1932

Abstract

Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121228
2015-04-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121228.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121228&mimeType=html&fmt=ahah

Literature Cited

  1. Kraus CA. 1.  1908. Solutions of metals in non-metallic solvents. IV. Material effects accompanying the passage of an electrical current through solutions of metals in liquid ammonia. Migration experiments. J. Am. Chem. Soc. 30:1323–44 [Google Scholar]
  2. Kraus CA. 2.  1914. Solutions of metals in non-metallic solvents. V. The electromotive force of concentration cells of solutions of sodium in liquid ammonia and relative speed of the ions in these solutions. J. Am. Chem. Soc. 36:864–77 [Google Scholar]
  3. Mostafavi M, Lampre I. 3.  2010. An overview of solvated electrons: recent advances. See Reference 105 21–58
  4. Lepoutre G, Sienko MJ. 4.  1964. Solutions métal-ammoniac: propriétés physico-chimiques: Colloque Weyl, Lille, Juin 1963 New York: W.A. Benjamin
  5. Larsen RE, Glover WJ, Schwartz BJ. 5.  2010. Does the hydrated electron occupy a cavity?. Science 329:65–69 [Google Scholar]
  6. Turi L, Madarász A. 6.  2011. Comment on “Does the hydrated electron occupy a cavity?. Science 331:1387-c [Google Scholar]
  7. Jacobson LD, Herbert JM. 7.  2011. Comment on “Does the hydrated electron occupy a cavity?”. Science 331:1387-d [Google Scholar]
  8. Larsen RE, Glover WJ, Schwartz BJ. 8.  2011. Response to comments on “Does the hydrated electron occupy a cavity?. Science 331:1387-e [Google Scholar]
  9. Zurek E, Edwards PP, Hoffmann R. 9.  2009. A molecular perspective on lithium-ammonia solutions. Angew. Chem. Int. Ed. Engl. 48:8198–232 [Google Scholar]
  10. Shkrob IA. 10.  2006. Ammoniated electron as a solvent stabilized multimer radical anion. J. Phys. Chem. A 110:3967–76 [Google Scholar]
  11. Shkrob I. 11.  2010. The structure and dynamics of solvated electrons. See Reference 105 59–95
  12. Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA. 12.  et al. 2005. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105:355–90 [Google Scholar]
  13. Yokoyama K, Silva C, Son DH, Walhout PK, Barbara PF. 13.  1998. Detailed investigation of the femtosecond pump-probe spectroscopy of the hydrated electron. J. Phys. Chem. A 102:6957–66 [Google Scholar]
  14. Silva C, Walhout PK, Yokoyama K, Barbara PF. 14.  1998. Femtosecond solvation dynamics of the hydrated electron. Phys. Rev. Lett. 80:1086–89 [Google Scholar]
  15. Hertwig A, Hippler H, Unterreiner A-N, Vöhringer P. 15.  1998. Ultrafast relaxation dynamics of solvated electrons in water. Ber. Bunsenges. Phys. Chem. 102:805–10 [Google Scholar]
  16. Kummrow A, Emde MF, Baltuška A, Pshenichnikov MS, Wiersma DA. 16.  1998. Wave packet dynamics in ultrafast spectroscopy of the hydrated electron. J. Phys. Chem. 102:4172–76 [Google Scholar]
  17. Emde MF, Baltuška A, Kummrow A, Pshenichnikov MS, Wiersma DA. 17.  1998. Ultrafast librational dynamics of the hydrated electron. Phys. Rev. Lett. 80:4645–48 [Google Scholar]
  18. Son DH, Kambhampati P, Kee TW, Barbara PF. 18.  2001. Delocalizing electrons in water with light. J. Phys. Chem. A 105:8269–72 [Google Scholar]
