Koh YS, Koo JE, Biswas A, Kobayashi KS. 59.  2010. MyD88-dependent signaling contributes to host defense against ehrlichial infection. PLOS ONE 5:e11758 [Google Scholar]
  60. Kumagai Y, Cheng Z, Lin M, Rikihisa Y. 60.  2006. Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74:5014–22 [Google Scholar]
  61. Kumagai Y, Huang H, Rikihisa Y. 61.  2008. Expression and porin activity of P28 and OMP-1F during intracellular Ehrlichia chaffeensis development. J. Bacteriol. 190:3597–605 [Google Scholar]
  62. Kumagai Y, Matsuo J, Cheng Z, Hayakawa Y, Rikihisa Y. 62.  2011. Cyclic dimeric GMP signaling regulates intracellular aggregation, sessility, and growth of Ehrlichia chaffeensis. Infect. Immun. 79:3905–12 [Google Scholar]
  63. Kumagai Y, Matsuo J, Hayakawa Y, Rikihisa Y. 63.  2010. Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J. Bacteriol. 192:4122–33 [Google Scholar]
  64. Kumar H, Kawai T, Akira S. 64.  2009. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 388:621–25 [Google Scholar]
  65. Kuriakose JA, Miyashiro S, Luo T, Zhu B, McBride JW. 65.  2011. Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PLOS ONE 6:e24136 [Google Scholar]
  66. Kuriakose JA, Zhang X, Luo T, McBride JW. 66.  2012. Molecular basis of antibody mediated immunity against Ehrlichia chaffeensis involves species-specific linear epitopes in tandem repeat proteins. Microbes Infect. 14:1054–63 [Google Scholar]
  67. Lee EH, Rikihisa Y. 67.  1997. Anti-Ehrlichia chaffeensis antibody complexed with E. chaffeensis induces potent proinflammatory cytokine mRNA expression in human monocytes through sustained reduction of IκB-α and activation of NF-κB. Infect. Immun. 65:2890–97 [Google Scholar]
  68. Lee EH, Rikihisa Y. 68.  1998. Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66:2514–20 [Google Scholar]
  69. Li H, Jiang JF, Liu W, Zheng YC, Huo QB. 69.  et al. 2012. Human infection with Candidatus Neoehrlichia mikurensis, China. Emerg. Infect. Dis. 18:1636–39 [Google Scholar]
  70. Li JS, Chu F, Reilly A, Winslow GM. 70.  2002. Antibodies highly effective in SCID mice during infection by the intracellular bacterium Ehrlichia chaffeensis are of picomolar affinity and exhibit preferential epitope and isotype utilization. J. Immunol. 169:1419–25 [Google Scholar]
  71. Li JS, Yager E, Reilly M, Freeman C, Reddy GR. 71.  et al. 2001. Outer membrane protein-specific monoclonal antibodies protect SCID mice from fatal infection by the obligate intracellular bacterial pathogen Ehrlichia chaffeensis. J. Immunol. 166:1855–62 [Google Scholar]
  72. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH. 72.  1998. Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett. 438:61–65 [Google Scholar]
  73. Lin M, den Dulk-Ras A, Hooykaas PJ, Rikihisa Y. 73.  2007. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell. Microbiol. 9:2644–57 [Google Scholar]
  74. Lin M, Rikihisa Y. 74.  2003. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect. Immun. 71:5324–31 [Google Scholar]
  75. Lin M, Rikihisa Y. 75.  2003. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell. Microbiol. 5:809–20 [Google Scholar]
  76. Lin M, Rikihisa Y. 76.  2004. Ehrlichia chaffeensis downregulates surface Toll-like receptors 2/4, CD14 and transcription factors PU.1 and inhibits lipopolysaccharide activation of NF-κB, ERK 1/2 and p38 MAPK in host monocytes. Cell. Microbiol. 6:175–86 [Google Scholar]
  77. Lin M, Rikihisa Y. 77.  2007. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell. Microbiol. 9:861–74 [Google Scholar]
  78. Lin M, Zhu MX, Rikihisa Y. 78.  2002. Rapid activation of protein tyrosine kinase and phospholipase C-γ2 and increase in cytosolic free calcium are required by Ehrlichia chaffeensis for internalization and growth in THP-1 cells. Infect. Immun. 70:889–98 [Google Scholar]
