1932

Abstract

Mammalian cells detect foreign DNA introduced as free DNA or as a result of microbial infection, leading to the induction of innate immune responses that block microbial replication and the activation of mechanisms that epigenetically silence the genes encoded by the foreign DNA. A number of DNA sensors localized to a variety of sites within the cell have been identified, and this review focuses on the mechanisms that detect viral DNA and how the resulting responses affect viral infections. Viruses have evolved mechanisms that inhibit these host sensors and signaling pathways, and the study of these antagonistic viral strategies has provided insight into the mechanisms of these host responses. The field of cellular sensing of foreign DNA is in its infancy, but our currently limited knowledge has raised a number of important questions for study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091313-103409
2014-09-08
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091313-103409.html?itemId=/content/journals/10.1146/annurev-micro-091313-103409&mimeType=html&fmt=ahah

Literature Cited

  1. Abe T, Harashima A, Xia T, Konno H, Konno K. 1.  et al. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell 50:5–15 [Google Scholar]
  2. Abend JR, Low JA, Imperiale MJ. 2.  2010. Global effects of BKV infection on gene expression in human primary kidney epithelial cells. Virology 397:73–79 [Google Scholar]
  3. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 3.  2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10:1065–72 [Google Scholar]
  4. Ablasser A, Hornung V. 4.  2013. DNA sensing unchained. Cell Res. 23:585–87 [Google Scholar]
  5. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T. 5.  et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–34 [Google Scholar]
  6. Ansari MA, Singh VV, Dutta S, Veettil MV, Dutta D. 6.  et al. 2013. Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J. Virol. 87:8606–23 [Google Scholar]
  7. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 7.  2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202:1715–24 [Google Scholar]
  8. Boutell C, Everett RD. 8.  2013. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J. Gen. Virol. 94:465–81 [Google Scholar]
  9. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. 9.  2012. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J. Exp. Med. 209:1969–83 [Google Scholar]
  10. Bunting SF, Nussenzweig A. 10.  2013. End-joining, translocations and cancer. Nat. Rev. Cancer 13:443–54 [Google Scholar]
  11. Cereghini S, Yaniv M. 11.  1984. Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 3:1243–53 [Google Scholar]
  12. Chiu YH, Macmillan JB, Chen ZJ. 12.  2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–91 [Google Scholar]
  13. Cliffe AR, Knipe DM. 13.  2008. Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. J. Virol. 82:12030–38 [Google Scholar]
  14. Conrady CD, Zheng M, Fitzgerald KA, Liu C, Carr DJ. 14.  2012. Resistance to HSV-1 infection in the epithelium resides with the novel innate sensor, IFI-16. Mucosal Immunol. 5:173–83 [Google Scholar]
  15. Cristea IM, Moorman NJ, Terhune SS, Cuevas CD, O’Keefe ES. 15.  et al. 2010. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J. Virol. 84:7803–14 [Google Scholar]
  16. Cuchet-Lourenco D, Anderson G, Sloan E, Orr A, Everett RD. 16.  2013. The viral ubiquitin ligase ICP0 is neither sufficient nor necessary for degradation of the cellular DNA sensor IFI16 during herpes simplex virus 1 infection. J. Virol. 87:13422–32 [Google Scholar]
  17. Eidson KM, Hobbs WE, Manning BJ, Carlson P, DeLuca NA. 17.  2002. Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J. Virol. 76:2180–91 [Google Scholar]
  18. Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. 18.  2012. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1:e00047 [Google Scholar]
  19. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. 19.  2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13 [Google Scholar]
  20. Gao D, Wu J, Wu YT, Du F, Aroh C. 20.  et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–6 [Google Scholar]
  21. Gariano GR, Dell’oste V, Bronzini M, Gatti D, Luganini A. 21.  et al. 2012. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 8:e1002498 [Google Scholar]
  22. Helenius A. 22.  2013. Virus entry and uncoating. See 41, chapter 4
  23. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S. 23.  et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45 [Google Scholar]
  24. Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F. 24.  et al. 2004. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 101:11416–21 [Google Scholar]
  25. Horan KA, Hansen K, Jakobsen MR, Holm CK, Soby S. 25.  et al. 2013. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J. Immunol. 190:2311–19 [Google Scholar]
  26. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G. 26.  et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18 [Google Scholar]
  27. Howe JG, Shu MD. 27.  1989. Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 57:825–34 [Google Scholar]
  28. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y. 28.  et al. 2006. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7:40–48 [Google Scholar]
  29. Ishikawa H, Barber GN. 29.  2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  30. Iwasaki A, Medzhitov R. 30.  2013. Innate responses to viral infections. See 41, chapter 8
  31. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB. 31.  et al. 2013. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc. Natl. Acad. Sci. USA 110:E4571–80 [Google Scholar]
  32. Jin T, Perry A, Jiang J, Smith P, Curry JA. 32.  et al. 2012. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–71 [Google Scholar]
  33. Johnson KE, Chikoti L, Chandran B. 33.  2013. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 87:5005–18 [Google Scholar]
  34. Jones JW, Kayagaki N, Broz P, Henry T, Newton K. 34.  et al. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. USA 107:9771–76 [Google Scholar]
  35. Kagan JC. 35.  2012. Signaling organelles of the innate immune system. Cell 151:1168–78 [Google Scholar]
  36. Karpova AY, Ronco LV, Howley PM. 36.  2001. Functional characterization of interferon regulatory factor 3a (IRF-3a), an alternative splice isoform of IRF-3. Mol. Cell. Biol. 21:4169–76 [Google Scholar]
  37. Kassim SH, Rajasagi NK, Zhao X, Chervenak R, Jennings SR. 37.  2006. In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J. Virol. 80:3985–93 [Google Scholar]
  38. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S. 38.  et al. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9:363–75 [Google Scholar]