  19. Kambhampati P, Son DH, Kee TW, Barbara PF. 19.  2002. Solvation dynamics of the hydrated electron depends on its initial degree of electron delocalization. J. Phys. Chem. A 106:2374–78 [Google Scholar]
  20. Pshenichnikov MS, Baltuška A, Wiersma DA. 20.  2004. Hydrated-electron population dynamics. Chem. Phys. Lett. 389:171–75 [Google Scholar]
  21. Ashfold MNR, Bennett CL, Stickland RJ. 21.  1987. Rydberg states of ammonia. Comments At. Mol. Phys. 19:181–203 [Google Scholar]
  22. Suto M, Lee LC. 22.  1983. Photodissociation of NH3 at 106–200 nm. J. Chem. Phys. 78:4515–22 [Google Scholar]
  23. Edvardsson D, Baltzer P, Karlsson L, Wannberg B, Holland DMP. 23.  et al. 1999. A photoabsorption, photodissociation and photoelectron spectroscopy study of NH3 and ND3. J. Phys. B 32:2583–609 [Google Scholar]
  24. McCarthy MI, Rosmus P, Werner HJ, Botschwina P, Vaida V. 24.  1987. Dissociation of NH3 to NH2 + H. J. Chem. Phys. 86:6693–700 [Google Scholar]
  25. Vaida V, Hess W, Roebber JL. 25.  1984. The direct ultraviolet absorption spectrum of the Ã′A2″←′A1′ transition of jet-cooled ammonia. J. Phys. Chem. 88:3397–400 [Google Scholar]
  26. Ziegler LD. 26.  1985. Rovibronic absorption analysis of the à transition of ammonia. J. Chem. Phys. 82:664–69 [Google Scholar]
  27. Stert V, Radloff W, Schulz CP, Hertel IV. 27.  1999. Ultrafast photoelectron spectroscopy: femtosecond pump-probe coincidence detection of ammonia cluster ions and electrons. Eur. Phys. J. D 5:97–106 [Google Scholar]
  28. Wells KL, Perriam G, Stavros VG. 28.  2009. Time-resolved velocity map ion imaging study of NH3 photodissociation. J. Chem. Phys. 130:074398 [Google Scholar]
  29. Evans NL, Yu H, Roberts GM, Stavros VG, Ullrich S. 29.  2012. Observation of ultrafast NH3 (Ã) state relaxation dynamics using a combination of time-resolved photoelectron spectroscopy and photoproduct detection. Phys. Chem. Chem. Phys. 14:10401–9 [Google Scholar]
  30. Chatterley AS, Roberts GM, Stavros VG. 30.  2013. Timescales for adiabatic photodissociation dynamics from the à state of ammonia. J. Chem. Phys. 139:034318 [Google Scholar]
  31. Dobber MR, Buma WJ, de Lange CA. 31.  1995. Two-color picosecond time-resolved (2 + 1′) resonance-enhanced multiphoton ionization photoelectron spectroscopy on the 1E″ and 1A1′ states of ammonia. J. Phys. Chem. 99:1671–85 [Google Scholar]
  32. Freudenberg T, Stert V, Radloff W, Ringling J, Güdde J. 32.  et al. 1997. Ultrafast dynamics of ammonia clusters excited by femtosecond VUV laser pulses. Chem. Phys. Lett. 269:523–29 [Google Scholar]
  33. Ritze HH, Radloff W, Hertel IV. 33.  1998. Decay of the ammonia state due to nonadiabatic coupling. Chem. Phys. Lett. 289:46–52 [Google Scholar]
  34. Ashfold MNR, Dixon RN, Stickland RJ. 34.  1984. Molecular predissociation dynamics revealed through multiphoton ionisation spectroscopy. II. The state of NH3 and ND3. Chem. Phys. 88:463–78 [Google Scholar]
  35. Rabalais JW, Karlsson L, Werme LO, Bergmark T, Siegbahn K. 35.  1973. Analysis of vibrational structure and Jahn-Teller effects in the electron spectrum of ammonia. J. Chem. Phys. 58:3370–72 [Google Scholar]
