1932

Abstract

While the uses of retinoids for cancer treatment continue to evolve, this review focuses on other therapeutic areas in which retinoids [retinol (vitamin A), all- retinoic acid (RA), and synthetic retinoic acid receptor (RAR)α-, β-, and γ-selective agonists] are being used and on promising new research that suggests additional uses for retinoids for the treatment of disorders of the kidneys, skeletal muscles, heart, pancreas, liver, nervous system, skin, and other organs. The most mature area, in terms of US Food and Drug Administration–approved, RAR-selective agonists, is for treatment of various skin diseases. Synthetic retinoid agonists have major advantages over endogenous RAR agonists such as RA. Because they act through a specific RAR, side effects may be minimized, and synthetic retinoids often have better pharmaceutical properties than does RA. Based on our increasing knowledge of the multiple roles of retinoids in development, epigenetic regulation, and tissue repair, other exciting therapeutic areas are emerging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-104428
2022-01-06
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-104428.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-104428&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM et al. 1991. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78:1413–19
    [Google Scholar]
  2. 2. 
    Tang XH, Gudas LJ. 2011. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 6:345–64
    [Google Scholar]
  3. 3. 
    di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L et al. 2015. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol. Aspects Med. 41:1–115
    [Google Scholar]
  4. 4. 
    Uray IP, Dmitrovsky E, Brown PH 2016. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin. Oncol. 43:49–64
    [Google Scholar]
  5. 5. 
    Geoffroy MC, de Thé H. 2020. Classic and variants APLs, as viewed from a therapy response. Cancers 12:967
    [Google Scholar]
  6. 6. 
    Rossetti S, Sacchi N. 2020. Emerging cancer epigenetic mechanisms regulated by all-trans retinoic acid. Cancers 12:2275
    [Google Scholar]
  7. 7. 
    Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. 2015. HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell 28:815–29
    [Google Scholar]
  8. 8. 
    Ross AC, Moran NE. 2020. Our current dietary reference intakes for vitamin A—now 20 years old. Curr. Dev. Nutr. 4:nzaa096
    [Google Scholar]
  9. 9. 
    Harrison EH. 2012. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta 1821:70–77
    [Google Scholar]
  10. 10. 
    Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD 2016. Vitamin A absorption, storage and mobilization. Subcell. Biochem. 81:95–125
    [Google Scholar]
  11. 11. 
    Amengual J, Golczak M, Palczewski K, von Lintig J 2012. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. J. Biol. Chem. 287:24216–27
    [Google Scholar]
  12. 12. 
    Saari JC. 2012. Vitamin A metabolism in rod and cone visual cycles. Annu. Rev. Nutr. 32:125–45
    [Google Scholar]
  13. 13. 
    Li Y, Wongsiriroj N, Blaner WS. 2014. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg. Nutr. 3:126–39
    [Google Scholar]
  14. 14. 
    Kedishvili NY. 2013. Enzymology of retinoic acid biosynthesis and degradation. J. Lipid Res. 54:1744–60
    [Google Scholar]
  15. 15. 
    Widjaja-Adhi MAK, Golczak M. 2020. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865:158571
    [Google Scholar]
  16. 16. 
    Laursen KB, Gudas LJ. 2018. Combinatorial knockout of RARα, RARβ, and RARγ completely abrogates transcriptional responses to retinoic acid in murine embryonic stem cells. J. Biol. Chem. 293:11891–900
    [Google Scholar]
  17. 17. 
    Langston AW, Thompson JR, Gudas LJ. 1997. Retinoic acid-responsive enhancers located 3′ of the Hox A and Hox B homeobox gene clusters: functional analysis. J. Biol. Chem. 272:2167–75
    [Google Scholar]
  18. 18. 
    Perissi V, Rosenfeld MG. 2005. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat. Rev. Mol. Cell Biol. 6:542–54
    [Google Scholar]
  19. 19. 
    Weston AD, Blumberg B, Underhill TM. 2003. Active repression by unliganded retinoid receptors in development: Less is sometimes more. J. Cell Biol. 161:223–28
    [Google Scholar]
  20. 20. 
    Mark M, Ghyselinck NB, Chambon P. 2006. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46:451–80
    [Google Scholar]
  21. 21. 
    Niederreither K, Dolle P. 2008. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9:541–53
    [Google Scholar]
  22. 22. 