  39. Kim T, Pazhoor S, Bao M, Zhang Z, Hanabuchi S. 39.  et al. 2010. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicases sense microbial DNA in human plasmacytoid dendritic cells. Proc. Natl. Acad. Sci. USA 107:15181–86 [Google Scholar]
  40. Knipe DM, Cliffe A. 40.  2008. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Microbiol. 6:211–21 [Google Scholar]
  41. Knipe DM, Howley P. 41.  2013.. Fields Virology Philadelphia: Lippincott Williams Wilkins. , 6thed..
  42. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M. 42.  2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103:1433–37 [Google Scholar]
  43. Li T, Chen J, Cristea IM. 43.  2013. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14:591–99 [Google Scholar]
  44. Li T, Diner BA, Chen J, Cristea IM. 44.  2012. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. USA 109:10558–63 [Google Scholar]
  45. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. 45.  2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–94 [Google Scholar]
  46. McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M. 46.  et al. 2009. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206:1899–911 [Google Scholar]
  47. Melchjorsen J, Rintahaka J, Søby S, Horan KA, Poltajainen A. 47.  et al. 2010. Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J. Virol. 84:11350–58 [Google Scholar]
  48. Monroe KM, McWhirter SM, Vance RE. 48.  2009. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5:e1000665 [Google Scholar]
  49. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G. 49.  et al. 2013. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:428–32 [Google Scholar]
  50. Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. 50.  2014. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc. Natl. Acad. Sci. USA 111:E62–71 [Google Scholar]
  51. Moss B. 51.  2013. Poxviridae. See 41, chapter 66
  52. Mossman KL, Macgregor PF, Rozmus JJ, Goryachev AB, Edwards AM, Smiley JR. 52.  2001. Herpes simplex virus triggers and then disarms a host antiviral response. J. Virol. 75:750–58 [Google Scholar]
  53. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA. 53.  et al. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–7 [Google Scholar]
  54. Napetschnig J, Wu H. 54.  2013. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 42:443–68 [Google Scholar]
  55. Oh J, Fraser NW. 55.  2008. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J. Virol. 82:3530–37 [Google Scholar]
  56. Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. 56.  2013. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc. Natl. Acad. Sci. USA 110:E4492–501 [Google Scholar]
  57. Orzalli MH, DeLuca NA, Knipe DM. 57.  2012. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 109:E3008–17 [Google Scholar]
  58. Paludan SR, Bowie AG. 58.  2013. Immune sensing of DNA. Immunity 38:870–80 [Google Scholar]
  59. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y. 59.  et al. 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13:1155–61 [Google Scholar]
  60. Peters NE, Ferguson BJ, Mazzon M, Fahy AS, Krysztofinska E. 60.  et al. 2013. A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog. 9:e1003649 [Google Scholar]
  61. Pham TH, Kwon KM, Kim YE, Kim KK, Ahn JH. 61.  2013. DNA sensing-independent inhibition of herpes simplex virus 1 replication by DAI/ZBP1. J. Virol. 87:3076–86 [Google Scholar]
  62. Preston CM, Harman AN, Nicholl MJ. 62.  2001. Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J. Virol. 75:8909–16 [Google Scholar]
  63. Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C. 63.  et al. 2013. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402–5 [Google Scholar]
  64. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE. 64.  et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:395–402 [Google Scholar]
  65. Rathinam VA, Vanaja SK, Fitzgerald KA. 65.  2012. Regulation of inflammasome signaling. Nat. Immunol. 13:333–42 [Google Scholar]
  66. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T. 66.  et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106:20842–46 [Google Scholar]
  67. Schoggins JW, Macduff DA, Imanaka N, Gainey MD, Shrestha B. 67.  et al. 2013. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–95 [Google Scholar]
  68. Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S. 68.  et al. 2013. Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J. Virol. 87:4417–31 [Google Scholar]
  69. Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR. 69.  2008. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J. Immunol. 181:8604–12 [Google Scholar]
  70. Stark GR, Darnell Jr JE. 70.  2012. The JAK-STAT pathway at twenty. Immunity 36:503–14 [Google Scholar]
  71. Sun L, Wu J, Du F, Chen X, Chen ZJ. 71.  2012. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  72. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H. 72.  et al. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–5 [Google Scholar]
  73. Tanaka Y, Chen ZJ. 73.  2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signaling 5:ra20 [Google Scholar]
  74. Unterholzner L. 74.  2013. The interferon response to intracellular DNA: why so many receptors?. Immunobiology 218:1312–21 [Google Scholar]
  75. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB. 75.  et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:997–1004 [Google Scholar]
  76. Upton JW, Kaiser WJ, Mocarski ES. 76.  2012. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–97 [Google Scholar]
  77. Veeranki S, Choubey D. 77.  2012. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49:567–71 [Google Scholar]
  78. Wathelet MG, Berr PM, Huez GA. 78.  1992. Regulation of gene expression by cytokines and virus in human cells lacking the type-I interferon locus. Eur. J. Biochem. 206:901–10 [Google Scholar]
  79. Watson RO, Manzanillo PS, Cox JS. 79.  2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–15 [Google Scholar]
  80. Woodward JJ, Iavarone AT, Portnoy DA. 80.  2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–5 [Google Scholar]
  81. Wu J, Sun L, Chen X, Du F, Shi H. 81.  et al. 2012. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30 [Google Scholar]
  82. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. 82.  2010. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11:1005–13 [Google Scholar]
  83. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. 83.  2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12:959–65 [Google Scholar]
/content/journals/10.1146/annurev-micro-091313-103409
Loading
/content/journals/10.1146/annurev-micro-091313-103409
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error