  36. Piancastelli MN, Cauletti C, Adam MY. 36.  1987. Angle-resolved photoelectron spectroscopic study of the outer and inner valence shells of NH3 in the 20–80 eV photon energy range. J. Chem. Phys. 87:1982–86 [Google Scholar]
  37. Lu HC, Chen HK, Cheng BM, Ogilvie JF. 37.  2008. Absorption spectra in the vacuum ultraviolet region of small molecules in condensed phases. Spectrochim. Acta A 71:1485–91 [Google Scholar]
  38. Kerr GD, Williams MW, Birkhoff RD, Hamm RN, Painter LR. 38.  1972. Optical and dielectric properties of water in vacuum ultraviolet. Phys. Rev. A 5:2523–27 [Google Scholar]
  39. Dawes A, Mukerji RJ, Davis MP, Holtom PD, Webb SM. 39.  et al. 2007. Morphological study into the temperature dependence of solid ammonia under astrochemical conditions using vacuum ultraviolet and Fourier-transform infrared spectroscopy. J. Chem. Phys. 126:244711 [Google Scholar]
  40. Mulliken RS. 40.  1976. Rydberg states and Rydbergization. Acc. Chem. Res. 9:7–12 [Google Scholar]
  41. Chergui M, Schwentner N. 41.  1994. Experimental evidence to Rydbergization of antibonding molecular orbitals. Chem. Phys. Lett. 219:237–42 [Google Scholar]
  42. Yu KY, McMenamin JC, Spicer WE. 42.  1975. UPS measurements of molecular energy level of condensed gases. Surf. Sci. 50:149–56 [Google Scholar]
  43. Winter B, Weber R, Widdra W, Dittmar M, Faubel M, Hertel IV. 43.  2004. Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 108:2625–32 [Google Scholar]
  44. Lindblad A, Bergersen H, Pokapanich W, Tchaplyguine M, Ohrwall G, Bjorneholm O. 44.  2009. Charge delocalization dynamics of ammonia in different hydrogen bonding environments: free clusters and in liquid water solution. Phys. Chem. Chem. Phys. 11:1758–64 [Google Scholar]
  45. Winter B, Faubel M. 45.  2006. Photoemission from liquid aqueous solutions. Chem. Rev. 106:1176–211 [Google Scholar]
  46. Kashtanov S, Augustsson A, Luo Y, Guo JH, Såthe C. 46.  et al. 2004. Local structures of liquid water studied by x-ray emission spectroscopy. Phys. Rev. B 69:024201 [Google Scholar]
  47. Tuttle TR, Golden S. 47.  1991. Solvated electrons: What is solvated?. J. Phys. Chem. 95:5725–36 [Google Scholar]
  48. Quinn RK, Lagowski JJ. 48.  1969. Metal-ammonia solutions. IV. Spectra of dilute metal-ammonia solutions. J. Phys. Chem. 73:2326–29 [Google Scholar]
  49. Lindner J, Unterreiner A-N, Vöhringer P. 49.  2006. Femtosecond relaxation dynamics of solvated electrons in liquid ammonia. ChemPhysChem 7:363–69 [Google Scholar]
  50. Lindner J, Unterreiner A-N, Vöhringer P. 50.  2008. Femtosecond spectroscopy of solvated electrons from sodium-ammonia-d3 solutions: temperature jump versus local density jump. J. Chem. Phys. 129:064514 [Google Scholar]
  51. Jortner J. 51.  1959. Energy levels of bound electrons in liquid ammonia. J. Chem. Phys. 30:839–46 [Google Scholar]
  52. Copeland DA, Kestner NR, Jortner J. 52.  1970. Excess electrons in polar solvents. J. Chem. Phys. 53:1189–216 [Google Scholar]
  53. Golden S, Tuttle TR. 53.  1979. Nature of solvated electron absorption spectra. J. Chem. Soc. Faraday Trans. II 75:474–84 [Google Scholar]