    Gudas LJ, Wagner JA. 2011. Retinoids regulate stem cell differentiation. J. Cell Physiol. 226:322–30
    [Google Scholar]
  23. 23. 
    Sarti F, Schroeder J, Aoto J, Chen L 2012. Conditional RARα knockout mice reveal acute requirement for retinoic acid and RARα in homeostatic plasticity. Front. Mol. Neurosci. 5:16
    [Google Scholar]
  24. 24. 
    Hsu YT, Li J, Wu D, Südhof TC, Chen L. 2019. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. PNAS 116:7113–22
    [Google Scholar]
  25. 25. 
    Chen N, Napoli JL 2008. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARα. FASEB J 22:236–45
    [Google Scholar]
  26. 26. 
    Maghsoodi B, Poon MM, Nam CI, Aoto J, Ting P, Chen L. 2008. Retinoic acid regulates RARα-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity. PNAS 105:16015–20
    [Google Scholar]
  27. 27. 
    Borthwick AD, Goncalves MB, Corcoran JPT. 2020. Recent advances in the design of RAR α and RAR β agonists as orally bioavailable drugs. A review. Bioorg. Med. Chem. 28:115664
    [Google Scholar]
  28. 28. 
    Hoy WE, Ingelfinger JR, Hallan S, Hughson MD, Mott SA, Bertram JF. 2010. The early development of the kidney and implications for future health. J. Dev. Orig. Health Dis. 1:216–33
    [Google Scholar]
  29. 29. 
    Keller G, Zimmer G, Mall G, Ritz E, Amann K 2003. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348:101–8
    [Google Scholar]
  30. 30. 
    Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE 2006. Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–78
    [Google Scholar]
  31. 31. 
    Abitbol CL, Ingelfinger JR. 2009. Nephron mass and cardiovascular and renal disease risks. Semin. Nephrol. 29:445–54
    [Google Scholar]
  32. 32. 
    Quadro L, Spiegler EK. 2020. Maternal-fetal transfer of vitamin A and its impact on mammalian embryonic development. Subcell. Biochem. 95:27–55
    [Google Scholar]
  33. 33. 
    Wilson JG, Roth CB, Warkany J. 1953. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J. Anat. 92:189–217
    [Google Scholar]
  34. 34. 
    Lelièvre-Pégorier M, Vilar J, Ferrier ML, Moreau E, Freund N et al. 1998. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54:1455–62
    [Google Scholar]
  35. 35. 
    Xu Q, Lucio-Cazana J, Kitamura M, Ruan X, Fine LG, Norman JT. 2004. Retinoids in nephrology: promises and pitfalls. Kidney Int 66:2119–31
    [Google Scholar]
  36. 36. 
    Makrakis J, Zimanyi MA, Black MJ. 2007. Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr. Nephrol. 22:1861–67
    [Google Scholar]
  37. 37. 
    Painter RC, Roseboom TJ, van Montfrans GA, Bossuyt PM, Krediet RT et al. 2005. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J. Am. Soc. Nephrol. 16:189–94
    [Google Scholar]
  38. 38. 
    Bhat PV, Manolescu DC. 2008. Role of vitamin A in determining nephron mass and possible relationship to hypertension. J. Nutr. 138:1407–10
    [Google Scholar]
  39. 39. 
    El Kares R, Manolescu DC, Lakhal-Chaieb L, Montpetit A, Zhang Z et al. 2010. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int 78:96–102
    [Google Scholar]
  40. 40. 
    Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y et al. 2016. Severity and frequency of proximal tubule injury determines renal prognosis. J. Am. Soc. Nephrol. 27:2393–406
    [Google Scholar]
  41. 41. 
    Fujigaki Y, Muranaka Y, Sun D, Goto T, Zhou H et al. 2005. Transient myofibroblast differentiation of interstitial fibroblastic cells relevant to tubular dilatation in uranyl acetate-induced acute renal failure in rats. Virchows Arch 446:164–76
    [Google Scholar]
  42. 42. 
    Nakamura J, Sato Y, Kitai Y, Wajima S, Yamamoto S et al. 2019. Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury. Kidney Int 95:526–39
    [Google Scholar]
  43. 43. 
    Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J 1999. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–48
    [Google Scholar]
  44. 44. 
    Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M et al. 2001. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet. 27:74–78
    [Google Scholar]
  45. 45. 