  79. Liu H, Bao W, Lin M, Niu H, Rikihisa Y. 79.  2012. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell. Microbiol. 14:1037–50 [Google Scholar]
  80. Liu Y, Zhang Z, Jiang Y, Zhang L, Popov VL. 80.  et al. 2011. Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity. Microbes Infect. 13:232–38 [Google Scholar]
  81. Lockhart JM, Davidson WR, Stallknecht DE, Dawson JE, Howerth EW. 81.  1997. Isolation of Ehrlichia chaffeensis from wild white-tailed deer (Odocoileus virginianus) confirms their role as natural reservoir hosts. J. Clin. Microbiol. 35:1681–86 [Google Scholar]
  82. Long SW, Zhang XF, Qi H, Standaert S, Walker DH, Yu XJ. 82.  2002. Antigenic variation of Ehrlichia chaffeensis resulting from differential expression of the 28-kilodalton protein gene family. Infect. Immun. 70:1824–31 [Google Scholar]
  83. Luo T, Kuriakose JA, Zhu B, Wakeel A, McBride JW. 83.  2011. Ehrlichia chaffeensis TRP120 interacts with a diverse array of eukaryotic proteins involved in transcription, signaling, and cytoskeleton organization. Infect. Immun. 79:4382–91 [Google Scholar]
  84. Luo T, McBride JW. 84.  2012. Ehrlichia chaffeensis TRP32 interacts with host cell targets that influence intracellular survival. Infect. Immun. 80:2297–306 [Google Scholar]
  85. Luo T, Zhang X, McBride JW. 85.  2009. Major species-specific antibody epitopes of the Ehrlichia chaffeensis p120 and E. canis p140 orthologs in surface-exposed tandem repeat regions. Clin. Vaccine Immunol. 16:982–90 [Google Scholar]
  86. Luo T, Zhang X, Wakeel A, Popov VL, McBride JW. 86.  2008. A variable-length PCR target protein of Ehrlichia chaffeensis contains major species-specific antibody epitopes in acidic serine-rich tandem repeats. Infect. Immun. 76:1572–80 [Google Scholar]
  87. Maeda K, Markowitz N, Hawley RC, Ristic M, Cox D, McDade JE. 87.  1987. Human infection with Ehrlichia canis, a leukocytic rickettsia. N. Engl. J. Med. 316:853–56 [Google Scholar]
  88. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd. 88.  et al. 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–29 [Google Scholar]
  89. McBride JW, Yu XJ, Walker DH. 89.  2000. Glycosylation of homologous immunodominant proteins of Ehrlichia chaffeensis and Ehrlichia canis. Infect. Immun. 68:13–18 [Google Scholar]
  90. Miura K, Matsuo J, Rahman MA, Kumagai Y, Li X, Rikihisa Y. 90.  2011. Ehrlichia chaffeensis induces monocyte inflammatory responses through MyD88, ERK, and NF-κB but not through TRIF, interleukin-1 receptor 1 (IL-1R1)/IL-18R1, or Toll-like receptors. Infect. Immun. 79:4947–56 [Google Scholar]
  91. Miura K, Rikihisa Y. 91.  2007. Virulence potential of Ehrlichia chaffeensis strains of distinct genome sequences. Infect. Immun. 75:3604–13 [Google Scholar]
  92. Miura K, Rikihisa Y. 92.  2009. Liver transcriptome profiles associated with strain-specific Ehrlichia chaffeensis-induced hepatitis in SCID mice. Infect. Immun. 77:245–54 [Google Scholar]
  93. Mohan Kumar D, Yamaguchi M, Miura K, Lin M, Los M. 93.  et al. 2013. Ehrlichia chaffeensis uses its surface protein EtpE to bind GPI-anchored protein DNase X and trigger entry into mammalian cells. PLOS Pathog. 9:e1003666 [Google Scholar]
  94. Mott J, Barnewall RE, Rikihisa Y. 94.  1999. Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect. Immun. 67:1368–78 [Google Scholar]
  95. Niu H, Kozjak-Pavlovic V, Rudel T, Rikihisa Y. 95.  2010. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLOS Pathog. 6:e1000774 [Google Scholar]
  96. Niu H, Rikihisa Y. 96.  2013. Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy 9:787–88 [Google Scholar]