  54. Catterall R. 54.  1971. Structure of solvated electron in liquid ammonia. Nat. Phys. Sci. 229:10–12 [Google Scholar]
  55. Rodriguez J, Skaf MS, Laria D. 55.  2003. Solvation of excess electrons in supercritical ammonia. J. Chem. Phys. 119:6044–52 [Google Scholar]
  56. Marchi M, Sprik M, Klein ML. 56.  1988. Solvation of electrons, atoms and ions in liquid ammonia. Faraday Discuss. Chem. Soc. 85:373–89 [Google Scholar]
  57. Abramczyk H, Kroh J. 57.  1991. Absorption spectrum of the solvated electron in ammonia and amines. J. Phys. Chem. 95:5749–53 [Google Scholar]
  58. Abramczyk H. 58.  1991. Absorption spectrum of the solvated electron. 1. Theory. J. Phys. Chem. 95:6149–55 [Google Scholar]
  59. Tuttle TR, Golden S. 59.  1979. Model potentials and the optical spectra of solvated electrons. J. Chem. Soc. Faraday Trans. II 75:1146–58 [Google Scholar]
  60. Kajiwara T, Funabashi K, Naleway C. 60.  1972. Photodetachment spectra of trapped electrons in spherical potentials. Phys. Rev. A 6:808–16 [Google Scholar]
  61. Chen XY, Bradforth SE. 61.  2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59:203–31 [Google Scholar]
  62. Siefermann KR, Liu YX, Lugovoy E, Link O, Faubel M. 62.  et al. 2010. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2:274–79 [Google Scholar]
  63. Shreve AT, Yen TA, Neumark DM. 63.  2010. Photoelectron spectroscopy of hydrated electrons. Chem. Phys. Lett. 493:216–19 [Google Scholar]
  64. Tang Y, Shen H, Sekiguchi K, Kurahashi N, Mizuno T. 64.  et al. 2010. Direct measurement of vertical binding energy of a hydrated electron. Phys. Chem. Chem. Phys. 12:3653–55 [Google Scholar]
  65. Häsing J. 65.  1940. Über die lichtelektrischen Eigenschaften der Lösungen von Natrium in flüssigem Ammoniak. Ann. Phys. 429:509–33 [Google Scholar]
  66. Aulich H, Baron B, Delahay P, Lugo R. 66.  1973. Photoelectron emission by solvated electrons in liquid ammonia. J. Chem. Phys. 58:4439–43 [Google Scholar]
  67. Steinbach C, Buck U. 67.  2005. Ionization potentials of large sodium doped ammonia clusters. J. Chem. Phys. 122:134301 [Google Scholar]
  68. Teherani T, Itaya K, Bard AJ. 68.  1978. Electrochemical study of solvated electrons in liquid ammonia. Nouv. J. Chim. 2:481–87 [Google Scholar]
  69. Bard AJ, Itaya K, Malpas RE, Teherani T. 69.  1980. Electrochemical and photoelectrochemical studies of excess electrons in liquid ammonia. J. Phys. Chem. 84:1262–66 [Google Scholar]
  70. Haberland H, Ludewigt C, Schindler H-G, Worsnop DR. 70.  1985. Clusters of water and ammonia with excess electrons. Surf. Sci. 156:157–64 [Google Scholar]
  71. Lee GH, Arnold ST, Eaton JG, Sarkas HW, Bowen KH, Haberland H. 71.  1991. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)nand (NH3)n. Z. Phys. D 20:9–12 [Google Scholar]
  72. Sarkas HW, Arnold ST, Eaton JG, Lee GH, Bowen KH. 72.  2002. Ammonia cluster anions and their relationship to ammoniated (solvated) electrons: the photoelectron spectra of [NH3]n=41-1100. J. Chem. Phys. 116:5731–37 [Google Scholar]
  73. Misaizu F, Tsukamoto K, Sanekata M, Fuke K. 73.  1992. Photoionization of clusters of Cs atoms solvated with H2O, NH3 and CH3CN. Chem. Phys. Lett. 188:241–46 [Google Scholar]