    Sierra-Mondragon E, Rodríguez-Muñoz R, Namorado-Tonix C, Molina-Jijon E, Romero-Trejo D et al. 2019. All-trans retinoic acid attenuates fibrotic processes by downregulating TGF-β1/Smad3 in early diabetic nephropathy. Biomolecules 9:525
    [Google Scholar]
  46. 46. 
    Sierra-Mondragon E, Molina-Jijon E, Namorado-Tonix C, Rodríguez-Muñoz R, Pedraza-Chaverri J, Reyes JL. 2018. All-trans retinoic acid ameliorates inflammatory response mediated by TLR4/NF-κB during initiation of diabetic nephropathy. J. Nutr. Biochem. 60:47–60
    [Google Scholar]
  47. 47. 
    DiKun KM, Tang XH, Gudas LJ. 2021. RARα deletion specifically in the proximal tubules leads to acute kidney injury and fibrosis in mice. Exp. Biol. In press
    [Google Scholar]
  48. 48. 
    Zhong Y, Wu Y, Liu R, Deng Y, Mallipattu SK et al. 2012. Roflumilast enhances the renal protective effects of retinoids in an HIV-1 transgenic mouse model of rapidly progressive renal failure. Kidney Int 81:856–64
    [Google Scholar]
  49. 49. 
    Zhong Y, Wu Y, Liu R, Li Z, Chen Y et al. 2011. Novel retinoic acid receptor alpha agonists for treatment of kidney disease. PLOS ONE 6:e27945
    [Google Scholar]
  50. 50. 
    Gudas LJ. 2012. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta 1821:213–21
    [Google Scholar]
  51. 51. 
    Zhang J, Pippin JW, Vaughan MR, Krofft RD, Taniguchi Y et al. 2012. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron. Exp. Nephrol. 121:e23–37
    [Google Scholar]
  52. 52. 
    Peired A, Angelotti ML, Ronconi E, la Marca G, Mazzinghi B et al. 2013. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24:1756–68
    [Google Scholar]
  53. 53. 
    Lazzeri E, Peired AJ, Lasagni L, Romagnani P. 2014. Retinoids and glomerular regeneration. Semin. Nephrol. 34:429–36
    [Google Scholar]
  54. 54. 
    Wagner J, Dechow C, Morath C, Lehrke I, Amann K et al. 2000. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J. Am. Soc. Nephrol. 11:1479–87
    [Google Scholar]
  55. 55. 
    Oseto S, Moriyama T, Kawada N, Nagatoya K, Takeji M et al. 2003. Therapeutic effect of all-trans retinoic acid on rats with anti-GBM antibody glomerulonephritis. Kidney Int 64:1241–52
    [Google Scholar]
  56. 56. 
    Kinoshita K, Yoo BS, Nozaki Y, Sugiyama M, Ikoma S et al. 2003. Retinoic acid reduces autoimmune renal injury and increases survival in NZB/W F1 mice. J. Immunol. 170:5793–98
    [Google Scholar]
  57. 57. 
    Kishimoto K, Kinoshita K, Hino S, Yano T, Nagare Y et al. 2011. Therapeutic effect of retinoic acid on unilateral ureteral obstruction model. Nephron. Exp. Nephrol. 118:e69–78
    [Google Scholar]
  58. 58. 
    Dai Y, Chen A, Liu R, Gu L, Sharma S et al. 2017. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int 92:1444–57
    [Google Scholar]
  59. 59. 
    Li X, Dai Y, Chuang PY, He JC. 2014. Induction of retinol dehydrogenase 9 expression in podocytes attenuates kidney injury. J. Am. Soc. Nephrol. 25:1933–41
    [Google Scholar]
  60. 60. 
    Lehrke I, Schaier M, Schade K, Morath C, Waldherr R et al. 2002. Retinoid receptor-specific agonists alleviate experimental glomerulonephritis. Am. J. Physiol. Ren. Physiol. 282:F741–51
    [Google Scholar]
  61. 61. 
    Ratnam KK, Feng X, Chuang PY, Verma V, Lu TC et al. 2011. Role of the retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int 79:624–34
    [Google Scholar]
  62. 62. 
    Watanabe H, Bi J, Murata R, Fujimura R, Nishida K et al. 2020. A synthetic retinoic acid receptor agonist Am80 ameliorates renal fibrosis via inducing the production of alpha-1-acid glycoprotein. Sci. Rep. 10:11424
    [Google Scholar]
  63. 63. 