  97. Niu H, Rikihisa Y, Yamaguchi M, Ohashi N. 97.  2006. Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell. Microbiol. 8:523–34 [Google Scholar]
  98. Ohashi N, Rikihisa Y, Unver A. 98.  2001. Analysis of transcriptionally active gene clusters of major outer membrane protein multigene family in Ehrlichia canis and E. chaffeensis. Infect. Immun. 69:2083–91 [Google Scholar]
  99. Ohashi N, Unver A, Zhi N, Rikihisa Y. 99.  1998. Cloning and characterization of multigenes encoding the immunodominant 30-kilodalton major outer membrane proteins of Ehrlichia canis and application of the recombinant protein for serodiagnosis. J. Clin. Microbiol. 36:2671–80 [Google Scholar]
  100. Ohashi N, Zhi N, Lin Q, Rikihisa Y. 100.  2002. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70:2128–38 [Google Scholar]
  101. Ohashi N, Zhi N, Zhang Y, Rikihisa Y. 101.  1998. Immunodominant major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family. Infect. Immun. 66:132–39 [Google Scholar]
  102. Okada H, Tajima T, Kawahara M, Rikihisa Y. 102.  2001. Ehrlichial proliferation and acute hepatocellular necrosis in immunocompetent mice experimentally infected with the HF strain of Ehrlichia, closely related to Ehrlichia chaffeensis. J. Comp. Pathol. 124:165–71 [Google Scholar]
  103. Okada H, Usuda H, Tajima T, Kawahara M, Yoshino T, Rikihisa Y. 103.  2003. Distribution of ehrlichiae in tissues as determined by in-situ hybridization. J. Comp. Pathol. 128:182–87 [Google Scholar]
  104. Paddock CD, Childs JE. 104.  2003. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16:37–64 [Google Scholar]
  105. Paddock CD, Sumner JW, Shore GM, Bartley DC, Elie RC. 105.  et al. 1997. Isolation and characterization of Ehrlichia chaffeensis strains from patients with fatal ehrlichiosis. J. Clin. Microbiol. 35:2496–502 [Google Scholar]
  106. Perez M, Bodor M, Zhang C, Xiong Q, Rikihisa Y. 106.  2006. Human infection with Ehrlichia canis accompanied by clinical signs in Venezuela. Ann. N. Y. Acad. Sci. 1078:110–17 [Google Scholar]
  107. Perez M, Rikihisa Y, Wen B. 107.  1996. Ehrlichia canis-like agent isolated from a man in Venezuela: antigenic and genetic characterization. J. Clin. Microbiol. 34:2133–39 [Google Scholar]
  108. Popov VL, Chen SM, Feng HM, Walker DH. 108.  1995. Ultrastructural variation of cultured Ehrlichia chaffeensis. J. Med. Microbiol. 43:411–21 [Google Scholar]
  109. Popov VL, Yu X, Walker DH. 109.  2000. The 120 kDa outer membrane protein of Ehrlichia chaffeensis: preferential expression on dense-core cells and gene expression in Escherichia coli associated with attachment and entry. Microb. Pathog. 28:71–80 [Google Scholar]
  110. Pritt BS, Sloan LM, Johnson DK, Munderloh UG, Paskewitz SM. 110.  et al. 2011. Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N. Engl. J. Med. 365:422–29 [Google Scholar]
  111. Rahman MA, Cheng Z, Matsuo J, Rikihisa Y. 111.  2012. Penicillin-binding protein of Ehrlichia chaffeensis: cytokine induction through MyD88-dependent pathway. J. Infect. Dis. 206:110–16 [Google Scholar]
  112. Rikihisa Y. 112.  1991. The tribe Ehrlichieae and ehrlichial diseases. Clin. Microbiol. Rev. 4:286–308 [Google Scholar]
  113. Rikihisa Y. 113.  2003. Mechanisms to create a safe haven by members of the family Anaplasmataceae. Ann. N. Y. Acad. Sci. 990:548–55 [Google Scholar]
  114. Rikihisa Y, Lin M. 114.  2010. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr. Opin. Microbiol. 13:59–66 [Google Scholar]
  115. Shibata S, Kawahara M, Rikihisa Y, Fujita H, Watanabe Y. 115.  et al. 2000. New Ehrlichia species closely related to Ehrlichia chaffeensis isolated from Ixodes ovatus ticks in Japan. J. Clin. Microbiol. 38:1331–38 [Google Scholar]
  116. Singu V, Liu H, Cheng C, Ganta RR. 116.  2005. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect. Immun. 73:79–87 [Google Scholar]