  74. Takasu R, Misaizu F, Hashimoto K, Fuke K. 74.  1997. Microscopic solvation process of alkali atoms in finite clusters: photoelectron and photoionization studies of M(NH3)n and M(H2O)n (M = Li, Li, Na). J. Phys. Chem. A 101:3078–87 [Google Scholar]
  75. Jortner J. 75.  1971. Theoretical studies of excess electron states in liquids. Ber. Bunsenges. Phys. Chem. 75:696–714 [Google Scholar]
  76. Williams F, Varma SP, Hillenius S. 76.  1976. Liquid water as a lone-pair amorphous semiconductor. J. Chem. Phys. 64:1549–54 [Google Scholar]
  77. Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KH. 77.  1997. Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J. Chem. Phys. 107:6023–31 [Google Scholar]
  78. Almeida TS, Coutinho K, Cabral BJC, Canuto S. 78.  2008. Electronic properties of liquid ammonia: a sequential molecular dynamics/quantum mechanics approach. J. Chem. Phys. 128:014506 [Google Scholar]
  79. Itaya K, Malpas RE, Bard AJ. 79.  1979. Photoelectron emission from a metal electrode in liquid ammonia. Chem. Phys. Lett. 63:411–15 [Google Scholar]
  80. Uribe FA, Sawada T, Bard AJ. 80.  1983. Photoelectron emission from a platinum electrode into liquid ammonia solutions. Chem. Phys. Lett. 97:243–46 [Google Scholar]
  81. Coffman RB, Bennett GT, Antoniewicz PR, Thompson JC. 81.  1985. Photoinjected currents in liquid ammonia. Chem. Phys. Lett. 119:451–53 [Google Scholar]
  82. Bennett GT, Thompson JC. 82.  1986. A model for photoinjection into polar fluids. J. Chem. Phys. 84:1901–4 [Google Scholar]
  83. Bennett GT, Coffman RB, Thompson JC. 83.  1987. Photoemission from silver into liquid ammonia. J. Chem. Phys. 87:7242–47 [Google Scholar]
  84. Harima Y, Sato H, Suga K. 84.  1989. Determination of photoelectron emission threshold in liquid methyl-amine: conduction band concept for electron-accepting energy states in polar solvents. J. Phys. Chem. 93:6418–22 [Google Scholar]
  85. Krohn CE, Thompson JC. 85.  1979. Comments on electronic energy levels for photoinjection into polar fluids. Phys. Rev. B 20:4365–67 [Google Scholar]
  86. Krohn CE, Antoniewicz PR, Thompson JC. 86.  1980. Energetics for photoemission of electrons into NH3 and H2O. Surf. Sci. 101:241–50 [Google Scholar]
  87. Ogg RA. 87.  1946. The photoelectric effect in metal-ammonia solutions. J. Chem. Phys. 14:295 [Google Scholar]
  88. Potter RL, Shores RG, Dye JL. 88.  1961. Attempts to find photoconductivity in dilute sodium-ammonia solutions. J. Chem. Phys. 35:1907–8 [Google Scholar]
  89. Boddeker KW, Lang G, Schindewolf U. 89.  1969. ESR measurements under pressure: effect of pressure on chemical equilibria involving solvated electrons. Angew. Chem. Int. Ed. Engl. 8:138–39 [Google Scholar]
  90. Schindewolf U. 90.  1978. Paramagnetische, diamagnetische und metallähnliche Zustände gelöster Elektronen in Metall-Ammoniaklösungen. Z. Phys. Chem. 112:153–66 [Google Scholar]
  91. Schindewolf U, Werner M. 91.  1980. Thermodynamics of sodium-ammonia solutions. J. Phys. Chem. 84:1123–29 [Google Scholar]
  92. Schindewolf U. 92.  1968. Formation and properties of solvated electrons. Angew. Chem. Int. Ed. Engl. 7:190–203 [Google Scholar]