    Trasino SE, Tang XH, Shevchuk MM, Choi ME, Gudas LJ. 2018. Amelioration of diabetic nephropathy using a retinoic acid receptor β2 agonist. J. Pharmacol. Exp. Ther. 367:82–94
    [Google Scholar]
  64. 64. 
    Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ 2018. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24:908–22
    [Google Scholar]
  65. 65. 
    Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S et al. 2014. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLOS Med 11:e1001680
    [Google Scholar]
  66. 66. 
    Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A et al. 2018. Alcoholic liver disease. Nat. Rev. Dis. Primers 4:16
    [Google Scholar]
  67. 67. 
    Blaner WS, O'Byrne SM, Wongsiriroj N, Kluwe J, D'Ambrosio DM et al. 2009. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta 1791:467–73
    [Google Scholar]
  68. 68. 
    Kane MA, Folias AE, Napoli JL. 2008. HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal. Biochem. 378:71–79
    [Google Scholar]
  69. 69. 
    Hussey GD, Klein M. 1990. A randomized, controlled trial of vitamin A in children with severe measles. N. Engl. J. Med. 323:160–64
    [Google Scholar]
  70. 70. 
    Yanagitani A, Yamada S, Yasui S, Shimomura T, Murai R et al. 2004. Retinoic acid receptor α dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology 40:366–75
    [Google Scholar]
  71. 71. 
    Radaeva S, Wang L, Radaev S, Jeong WI, Park O, Gao B 2007. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G809–16
    [Google Scholar]
  72. 72. 
    Czuba LC, Wu X, Huang W, Hollingshead N, Roberto JB et al. 2021. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin. Transl. Sci. 14:976–89
    [Google Scholar]
  73. 73. 
    Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO et al. 2020. Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab 31:406–21.e7
    [Google Scholar]
  74. 74. 
    Li Y, Wong K, Walsh K, Gao B, Zang M. 2013. Retinoic acid receptor β stimulates hepatic induction of fibroblast growth factor 21 to promote fatty acid oxidation and control whole-body energy homeostasis in mice. J. Biol. Chem. 288:10490–504
    [Google Scholar]
  75. 75. 
    Trasino SE, Tang XH, Jessurun J, Gudas LJ 2016. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis. Diabetes Obes. Metab. 18:142–51
    [Google Scholar]
  76. 76. 
    Melis M, Tang XH, Trasino SE, Patel VM, Stummer DJ et al. 2019. Effects of AM80 compared to AC261066 in a high fat diet mouse model of liver disease. PLOS ONE 14:e0211071
    [Google Scholar]
  77. 77. 
    Trasino SE, Tang XH, Jessurun J, Gudas LJ 2016. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease. J. Mol. Med. 94:1143–51
    [Google Scholar]
  78. 78. 
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115:1343–51
    [Google Scholar]
  79. 79. 
    Shepherd EL, Saborano R, Northall E, Matsuda K, Ogino H et al. 2021. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep 3:100217
    [Google Scholar]
  80. 80. 
    Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM et al. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362:1675–85
    [Google Scholar]
  81. 81. 
    Trasino SE, Benoit YD, Gudas LJ. 2015. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J. Biol. Chem. 290:1456–73
    [Google Scholar]
  82. 82. 
    Brun PJ, Grijalva A, Rausch R, Watson E, Yuen JJ et al. 2015. Retinoic acid receptor signaling is required to maintain glucose-stimulated insulin secretion and β-cell mass. FASEB J 29:671–83
    [Google Scholar]
  83. 83. 
    Trasino SE, Tang XH, Jessurun J, Gudas LJ 2015. Obesity leads to tissue, but not serum vitamin A deficiency. Sci. Rep. 5:15893
    [Google Scholar]
  84. 84. 
    Penkert RR, Cortez V, Karlsson EA, Livingston B, Surman SL et al. 2020. Vitamin A corrects tissue deficits in diet-induced obese mice and reduces influenza infection after vaccination and challenge. Obesity 28:1631–36
    [Google Scholar]
  85. 85. 
    Luo J, Sucov HM, Bader JA, Evans RM, Giguere V. 1996. Compound mutants for retinoic acid receptor (RAR)β and RARα1 reveal developmental functions for multiple RARβ isoforms. Mech. Dev. 55:33–44
    [Google Scholar]
  86. 86. 