  117. Standaert SM, Yu T, Scott MA, Childs JE, Paddock CD. 117.  et al. 2000. Primary isolation of Ehrlichia chaffeensis from patients with febrile illnesses: clinical and molecular characteristics. J. Infect. Dis. 181:1082–88 [Google Scholar]
  118. Stevenson HL, Estes MD, Thirumalapura NR, Walker DH, Ismail N. 118.  2010. Natural killer cells promote tissue injury and systemic inflammatory responses during fatal Ehrlichia-induced toxic shock-like syndrome. Am. J. Pathol. 177:2766–76 [Google Scholar]
  119. Sumimoto H. 119.  2008. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275:3249–77 [Google Scholar]
  120. Sumner JW, Childs JE, Paddock CD. 120.  1999. Molecular cloning and characterization of the Ehrlichia chaffeensis variable-length PCR target: an antigen-expressing gene that exhibits interstrain variation. J. Clin. Microbiol. 37:1447–53 [Google Scholar]
  121. Thomas S, Popov VL, Walker DH. 121.  2010. Exit mechanisms of the intracellular bacterium Ehrlichia. PLOS ONE 5:e15775 [Google Scholar]
  122. Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. 122.  2011. Structure-based vaccines provide protection in a mouse model of ehrlichiosis. PLOS ONE 6:e27981 [Google Scholar]
  123. Unver A, Felek S, Paddock CD, Zhi N, Horowitz HW. 123.  et al. 2001. Western blot analysis of sera reactive to human monocytic ehrlichiosis and human granulocytic ehrlichiosis agents. J. Clin. Microbiol. 39:3982–86 [Google Scholar]
  124. Unver A, Huang H, Rikihisa Y. 124.  2006. Cytokine gene expression by peripheral blood leukocytes in dogs experimentally infected with a new virulent strain of Ehrlichia canis. Ann. N. Y. Acad. Sci. 1078:482–86 [Google Scholar]
  125. Unver A, Ohashi N, Tajima T, Stich RW, Grover D, Rikihisa Y. 125.  2001. Transcriptional analysis of p30 major outer membrane multigene family of Ehrlichia canis in dogs, ticks, and cell culture at different temperatures. Infect. Immun. 69:6172–78 [Google Scholar]
  126. Unver A, Rikihisa Y, Ohashi N, Cullman LC, Buller R, Storch GA. 126.  1999. Western and dot blotting analyses of Ehrlichia chaffeensis indirect fluorescent-antibody assay-positive and -negative human sera by using native and recombinant E. chaffeensis and E. canis antigens. J. Clin. Microbiol. 37:3888–95 [Google Scholar]
  127. Unver A, Rikihisa Y, Stich RW, Ohashi N, Felek S. 127.  2002. The omp-1 major outer membrane multigene family of Ehrlichia chaffeensis is differentially expressed in canine and tick hosts. Infect. Immun. 70:4701–704 [Google Scholar]
  128. van Heerden H, Collins NE, Brayton KA, Rademeyer C, Allsopp BA. 128.  2004. Characterization of a major outer membrane protein multigene family in Ehrlichia ruminantium. Gene 330:159–68 [Google Scholar]
  129. Varela AS, Stallknecht DE, Yabsley MJ, Moore VA 4th, Howerth EW. 129.  et al. 2005. Primary and secondary infection with Ehrlichia chaffeensis in white-tailed deer (Odocoileus virginianus). Vector Borne Zoonotic Dis. 5:48–57 [Google Scholar]
  130. Vergunst AC, van Lier MCM, den Dulk-Ras A, Grosse Stuve TA, Ouwehand A, Hooykaas PJJ. 130.  2005. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. PNAS 102:832–37 [Google Scholar]
  131. von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G. 131.  et al. 2010. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J. Clin. Microbiol. 48:2630–35 [Google Scholar]
  132. Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J. 132.  2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–65 [Google Scholar]
  133. Wakeel A, den Dulk-Ras A, Hooykaas PJ, McBride JW. 133.  2011. Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front. Cell. Infect. Microbiol. 1:22 [Google Scholar]