  93. Mott NF. 93.  1980. Metal-insulator transitions in metal-ammonia solutions. J. Phys. Chem. 84:1199–203 [Google Scholar]
  94. Belloni J, Clerc M, Goujon P, Saito E. 94.  1975. Solvation time of electrons in liquid ammonia. J. Phys. Chem. 79:2848–49 [Google Scholar]
  95. Huppert D, Rentzepis PM, Struve WS. 95.  1975. Picosecond dynamics of localized electrons in metal-ammonia and metal-methylamine solutions. J. Phys. Chem. 79:2850–56 [Google Scholar]
  96. Huppert D, Avouris P, Rentzepis PM. 96.  1978. Picosecond absorption studies of excess electrons in ammonia, amines, and ethers. J. Phys. Chem. 82:2282–86 [Google Scholar]
  97. Lee I-R, Lee W, Zewail AH. 97.  2008. Dynamics of electrons in ammonia cages: the discovery system of solvation. ChemPhysChem 9:83–88 [Google Scholar]
  98. Sprik M, Klein ML. 98.  1988. Optimization of a distributed Gaussian basis set using simulated annealing: application to the adiabatic dynamics of the solvated electron. J. Chem. Phys. 89:1592–607 [Google Scholar]
  99. Sprik M, Klein ML. 99.  1989. Adiabatic dynamics of the solvated electron in liquid ammonia. J. Chem. Phys. 91:5665–71 [Google Scholar]
  100. Elkins MH, Williams HL, Shreve AT, Neumark DM. 100.  2013. Relaxation mechanism of the hydrated electron. Science 342:1496–99 [Google Scholar]
  101. Birch AJ. 101.  1996. The Birch reduction in organic synthesis. Pure Appl. Chem. 68:553–56 [Google Scholar]
  102. Perkey LM, Farhataziz. 102.  1975. Specific rates of some reactions of solvated electron in liquid ammonia measured by pulse radiolysis at 23°C. Int. J. Radiat. Phys. Chem. 7:719–30 [Google Scholar]
  103. Farhataziz, Cordier P. 103.  1976. Transients and specific rates of some reactions of the solvated electron with inorganic ions in liquid ammonia investigated by nanosecond pulse radiolysis at 23°C. J. Phys. Chem. 80:2635–41 [Google Scholar]
  104. Mozumder A. 104.  1999. Fundamentals of Radiation Chemistry San Diego: Academic
  105. Wishart JF, Rao BSM. 105.  2010. Recent Trends in Radiation Chemistry Singapore: World Sci.
  106. Onsager L. 106.  1938. Initial recombination of ions. Phys. Rev. 54:554–57 [Google Scholar]
  107. Khaikin GI, Zhigunov VA. 107.  1971. Primary products of the radiolysis of liquid ammonia. High Energy Chem. 5:72–74 [Google Scholar]
  108. Seddon WA, Fletcher JW, Jevcak J, Sopchyshyn FC. 108.  1973. Pulse radiolysis of liquid deuterated ammonia. Can. J. Chem. 51:3653–61 [Google Scholar]
  109. Farhataziz, Perkey LM, Hentz RR. 109.  1974. Yield of solvated electrons in pulse radiolysis of liquid ammonia. J. Chem. Phys. 60:717–18 [Google Scholar]
  110. Belloni J, Cordier P, Delaire J. 110.  1974. Transient spectrum from nanosecond pulse radiolysis of liquid ammonia. Chem. Phys. Lett. 27:241–44 [Google Scholar]
  111. Brooks JM, Dewald RR. 111.  1971. Rate of reaction of ammoniated electron with ammonium ion at −35°C. J. Phys. Chem. 75:986–87 [Google Scholar]
  112. Schindewolf U. 112.  1982. Thermodynamics and electrochemistry of simple ions in ammonia. Ber. Bunsenges. Phys. Chem. 86:887–94 [Google Scholar]
  113. Farhataziz, Perkey LM. 113.  1975. Absorption spectrum, yield, and decay kinetics of solvated electron in pulse radiolysis of liquid ammonia at various temperatures. J. Phys. Chem. 79:1651–54 [Google Scholar]