    Ryckebusch L, Wang Z, Bertrand N, Lin SC, Chi X et al. 2008. Retinoic acid deficiency alters second heart field formation. PNAS 105:2913–18
    [Google Scholar]
  87. 87. 
    Stefanovic S, Zaffran S. 2017. Mechanisms of retinoic acid signaling during cardiogenesis. Mech. Dev. 143:9–19
    [Google Scholar]
  88. 88. 
    Li P, Pashmforoush M, Sucov HM. 2010. Retinoic acid regulates differentiation of the secondary heart field and TGFβ-mediated outflow tract septation. Dev. Cell 18:480–85
    [Google Scholar]
  89. 89. 
    Xavier-Neto J, Sousa Costa AM, Figueira AC, Caiaffa CD, Amaral FN et al. 2015. Signaling through retinoic acid receptors in cardiac development: doing the right things at the right times. Biochim. Biophys. Acta 1849:94–111
    [Google Scholar]
  90. 90. 
    Park SW, Persaud SD, Ogokeh S, Meyers TA, Townsend D, Wei LN 2018. CRABP1 protects the heart from isoproterenol-induced acute and chronic remodeling. J. Endocrinol. 236:151–65
    [Google Scholar]
  91. 91. 
    Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL et al. 2020. Cells of the adult human heart. Nature 588:466–72
    [Google Scholar]
  92. 92. 
    Magvanjav O, Gong Y, McDonough CW, Chapman AB, Turner ST et al. 2017. Genetic variants associated with uncontrolled blood pressure on thiazide diuretic/β-blocker combination therapy in the PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) and INVEST (International Verapamil-SR Trandolapril Study) trials. J. Am. Heart Assoc. 6:e006522
    [Google Scholar]
  93. 93. 
    Bilbija D, Haugen F, Sagave J, Baysa A, Bastani N et al. 2012. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling. PLOS ONE 7:e44740
    [Google Scholar]
  94. 94. 
    Manolescu DC, Jankowski M, Danalache BA, Wang D, Broderick TL et al. 2014. All-trans retinoic acid stimulates gene expression of the cardioprotective natriuretic peptide system and prevents fibrosis and apoptosis in cardiomyocytes of obese ob/ob mice. Appl. Physiol. Nutr. Metab. 39:1127–36
    [Google Scholar]
  95. 95. 
    Choudhary R, Palm-Leis A, Scott RC III, Guleria RS, Rachut E et al. 2008. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am. J. Physiol. Heart Circ. Physiol. 294:H633–44
    [Google Scholar]
  96. 96. 
    Guleria RS, Choudhary R, Tanaka T, Baker KM, Pan J. 2011. Retinoic acid receptor-mediated signaling protects cardiomyocytes from hyperglycemia induced apoptosis: role of the renin-angiotensin system. J. Cell Physiol. 226:1292–307
    [Google Scholar]
  97. 97. 
    Kang JX, Leaf A. 1995. Protective effects of all-trans-retinoic acid against cardiac arrhythmias induced by isoproterenol, lysophosphatidylcholine or ischemia and reperfusion. J. Cardiovasc. Pharmacol. 26:943–48
    [Google Scholar]
  98. 98. 
    Azevedo PS, Minicucci MF, Chiuso-Minicucci F, Justulin LA Jr., Matsubara LS et al. 2010. Ventricular remodeling induced by tissue vitamin A deficiency in rats. Cell Physiol. Biochem. 26:395–402
    [Google Scholar]
  99. 99. 
    Asson-Batres MA, Ryzhov S, Tikhomirov O, Duarte CW, Congdon CB et al. 2016. Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores. Am. J. Physiol. Heart. Circ. Physiol. 310:H1773–89
    [Google Scholar]
  100. 100. 
    Paiva SA, Matsubara LS, Matsubara BB, Minicucci MF, Azevedo PS et al. 2005. Retinoic acid supplementation attenuates ventricular remodeling after myocardial infarction in rats. J. Nutr. 135:2326–28
    [Google Scholar]
  101. 101. 
    Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD et al. 2011. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 20:397–404
    [Google Scholar]
  102. 102. 
    Mathew LK, Sengupta S, Franzosa JA, Perry J, La Du J et al. 2009. Comparative expression profiling reveals an essential role for raldh2 in epimorphic regeneration. J. Biol. Chem. 284:33642–53
    [Google Scholar]
  103. 103. 