  134. Wakeel A, Kuriakose JA, McBride JW. 134.  2009. An Ehrlichia chaffeensis tandem repeat protein interacts with multiple host targets involved in cell signaling, transcriptional regulation, and vesicle trafficking. Infect. Immun. 77:1734–45 [Google Scholar]
  135. Wakeel A, Zhu B, Yu XJ, McBride JW. 135.  2010. New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect. 12:337–45 [Google Scholar]
  136. Walker DH, Dumler JS. 136.  1996. Emergence of the ehrlichioses as human health problems. Emerg. Infect. Dis. 2:18–29 [Google Scholar]
  137. Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C. 137.  2010. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 48:1956–59 [Google Scholar]
  138. Wells MY, Rikihisa Y. 138.  1988. Lack of lysosomal fusion with phagosomes containing Ehrlichia risticii in P388D1 cells: abrogation of inhibition with oxytetracycline. Infect. Immun. 56:3209–15 [Google Scholar]
  139. Wen B, Rikihisa Y, Mott J, Fuerst PA, Kawahara M, Suto C. 139.  1995. Ehrlichia muris sp. nov., identified on the basis of 16S rRNA base sequences and serological, morphological, and biological characteristics. Int. J. Syst. Bacteriol. 45:250–54 [Google Scholar]
  140. Winslow GM, Yager E, Shilo K, Collins DN, Chu FK. 140.  1998. Infection of the laboratory mouse with the intracellular pathogen Ehrlichia chaffeensis. Infect. Immun. 66:3892–99 [Google Scholar]
  141. Winslow GM, Yager E, Shilo K, Volk E, Reilly A, Chu FK. 141.  2000. Antibody-mediated elimination of the obligate intracellular bacterial pathogen Ehrlichia chaffeensis during active infection. Infect. Immun. 68:2187–95 [Google Scholar]
  142. Xiong Q, Bao W, Ge Y, Rikihisa Y. 142.  2008. Ehrlichia ewingii infection delays spontaneous neutrophil apoptosis through stabilization of mitochondria. J. Infect. Dis. 197:1110–18 [Google Scholar]
  143. Yager E, Bitsaktsis C, Nandi B, McBride JW, Winslow G. 143.  2005. Essential role for humoral immunity during Ehrlichia infection in immunocompetent mice. Infect. Immun. 73:8009–16 [Google Scholar]
  144. Yu XJ, Crocquet-Valdes P, Cullman LC, Walker DH. 144.  1996. The recombinant 120-kilodalton protein of Ehrlichia chaffeensis, a potential diagnostic tool. J. Clin. Microbiol. 34:2853–55 [Google Scholar]
  145. Yu XJ, McBride JW, Walker DH. 145.  1999. Genetic diversity of the 28-kilodalton outer membrane protein gene in human isolates of Ehrlichia chaffeensis. J. Clin. Microbiol. 37:1137–43 [Google Scholar]
  146. Zhang C, Xiong Q, Kikuchi T, Rikihisa Y. 146.  2008. Identification of 19 polymorphic major outer membrane protein genes and their immunogenic peptides in Ehrlichia ewingii for use in a serodiagnostic assay. Clin. Vaccine Immunol. 15:402–11 [Google Scholar]
  147. Zhang JZ, Guo H, Winslow GM, Yu XJ. 147.  2004. Expression of members of the 28-kilodalton major outer membrane protein family of Ehrlichia chaffeensis during persistent infection. Infect. Immun. 72:4336–43 [Google Scholar]
  148. Zhang JZ, Popov VL, Gao S, Walker DH, Yu XJ. 148.  2007. The developmental cycle of Ehrlichia chaffeensis in vertebrate cells. Cell. Microbiol. 9:610–18 [Google Scholar]
  149. Zhu B, Kuriakose JA, Luo T, Ballesteros E, Gupta S. 149.  et al. 2011. Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function. Infect. Immun. 79:4370–81 [Google Scholar]
  150. Zhu B, Nethery KA, Kuriakose JA, Wakeel A, Zhang X, McBride JW. 150.  2009. Nuclear translocated Ehrlichia chaffeensis ankyrin protein interacts with a specific adenine-rich motif of host promoter and intronic Alu elements. Infect. Immun. 77:4243–55 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104411
Loading
/content/journals/10.1146/annurev-micro-091014-104411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error