  114. Kieffer F, Klein J, Lapersonne-Meyer C, Magat M, Belloni J. 114.  et al. 1977. Primary trapping and solvated electron yield. Part 1. Recombination kinetics. Part 2. Correlation between G-value and neutralization efficiency. Faraday Discuss. Chem. Soc. 63:55–66 [Google Scholar]
  115. Belloni J, Cordier P, Delaire JA, Delcourt MO. 115.  1978. Primary processes studied by pulse radiolysis of liquid ammonia. 2. Influence of a chemically inert electrolyte. J. Phys. Chem. 82:537–39 [Google Scholar]
  116. Thomsen CL, Madsen D, Keiding SR, Thøgersen J, Christiansen O. 116.  1999. Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy. J. Chem. Phys. 110:3453–62 [Google Scholar]
  117. Madsen D, Thomsen CL, Thøgersen J, Keiding SR. 117.  2000. Temperature dependent relaxation and recombination dynamics of the hydrated electron. J. Chem. Phys. 113:1126–34 [Google Scholar]
  118. Kratz S, Torres-Alacan J, Urbanek J, Lindner J, Vöhringer P. 118.  2010. Geminate recombination of hydrated electrons in liquid-to-supercritical water studied by ultrafast time-resolved spectroscopy. Phys. Chem. Chem. Phys. 12:12169–76 [Google Scholar]
  119. Torres-Alacan J, Kratz S, Vöhringer P. 119.  2011. Independent pairs and Monte-Carlo simulations of the geminate recombination of solvated electrons in liquid-to-supercritical water. Phys. Chem. Chem. Phys. 13:20806–19 [Google Scholar]
  120. Urbanek J, Dahmen A, Torres-Alacan J, Königshoven P, Lindner J, Vöhringer P. 120.  2012. Femtosecond two-photon ionization and solvated electron geminate recombination in liquid-to-supercritical ammonia. J. Phys. Chem. B 116:2223–33 [Google Scholar]
  121. Urbanek J, Vöhringer P. 121.  2013. Vertical photoionization of liquid-to-supercritical ammonia: thermal effects on the valence-to-conduction band gap. J. Phys. Chem. B 117:8844–54 [Google Scholar]
  122. Urbanek J, Vöhringer P. 122.  2014. Below-band-gap ionization of liquid-to-supercritical ammonia: geminate recombination via proton-coupled back electron transfer. J. Phys. Chem. B 118:265–77 [Google Scholar]
  123. Huntress WT, Mosesman MM, Elleman DD. 123.  1971. Relative rates and their dependence on kinetic energy for ion-molecule reactions in ammonia. J. Chem. Phys. 54:843–49 [Google Scholar]
  124. Sano H, Tachiya M. 124.  1979. Partially diffusion-controlled recombination. J. Chem. Phys. 71:1276–82 [Google Scholar]
  125. Tachiya M. 125.  1983. Theory of diffusion-controlled reactions: formulation of the bulk reaction rate in terms of the pair probability. Radiat. Phys. Chem. 21:167–75 [Google Scholar]
  126. Nonose S, Taguchi T, Chen F, Iwata S, Fuke K. 126.  2002. Electronic spectra and structures of solvated NH4 radicals, NH4(NH3)n (n = 1–8). J. Phys. Chem. A 106:5242–48 [Google Scholar]
  127. Okai N, Takahata A, Morita M, Nonose S, Fuke K. 127.  2004. Ultrafast relaxation process of excited-state NH4 radical in ammonia clusters. J. Phys. Chem. A 108:727–33 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121228
Loading
/content/journals/10.1146/annurev-physchem-040214-121228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error