    Marino A, Sakamoto T, Tang XH, Gudas LJ, Levi R. 2018. A retinoic acid β2-receptor agonist exerts cardioprotective effects. J. Pharmacol. Exp. Ther. 366:314–21
    [Google Scholar]
  104. 104. 
    Forsberg JA, Pepek JM, Wagner S, Wilson K, Flint J et al. 2009. Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J. Bone Joint Surg. Am. 91:1084–91
    [Google Scholar]
  105. 105. 
    Cipriano CA, Pill SG, Keenan MA. 2009. Heterotopic ossification following traumatic brain injury and spinal cord injury. J. Am. Acad. Orthop. Surg. 17:689–97
    [Google Scholar]
  106. 106. 
    Williams JA, Kondo N, Okabe T, Takeshita N, Pilchak DM et al. 2009. Retinoic acid receptors are required for skeletal growth, matrix homeostasis and growth plate function in postnatal mouse. Dev. Biol. 328:315–27
    [Google Scholar]
  107. 107. 
    Hind M, Stinchcombe S. 2009. Palovarotene, a novel retinoic acid receptor γ agonist for the treatment of emphysema. Curr. Opin. Investig. Drugs 10:1243–50
    [Google Scholar]
  108. 108. 
    Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH et al. 2011. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat. Med. 17:454–60
    [Google Scholar]
  109. 109. 
    Pavey GJ, Qureshi AT, Tomasino AM, Honnold CL, Bishop DK et al. 2016. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone 90:159–67
    [Google Scholar]
  110. 110. 
    Di Rocco A, Uchibe K, Larmour C, Berger R, Liu M et al. 2015. Selective retinoic acid receptor γ agonists promote repair of injured skeletal muscle in mouse. Am. J. Pathol. 185:2495–504
    [Google Scholar]
  111. 111. 
    Shirasawa H, Matsumura N, Yoda M, Okubo K, Shimoda M et al. 2021. Retinoic acid receptor agonists suppress muscle fatty infiltration in mice. Am. J. Sports Med. 49:332–39
    [Google Scholar]
  112. 112. 
    Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T et al. 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124:3654–64
    [Google Scholar]
  113. 113. 
    El Haddad M, Jean E, Turki A, Hugon G, Vernus B et al. 2012. Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J. Cell Sci. 125:6147–56
    [Google Scholar]
  114. 114. 
    Joshi SK, Liu X, Samagh SP, Lovett DH, Bodine SC et al. 2013. mTOR regulates fatty infiltration through SREBP-1 and PPARγ after a combined massive rotator cuff tear and suprascapular nerve injury in rats. J. Orthop. Res. 31:724–30
    [Google Scholar]
  115. 115. 
    Krezel W, Kastner P, Chambon P. 1999. Differential expression of retinoid receptors in the adult mouse central nervous system. Neuroscience 89:1291–300
    [Google Scholar]
  116. 116. 
    Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V et al. 1998. An essential role for retinoid receptors RARβ and RXRγ in long-term potentiation and depression. Neuron 21:1353–61
    [Google Scholar]
  117. 117. 
    Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B et al. 2008. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J. Neurosci. 28:279–91
    [Google Scholar]
  118. 118. 
    Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V et al. 2001. Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J. Neurosci. 21:6423–29
    [Google Scholar]
  119. 119. 
    Hummel R, Ulbrich S, Appel D, Li S, Hirnet T et al. 2020. Administration of all-trans retinoic acid after experimental traumatic brain injury is brain protective. Br. J. Pharmacol. 177:5208–23
    [Google Scholar]
  120. 120. 
    Agudo M, Yip P, Davies M, Bradbury E, Doherty P et al. 2010. A retinoic acid receptor β agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol. Dis. 37:147–55
    [Google Scholar]
  121. 121. 
    Goncalves MB, Wu Y, Trigo D, Clarke E, Malmqvist T et al. 2018. Retinoic acid synthesis by NG2 expressing cells promotes a permissive environment for axonal outgrowth. Neurobiol. Dis. 111:70–79
    [Google Scholar]
  122. 122. 
    Goncalves MB, Moehlin J, Clarke E, Grist J, Hobbs C et al. 2019. RARβ agonist drug (C286) demonstrates efficacy in a pre-clinical neuropathic pain model restoring multiple pathways via DNA repair mechanisms. iScience 20:554–66
    [Google Scholar]
  123. 123. 
    Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, Podleśny-Drabiniok A, Dembélé D et al. 2017. Genome-wide analysis of RARβ transcriptional targets in mouse striatum links retinoic acid signaling with Huntington's disease and other neurodegenerative disorders. Mol. Neurobiol. 54:3859–78
    [Google Scholar]
  124. 124. 
    Beckenbach L, Baron JM, Merk HF, Löffler H, Amann PM. 2015. Retinoid treatment of skin diseases. Eur. J. Dermatol. 25:384–91
    [Google Scholar]
  125. 125. 
    Nagpal S, Thacher SM, Patel S, Friant S, Malhotra M et al. 1996. Negative regulation of two hyperproliferative keratinocyte differentiation markers by a retinoic acid receptor-specific retinoid: insight into the mechanism of retinoid action in psoriasis. Cell Growth Differ 7:1783–91
    [Google Scholar]
  126. 126. 
    Michel S, Jomard A, Démarchez M 1998. Pharmacology of adapalene. Br. J. Dermatol. 139:Suppl. 523–7
    [Google Scholar]
  127. 127. 
    Veraldi S, Rossi LC, Barbareschi M. 2016. Are topical retinoids teratogenic?. G. Ital. Dermatol. Venereol. 151:700–5
    [Google Scholar]
  128. 128. 
    Moradi Tuchayi S, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC 2015. Acne vulgaris. Nat. Rev. Dis. Primers 1:15029–40
    [Google Scholar]
  129. 129. 
    Wagner N, Benkali K, Alió Sáenz A, Poncet M, Graeber M 2020. Clinical pharmacology and safety of trifarotene, a first-in-class RARγ-selective topical retinoid. J. Clin. Pharmacol. 60:660–68
    [Google Scholar]
  130. 130. 
    Aubert J, Piwnica D, Bertino B, Blanchet-Réthoré S, Carlavan I et al. 2018. Nonclinical and human pharmacology of the potent and selective topical retinoic acid receptor-γ agonist trifarotene. Br. J. Dermatol. 179:442–56
    [Google Scholar]
  131. 131. 
    Rees J. 1998. FGFR2 mutations and acne. Lancet 352:668–69
    [Google Scholar]
  132. 132. 
    Oulès B, Philippeos C, Segal J, Tihy M, Vietri Rudan M et al. 2020. Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat. Commun. 11:5067–74
    [Google Scholar]
  133. 133. 
    Kim HJ, Lebwohl MG. 2019. Biologics and psoriasis: The beat goes on. Dermatol. Clin. 37:29–36
    [Google Scholar]
  134. 134. 
    Ogawa E, Sato Y, Minagawa A, Okuyama R 2018. Pathogenesis of psoriasis and development of treatment. J. Dermatol. 45:264–72
    [Google Scholar]
  135. 135. 
    Lee DD, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. 2009. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J. Cell Physiol. 220:427–39
    [Google Scholar]
  136. 136. 
    Mehta D, Lim HW. 2016. Ultraviolet B phototherapy for psoriasis: review of practical guidelines. Am. J. Clin. Dermatol. 17:125–33
    [Google Scholar]
  137. 137. 
    Lebwohl M, Menter A, Koo J, Feldman SR 2004. Combination therapy to treat moderate to severe psoriasis. J. Am. Acad. Dermatol. 50:416–30
    [Google Scholar]
  138. 138. 
    Archier E, Devaux S, Castela E, Gallini A, Aubin F et al. 2012. Carcinogenic risks of psoralen UV-A therapy and narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J. Eur. Acad. Dermatol. Venereol. 26:Suppl. 322–31
    [Google Scholar]
  139. 139. 
    van de Kerkhof PC, de Rooij MJ. 1997. Multiple squamous cell carcinomas in a psoriatic patient following high-dose photochemotherapy and cyclosporin treatment: response to long-term acitretin maintenance. Br. J. Dermatol. 136:275–78
    [Google Scholar]
  140. 140. 
    Hamada T, Sugaya M, Tokura Y, Ohtsuka M, Tsuboi R et al. 2017. Phase I/II study of the oral retinoid X receptor agonist bexarotene in Japanese patients with cutaneous T-cell lymphomas. J. Dermatol. 44:135–42
    [Google Scholar]
  141. 141. 
    Duvic M, Hymes K, Heald P, Breneman D, Martin AG et al. 2001. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J. Clin. Oncol. 19:2456–71
    [Google Scholar]
  142. 142. 
    Kligman AM, Grove GL, Hirose R, Leyden JJ. 1986. Topical tretinoin for photoaged skin. J. Am. Acad. Dermatol. 15:836–59
    [Google Scholar]
  143. 143. 
    Gaikwad J, Sharma S, Hatware KV. 2020. Review on characteristics and analytical methods of tazarotene: an update. Crit. Rev. Anal. Chem. 50:90–96
    [Google Scholar]
  144. 144. 
    Herane MI, Orlandi C, Zegpi E, Valdés P, Ancić X. 2012. Clinical efficacy of adapalene (Differin®) 0.3% gel in Chilean women with cutaneous photoaging. J. Dermatolog. Treat. 23:57–64
    [Google Scholar]
  145. 145. 
    Riahi RR, Bush AE, Cohen PR. 2016. Topical retinoids: therapeutic mechanisms in the treatment of photodamaged skin. Am. J. Clin. Dermatol. 17:265–76
    [Google Scholar]
  146. 146. 
    Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ 1995. Reduced type I and type III procollagens in photodamaged adult human skin. J. Investig. Dermatol. 105:285–90
    [Google Scholar]
  147. 147. 
    Kong R, Cui Y, Fisher GJ, Wang X, Chen Y et al. 2016. A comparative study of the effects of retinol and retinoic acid on histological, molecular, and clinical properties of human skin. J. Cosmet. Dermatol. 15:49–57
    [Google Scholar]
  148. 148. 
    Muindi J, Frankel SR, Miller WH Jr., Jakubowski A, Scheinberg DA et al. 1992. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood 79:299–303
    [Google Scholar]
  149. 149. 
    Ourique AF, Melero A, de Bona da Silva C, Schaefer UF, Pohlmann AR et al. 2011. Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur. J. Pharm. Biopharm. 79:95–101
    [Google Scholar]
  150. 150. 
    Morales JO, Valdés K, Morales J, Oyarzun-Ampuero F. 2015. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine 10:253–69
    [Google Scholar]
  151. 151. 
    Medina DX, Chung EP, Teague CD, Bowser R, Sirianni RW. 2020. Intravenously administered, retinoid activating nanoparticles increase lifespan and reduce neurodegeneration in the SOD1G93A mouse model of ALS. Front. Bioeng. Biotechnol. 8:224
    [Google Scholar]
  152. 152. 
    Lu L, Du Y, Ismail M, Ling L, Yao C et al. 2018. Liposomes assembled from dimeric retinoic acid phospholipid with improved pharmacokinetic properties. Eur. J. Pharm. Sci. 112:186–94
    [Google Scholar]
  153. 153. 
    Boorjian SA, Milowsky MI, Kaplan J, Albert M, Cobham MV et al. 2007. Phase 1/2 clinical trial of interferon α2b and weekly liposome-encapsulated all-trans retinoic acid in patients with advanced renal cell carcinoma. J. Immunother. 30:655–62
    [Google Scholar]
  154. 154. 
    Zhang Y, Li Y, Mu T, Tong N, Cheng P. 2021. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J. Cell Mol. Med. 25:1299–313
    [Google Scholar]
  155. 155. 
    Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. 2020. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat. Commun. 11:4265
    [Google Scholar]
  156. 156. 
    Osei-Sarfo K, Gudas LJ. 2014. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway. Stem Cells 32:2061–71
    [Google Scholar]
  157. 157. 
    Lorberbaum DS, Kishore S, Rosselot C, Sarbaugh D, Brooks EP et al. 2020. Retinoic acid signaling within pancreatic endocrine progenitors regulates mouse and human β cell specification. Development 147:dev189977
    [Google Scholar]
  158. 158. 
    Kashyap V, Gudas LJ, Brenet F, Funk P, Viale A, Scandura JM. 2011. Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J. Biol. Chem. 286:3250–60
    [Google Scholar]
  159. 159. 
    Urvalek AM, Gudas LJ. 2014. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J. Biol. Chem. 289:19519–30
    [Google Scholar]
  160. 160. 
    Schwartz DM, Farley TK, Richoz N, Yao C, Shih HY et al. 2019. Retinoic acid receptor alpha represses a Th9 transcriptional and epigenomic program to reduce allergic pathology. Immunity 50:106–20.e10
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-104428
Loading
/content/journals/10.1146/annurev-pharmtox-052120-104428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error